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I Introduction S‘(IT

Gaussian Mixtures

Gaussian Mixture Density
m weighted sum of Gaussians

f(xin) = iw,.,V(X;;,z,-,U,?) N //\fh

® universal function approximator
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Gaussian Mixture Density
a weighted sum of Gaussians

N
f(xin) =Y wi- N(x; i, 0F)
i

® universal function approximator
m possible applications
a target tracking,
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® universal function approximator
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m target tracking,
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I Introduction

Gaussian Mixtures

Karlsruhe Institute of Technology

Gaussian Mixture Density
a weighted sum of Gaussians

N
f(xin) =Y wi- N (x;uj, 0f)
i

® universal function approximator
m possible applications

a target tracking,
a density estimation,
a...

Problems in Application

m recursive multiplication of Gaussian mixtures
@ number of components grows rapidely (exponential growth)
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I Problem Description

Gaussian Mixture Reduction

Karlsruhe Institute of Technology

Goal

m given a mixture i with N components (true/original mixture),
u find a mixture ; with K' < N components (reduced mixture),
® so that a deviation measure d(7, ) is minimized.
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Problem Description S‘(“‘

Gaussian Mixture Reduction

Goal

m given a mixture i with N components (true/original mixture),
u find a mixture ; with K' < N components (reduced mixture),
® so that a deviation measure d(7, ) is minimized.

a Integrated Squared Distance (ISD):

d(fi(x), f(x)) = [ (F1(x) = fa(x))? dx
a Kullback- Lelbler dlvergence (KLD):
d(f (x) = [ fi(x ;dx

a normahzed variants
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I Reduction Methods A\KIT

Overview

m greedy methods

m iteratively replace two
Gaussians with one

m chosen according to a
deviation measure
(local, global, hybrid)
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Overview
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Overview

m greedy methods

m iteratively replace two
Gaussians with one

m chosen according to a

deviation measure
(West, Williams, Runnalls)
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Insttute of Technology.

Overview
m greedy methods m constructive method
m iteratively replace two m starts with one Gaussian
Gaussians with one m adds components as
m chosen according to a neccessary
deviation measure m progressive approximation

(West, Williams, Runnalls) a PGMR
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Overview
m greedy methods m constructive method
m iteratively replace two m starts with one Gaussian
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m chosen according to a neccessary
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Karlsruhe Institute of Technology

Overview
m greedy methods m constructive method
m iteratively replace two m starts with one Gaussian
Gaussians with one m adds components as
m chosen according to a neccessary
deviation measure m progressive approximation
(West, Williams, Runnalls) a PGMR
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Overview

m greedy methods m constructive method

m iteratively replace two m starts with one Gaussian
Gaussians with one m adds components as

m chosen according to a neccessary
deviation measure m progressive approximation
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| Reduction Methods IT

Karlsruhe Institute of Technology

Overview
m greedy methods m constructive method
m iteratively replace two m starts with one Gaussian
Gaussians with one m adds components as
m chosen according to a neccessary
deviation measure ® progressive approximation
(West, Williams, Runnalls) a PGMR
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Karlsruhe Institute of Technology

Overview
m greedy methods m constructive method
m iteratively replace two m starts with one Gaussian
Gaussians with one m adds components as
m chosen according to a neccessary
deviation measure ® progressive approximation
(West, Williams, Runnalls) a PGMR
\ N\ sﬂ‘x
\ J /' /\
/ \'\ /A any \
/ \ = / = | \/\/ &
// \\ / \ ' \J’ \ \\
\ / \ /
\ / \ /

a June9,2009  Dennis — GRK 1194: ganizi N Forsungszanrum Karsruhe @ Universitat Karlsruhe (TH)
Clustering-based Gaussian Mixture Reduction Farsn

KT -




I Reduction Methods T

Karlsruhe Institute of Technology

Overview
m greedy methods m constructive method
m iteratively replace two m starts with one Gaussian
Gaussians with one m adds components as
m chosen according to a neccessary
deviation.n?easure m progressive approximation
(West, Williams, Runnalls) a PGMR - state-of-the-art
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Overview

Gaussian Mixture Reduction via Clustering (GMRC)
® modular three-step algorithm
a input:

77 (parameter vector of the original mixture) !

K (number of reduced components)

a output:
11 (parameter vector of the reduced mixture)

n < Initialization(1}, K)

1 < Clustering(1}. n)

n < Refinement(n, n)
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I Clustering Method A\KIT

Overview

Gaussian Mixture Reduction via Clustering (GMRC)
® modular three-step algorithm
a input:

77 (parameter vector of the original mixture) !

K (number of reduced components)

a output:
11 (parameter vector of the reduced mixture)

n < Initialization(1}, K)

1 < Clustering(1}. n)

n < Refinement(n, n)

m each component 1, is interpreted as point (site) in a space with
an underlying deviation measure
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Initialization Step

® compute a preliminary solution 7 (i.e. using West, Runnalls, ... )
— initial cluster centers
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Initialization Step

m compute a preliminary solution # (i.e. using West, Runnalls, .. .)
— initial cluster centers a

m associate each original component (site) 7. with the nearest
component of the reduced mixture
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Initialization Step

m compute a preliminary solution # (i.e. using West, Runnalls, .. .)
—s initial cluster centers a

m associate each original component (site) 7. with the nearest
component of the reduced mixture

m replace each cluster center with a new one, retaining mean and
variance of the associated sites
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Clustering Method

Initialization Step

KIT

stitute of Technology

® compute a preliminary solution 7 (i.e. using West, Runnalls, ... )

— initial cluster centers
m associate each original component (site) 7. with the nearest

component of the reduced mixture

m replace each cluster center with a new one, retaining mean and
variance of the associated sites
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I Clustering Method S‘(IT

Clustering Step

m greedy approach
m based on Lloyd’s algorihm (k-means algorithm):
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Karlsruhe Institute of Technology

Clustering Step

m greedy approach
m based on Lloyd’s algorihm (k-means algorithm):

m associate each site Z. with the 'nearest’ center Q/

a recompute centers according to the current association
a repeat until the deviation no longer changes or is good enough
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I Clustering Method A\KIT

Clustering Step

m greedy approach
m based on Lloyd’s algorihm (k-means algorithm):

m associate each site Z. with the 'nearest’ center g/

a recompute centers according to the current association
a repeat until the deviation no longer changes or is good enough

m associate site i/ with each center Q/.

m temporarily update the affected centers

m compute change in deviation between updated reduced
and original mixture (ISD)

® retain association with smallest deviation
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Clustering Method AIT

Refinement Step

Parameter Optimization
® optimize parameter vector ;7 w.r.t. ISD
e 2
m/lm '/IR (f(x;ﬁ) — f(x;g)) dx
a non-linear optimization problem — Newton approach
m finds local optimum
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Clustering Method

Refinement Step

Parameter Optimization
® optimize parameter vector ;7 w.r.t. ISD
e 2
m/lm '/IR (f(x;ﬁ) — f(x;g)) dx
a non-linear optimization problem — Newton approach
m finds local optimum

Weight Optimization
mu system of linear equations
a finds global optimum
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I Results S‘(IT

Overview

m Office PC (Intel Core2 Duo E8400)
OpenSUSE 11.0
m Matlab 7.7.0 (R2008b)

m reduction of mixtures with N € {40,120, 200, 500, 1000}
components down to K = 10

m each evaluated with 1 000 simulation runs
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Results

Approximation Quality

Karlsruhe Institute of Technology

Clustering-based Gaussian Mixture Reduction
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Results

Running Time

Karlsruhe Institute of Technology

—e—PGMR
—GMRC
GMRC+West

—=— Runnalls
~&--West
- = - Williams
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N—
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I Results A\KIT

Impact of Individual Steps

algorithm running time norm. ISD
GMRC complete | 2.793 £ 0.052s  0.658 + 0.494

w. random init. | 1.135 4+ 0.045s 1.272 + 1.561
w/o clustering 1.742 +£ 0.043s 0.774 + 0.872
w/o refinement | 2.737 &+ 0.036s 1.697 £+ 0.432

Runnalls \ 1.678 £ 0.024s 3.606 4+ 0.752

(initialization with Runnalls’ algorithm; N = 200, K = 10)
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I Results A\KIT

Impact of Individual Steps

algorithm running time norm. ISD
GMRC complete | 2.793 £ 0.052s  0.658 + 0.494

w. random init. | 1.135 4+ 0.045s 1.272 + 1.561
w/o clustering 1.742 +£ 0.043s 0.774 + 0.872
w/o refinement | 2.737 &+ 0.036s 1.697 £+ 0.432

Runnalls \ 1.678 £ 0.024s 3.606 4+ 0.752

(initialization with Runnalls’ algorithm; N = 200, K = 10)

m a good initial solution is mandatory
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I Results A\KIT

Impact of Individual Steps

algorithm running time norm. ISD
GMRC complete | 2.793 £ 0.052s  0.658 + 0.494

w. random init. | 1.135 4+ 0.045s 1.272 + 1.561
w/o clustering | 1.742 £ 0.043s 0.774 + 0.872
w/o refinement | 2.737 + 0.036s 1.697 4+ 0.432

Runnalls \ 1.678 £ 0.024s 3.606 4+ 0.752

(initialization with Runnalls’ algorithm; N = 200, K = 10)

m clustering step primarily improves variance
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I Results A\KIT

Impact of Individual Steps

algorithm running time norm. ISD
GMRC complete | 2.793 £ 0.052s  0.658 + 0.494

w. random init. | 1.135 4+ 0.045s 1.272 + 1.561
w/o clustering 1.742 +£ 0.043s 0.774 + 0.872
w/o refinement | 2.737 &+ 0.036s 1.697 £+ 0.432

Runnalls \ 1.678 £ 0.024s 3.606 4+ 0.752

(initialization with Runnalls’ algorithm; N = 200, K = 10)

m refinement has single-most impact on approximation quality
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I Results

Visualization

Karlsruhe Institute of Technology
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Results

Visualization
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I Results

Visualization

Karlsruhe Institute of Technology
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I Conclusion

Karlsruhe Institute of Technology

Summary

a novel top-down, global reduction algorithm

m competitive w.r.t. current state-of-the-art (PGMR)
m combines algorithmic and numerical ideas
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I Conclusion

Karlsruhe Institute of Technology

Summary

a novel top-down, global reduction algorithm

m competitive w.r.t. current state-of-the-art (PGMR)
m combines algorithmic and numerical ideas

Outlook

m extension to multivariate Gaussian mixtures

a impact of different clustering methods and deviation measures
m adaptive reduction of components
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I Thank you for your attention! S‘(“‘

time for questions
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