
Contraction Hierarchies: Faster and Simpler
Hierarchical Routing in Road Networks?

Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling

Universität Karlsruhe (TH), 76128 Karlsruhe, Germany,
{robert.geisberger,sanders,schultes,delling}@ira.uka.de

Abstract. We present a route planning technique solely based on the
concept of node contraction. The nodes are first ordered by ‘importance’.
A hierarchy is then generated by iteratively contracting the least impor-
tant node. Contracting a node v means replacing shortest paths going
through v by shortcuts. We obtain a hierarchical query algorithm using
bidirectional shortest-path search. The forward search uses only edges
leading to more important nodes and the backward search uses only
edges coming from more important nodes. For fastest routes in road net-
works, the graph remains very sparse throughout the contraction pro-
cess using rather simple heuristics for ordering the nodes. We have five
times lower query times than the best previous hierarchical Dijkstra-
based speedup techniques and a negative space overhead, i.e., the data
structure for distance computation needs less space than the input graph.
CHs can be combined with many other route planning techniques, lead-
ing to improved performance for many-to-many routing, transit-node
routing, goal-directed routing or mobile and dynamic scenarios.

1 Introduction

Planning optimal routes in road networks has recently attracted considerable
interest in algorithm engineering because it is an important application that
admits a lot of interesting algorithmic approaches. Many of these techniques
exploit the hierarchical nature of road networks in some way or another.

Here we present a very simple approach to hierarchical routing. Assume the
nodes of a weighted directed graph G = (V, E) are numbered 1..n in order of
ascending ‘importance’. We now construct a hierarchy by contracting the nodes
in this order. A node v is contracted by removing it from the network in such
a way that shortest paths in the remaining overlay graph are preserved. This
property is achieved by replacing paths of the form 〈u, v, w〉 by a shortcut edge
〈u,w〉. Note that the shortcut 〈u,w〉 is only required if 〈u, v, w〉 is the only
shortest path from u to w.

? Partially supported by DFG grant SA 933/1-3, and by the Future and Emerging
Technologies Unit of EC (IST priority – 6th FP), under contract no. FP6-021235-2
(project ARRIVAL).

We shall view the contraction process as a way to add all discovered shortcuts
to the edge set E. We obtain a contraction hierarchy (CH). Section 2 gives more
details.

In Section 3 we explain how the nodes are ordered. Although ‘optimal’ node
ordering seems a quite difficult problem, already very simple local heuristics
turn out to work quite well. The basic idea is to keep the nodes in a priority
queue sorted by some estimate of how attractive it is to contract a node. The
main ingredient of this heuristic estimate is the edge difference: The number of
shortcuts introduced when contracting v minus the number of edges incident
to v. The intuition behind this is that the contracted graph should have as few
edges as possible. Even using only edge difference, quite good CHs are computed.
However, further refinements are useful. In particular, it is important to contract
nodes ‘uniformly’.

For routing, we split the CH (V,E) into an upward graph G↑:= (V, E↑)
with E↑:= {(u, v) ∈ E : u < v} and a downward graph G↓:= (V,E↓) with E↓ :=
{(u, v) ∈ E : u > v}. For a shortest path query from s to t, we perform a mod-
ified bidirectional Dijkstra shortest path search, consisting of a forward search
in G↑ and a backward search in G↓. If, and only if, there exists a shortest s-t-
path in the original graph, then both search scopes eventually meet at a node
v that has the highest order of all nodes in a shortest s-t-path. More details of
the query algorithm are given in Section 4. Applications and refinements like
dynamic routing (i.e., edge weights are allowed to change), many-to-many rout-
ing, and combinations with other speedup techniques can be found in Section 5.
Section 6 shows that in many cases, we get significant improvements over previ-
ous techniques for large real world inputs. Lessons learned and possible future
improvements are summarized in Section 7.

Related Work

Since there has recently been extensive work on speed-up techniques, we can only
give a very abridged overview with emphasis on the directly related techniques
beginning with the closest kin. For a more detailed overview we refer to [1, 2].
CHs are an extreme case of the hierarchies in highway-node routing (HNR) [3,
2] – every node defines its own level of the hierarchy. CHs are nevertheless a
new approach in the sense that the node ordering and hierarchy construction
algorithms used in [3, 2] are only efficient for a small number of geometrically
shrinking levels. We also give a faster and more space efficient query algorithm
using G↑ and G↓.

The node ordering in highway-node routing uses levels computed by highway
hierarchies (HHs) [4, 5, 2]. Our original motivation for CHs was to simplify HNR
by obviating the need for another (more complicated) speedup technique (HHs)
for node ordering. HHs are constructed by alternating between two subroutines:
Edge reduction is a sophisticated and relatively costly routine that only keeps
edges required ‘in the middle’ of ‘long-distance’ paths. Node reduction contracts
nodes. In the original paper for undirected HHs [5], node reduction only con-
tracted nodes of degrees one and two, i.e., it removed attached trees and multihop

paths. We originally viewed node contraction as a mere helper for the main work-
horse edge reduction. For directed graphs [5], we needed a more general criterion
which nodes should be contracted away. It turned out that the edge difference is
a good way to estimate the cost of contracting a node v. In [6, 7] this method is
further refined to use a priority queue and to avoid parallel edges. All previous
approaches to contraction had in common that the average degree of the nodes
in the overlay graph would eventually explode. So it looked like an additional
technique such as edge reduction or reaches would be a necessary ingredient of
any high-performance hierarchical routing method. Perhaps the most important
result of CHs is that using only (a more sophisticated) node contraction, we get
very good performance.

The fastest speedup technique so far, transit-node routing [8, 2], offers a fac-
tor up to 40 times better query times than CHs. However, it needs considerably
higher preprocessing time and space, is less amenable to dynamization, and,
most importantly it relies on another hierarchical speedup technique for its pre-
processing. We have preliminary evidence that using CHs for this purpose leads
to improved performance.

Finally, there is an entirely different family of speedup techniques based on
goal-directed routing. Combination of CHs with goal-directed routing is the sub-
ject of another paper [9] that systematically studies such combinations.

2 Contraction

Recall from the introduction that when contracting node v, we are dealing with
an overlay graph G′ = (V ′, E′) with V ′ = v..n and an edge set E′ that pre-
serves shortest path distances wrt the input graph. In G′, we face the follow-
ing many-to-many shortest-path problem: For each source node u ∈ v + 1..n
with (u, v) ∈ E′ and each target node w ∈ v + 1..n with (v, w) ∈ E′, we
want to compare the shortest-path distance d(u,w) with the shortcut length
c(u, v) + c(v, w) in order to decide whether the shortcut is really needed. A sim-
ple way to implement this is to perform a forward shortest-path search in the
current overlay graph G′ from each source, ignoring node v, until all targets have
been found. We can also stop the search from u when it has reached distance
d(u, v) + max {c(v, w) : (v, w) ∈ E′}.

Our actual implementation uses a simple, asymmetric form of bidirectional
search inspired by [10]: For each target node w we perform a single-hop backward
search. For each edge (x,w) ∈ E′ we store a bucket entry (c(x,w), w) with node
x. This way, forward search from u can be limited to distance

c(u, v) + max
w:(v,w)∈E′

c(v, w)− min
x:(x,w)∈E′

c(x,w) .

When reaching a node x, we scan its bucket entries. For each entry (C, w), we
can infer that there is a path from u to w of length d(u, x) + C.

Since exact shortest path search for contraction can be rather expensive,
we have implemented two ways to limit the range of searches: We can limit

the number of hops (edges) used in any path 〈u, . . . , w〉, and we can limit the
total search space size of a forward search. Note that this has no influence on
the correctness of subsequent queries in the CH as long as we make sure to
always insert a shortcut (u, w) when we have not found a path from u to w
witnessing that the shortcut is unnecessary. Also note that for hop limit two,
our bidirectional approach obviates a full fledged Dijkstra search. It suffices to
scan the edges leaving a source node u.

Let us now focus the discussion on the hop limit. We get a tradeoff between
fast contraction ‘now’ for small hop limits and a more sparse graph with better
query time and possible easier contraction ‘later’ for a large hop limit. In our
experiments it turned out, that it makes sense to start with a hop limit as small
as one and to later increase it. We switch from one hop limit to the next when
the average degree of the overlay graph G′ exceeds a specified bound.

3 Node Ordering

As already mentioned in the introduction, our basic approach uses a priority
queue whose minimum element contains the node looking most attractive to be
contracted next. The priority used is a linear combination of several terms. In
addition to the single terms used, the linear coefficients of the different terms
are important, some of them can be found in Section 6. In this section we focus
on different possible terms. One difficulty with this approach is that when node
v is contracted, this might affect the priorities of other nodes. We use several
techniques to handle this problem:

– We use lazy update, i.e., before actually contracting v, we update its priority.
If it now exceeds the priority of the second largest element v′, we reinsert v
and continue with v′. This process is repeated until a consistent minimum
is found. Note that (at least wrt the result of node ordering) lazy update
obviates immediate updates when a priority increases.

– We recompute the priority of the neighbors of v.
– We periodically reevaluate all priorities and rebuild the priority queue.

Edge Difference. Arguably the most important term is the edge difference. For
computing it, node ordering uses the same heuristics for limiting search spaces
as are later used in the actual contraction. 1

Uniformity. Using only the edge difference, one can get quite slow routing.
For example, if the the input graph is a path, contraction would produce a
linear hierarchy where most queries would again follow paths of linear length.
In contrast, if we iteratively contract maximal independent sets, we would get a
hierarchy where any query is finished in logarithmic time.
1 Updating neighbors of contracted nodes and lazy update ‘almost’ suffice to keep the

priorities up to date wrt the edge difference. However, with some highly constructed
example, not all priorities are updated in time when the search horizon is limited.

More generally, it seems to be a good idea, to contract nodes everywhere in
the graph in a uniform way, rather than keep contracting nodes in a small region.
We have tried several heuristics for choosing nodes uniformly out of which we
present the two most successful ones. For all measures used here, a large value
means that the node is contracted late.

Deleted Neighbors: We count the number of neighbors that have already been
contracted. This includes neighbors reached via shortcuts. Obviously, this
quantity can be maintained correctly by either lazy update or by updating
the neighbors of a contracted node. This heuristics is very simple and can
be computed efficiently.

Voronoi Regions: Define the Voronoi-Region R(v) of a node v in an overlay
graph as the set of nodes in the input graph that are closer to v than to any
other node in the overlay graph. We use the square root of the size of the
Voronoi-region as a term in the priority function. By preferably contract-
ing small Voronoi regions, we can hope that the nodes of the overlay graph
are spread uniformly over the network. When v is contracted, its neighbor-
ing Voronoi regions will ‘eat up’ R(v). The necessary computations can be
made using O(|R(v)|) steps of Dijkstra’s algorithm [11]. If we always contract
Voronoi regions of size at most a constant times the average region size, we
can easily show that the total number of Dijkstra-steps for maintaining the
size of the Voronoi regions is O(n log n), i.e., computing Voronoi regions is
reasonably efficient. Since Voronoi regions can only grow, lazy update en-
sures that the priority queue works correctly wrt this term of the priority
function.

There are a number of further, optional parameters of the priority function
that turn out to further improve the hierarchy at the cost of increased time for
node ordering.

Cost of contraction. A time consuming part of the contraction are the forward
shortest-path searches to decide the necessity of shortcuts. So for example, we
can use the sum of these search space sizes as a priority term. Note that this
quantity can change beyond the direct neighborhood of the contracted node, i.e.,
our update rules are only heuristics.

Cost of queries. One can try to estimate how contracting nodes affects the size of
query search spaces. We have implemented the following simple estimate Q(v)
that can be shown to be an upper bound for the number of hops of a path
〈s, . . . , v〉 explored during a query: Initially, Q(v) = 0. When v is contracted
then for each neighbor u of v, Q(u):= max(Q(u), Q(v) + 1).

Global measures. We can prefer contracting globally unimportant nodes based
on some path based centrality measure such as (approximate) betweenness [12]
or reach [13, 6].

Generally speaking, one can come up with many heuristic terms. But one
gets an inflation of tuning parameters. Therefore, in the experiments we try to

keep the number of actually used terms small, we use the same set of parameters
for different inputs, and we make some sensitivity analysis to find out how robust
the parameter choices are.

4 Query

In the introduction we have already outlined the basic approach which we shall
now describe in more detail. An algorithm that already works quite well performs
complete Dijkstra searches from s in G↑ and from t in G↓. We have

Lemma 1. d(s, t) = min {d(s, v) + d(v, t) : v is settled in both searches}.
Proof. We only give a proof outline for self-containedness since the CH-query
is a special case of the HNR-query for which a detailed yet simple correctness
proof is given in [2]. In particular, here we only consider the case where shortest
paths are unique.

Let v denote the largest2 node on the shortest path P from s to t. We first
claim that the sequence of prefix maxima3 of P forms the shortest path from
s to v in the upward graph G↑. If s = v there is nothing to prove. Otherwise,
consider any pair (u,w) of subsequent prefix maxima in P and the overlay graph
G′ = (u..n,E′) existing at some point during contraction. Since the shortest path
from u to w uses only interior nodes smaller than u, and by definition of the
properties of an overlay graph, (u,w) ∈ E′ and c(u,w) = d(u, w). Moreover,
u < w and hence (u,w) ∈ G↑. Analogously, the sequence of suffix maxima of P
forms the shortest path from v to t in the downward graph. ut

There are two refinements to the complete search algorithm (that are also
analogous to the HNR-query algorithm [3, 2]). The query alternates between
forward and backward search. Whenever we settle a node in one direction that is
already settled in the other direction, we get a new candidate for a shortest path.
Search is aborted in one direction if the smallest element in the queue is at least
as large as the best candidate path found so far. This does not affect correctness,
since additional settled nodes in this direction cannot possibly contribute to
better solutions.

We also prune the search space using the stall-on-demand technique: Before
a node v is settled at distance d(v) in the forward search, it uses the information
available in G↓ to inspect downward edges (w, v) with w > v. If d(w)+c(w, v) <
d(v), then the search can be stopped (stalled) at v with stalling distance d(w)+
c(w, v) since the computed distance to v is suboptimal so that a continuation
of the search from v would be futile. Such stalled nodes are settled but their
incident edges are not relaxed, leading to a considerably smaller search space.
Moreover, stalling can propagate to further nodes x in the neighborhood of v,
if the path over w in G to x is shorter than the currently found path to x in
2 recall that nodes are considered to be numbered during node ordering.
3 i.e., the sequence of nodes ui on P = 〈s = u1, u2, . . . , uk = t〉 with the property that

ui > max {u1, u2, . . . , ui−1}

G↑. We perform a local BFS from v using the edges available in G↑ or G↓.4

The search stops at nodes that are not being stalled. To ensure correctness, we
unstall a node x if a shorter path in G↑ to x than the current one in G↑ is found.
Stall-on-demand is also applied to the backward search in the same way.

The graphs G↑ and G↓ can be stored in one data structure, using two di-
rection flags for each edge to indicate whether it belongs to G↑ or G↓. Irre-
spective of the direction flags, each edge (u, v) is stored only once, namely at
the smaller node, which complies with the requirements of both forward and
backward search (including the stall-on-demand technique). In particular, this
also applies to undirected edges {u, v} with the same weight in both directions.
In contrast, an efficient implementation of Dijkstra’s (even unidirectional) algo-
rithm needs to store such undirected edges {u, v} both at u and v. This is the
reason why we may need less space than Dijkstra’s algorithm for the original
graph, even though we have to insert shortcuts.

Outputting Paths. As all routing techniques that use shortcuts, we need a way
to unpack them in order to obtain a shortest path in the input graph. This is
particularly simple for CHs since each shortcut (u,w) bypasses exactly one node
v. We therefore obtain a simple recursive unpacking routine. In order to imple-
ment this efficiently, we need to store v together with the shortcut somewhere.
Note that this information is not easily obtained just from G↑ or G↓, i.e., our
observation that we may need less space than the input graph only holds when
path unpacking is not required.

5 Applications

Changing all Edge Weights. In CHs we can distinguish between two main phases
of preprocessing, node ordering and hierarchy construction. Similar to highway-
node routing, we do not have to redo node ordering when the edge weights
change – for example when we switch from driving times for a fast car to a slow
truck. Hierarchy construction ensures correctness for all node orderings. We will
see that the resulting hierarchies are almost as good as hierarchies where node
ordering has been repeated. The intuition behind this is that most important
nodes remain important even if the actual edge weights change – both sports
cars and trucks are fastest on the motorway.

Changing some Edge Weights. Since CHs are a special case of HNR [3, 2], we
can also adopt the successful approaches used there for routing in presence of
some changed edges (e.g., due to traffic jams).

Many-to-Many Routing. In [10] we developed an algorithm based on highway
hierarchies that finds all shortest path distances between a set S of source nodes
and a set T of target nodes. The idea is to perform only |T | backward searches,
4 We also have a version that additionally exploits the parent pointers of the shortest

path tree. This slightly decreases search space but slightly increases query time.

store the resulting search spaces appropriately and then to perform |S| forward
searches that use the stored information on the backward searches to find the
shortest path distances. As explained in [2], this works for a large family of non-
goal-directed hierarchical routing techniques including highway-node routing and
reach-based routing [13, 6]. CHs are particularly well suited for many-to-many
routing because they have very small search spaces and because for the backward
search spaces we only need to store nodes that are not stalled.

Distance Oracles for Replacing Large Distance Tables. CH search-spaces are so
small that we can drop the distance tables computed by many-to-many routing
and instead store the search spaces from S and T as arrays of node-distance
pairs sorted by node-id. Then an s-t query amounts to intersecting the search
spaces for s and t and computing the minimum resulting distance. This inter-
section operation is similar to binary merging and thus runs very fast and cache
efficiently.

Transit-Node Routing. Transit-node routing [8, 2] is currently the fastest static
routing technique available. Its main disadvantage compared to simpler tech-
niques is that it needs considerably more preprocessing time. The preprocessing
for transit-node routing is essentially a generalization of many-to-many routing.
Hence, we can also do preprocessing using CHs and expect to obtain an improve-
ment. We can use the nodes designated as most important by node ordering to
define the sets of transit nodes. The edge difference criterion used by node or-
dering might help to identify transit-node sets that imply small sets of access
nodes.

Combination with Other Speedup Techniques There are interesting synergies be-
tween hierarchical speedup techniques and goal-directed methods such as land-
mark A∗ [6] or arc flags [14, 15]. Goal-directed techniques become cheaper in
terms of preprocessing time and space if they are only applied to a core obtained
after some contraction [16, 17, 6, 7]. Since CHs are a fast, flexible, effective, and
very fine-grained approach to this contraction, they seem best suited for this.
The resulting overall query time is often better than any of the techniques alone.
For example, an integration of CHs and arc-flags is so fast that it almost achieves
the query times of transit-node routing using less space [9]. Another interesting
example is SHARC-routing [7] which applies a sophisticated, multi-level variant
of arc-flags to an network enriched with shortcuts. This has the advantage that
it yields a unidirectional, very simple query algorithm that takes hierarchy into
account indirectly via the arc flags.

Perhaps most importantly, not all graph families are as well behaved as road
networks with travel time weights with respect to contraction. So it sometimes
seems to be the best idea to stop contraction at some point and solely rely on
goal-directed techniques for the core [9].

Node contraction started out as an ingredient of highway hierarchies (HHs). It
would be interesting to see how good HHs would perform if we would reintegrate
CHs into HHs. We could expect a more sparse network in the upper levels but

also a more complicated, less focused query algorithm. Our guess would be that
for road networks, we cannot expect an additional improvement but perhaps we
should keep this approach in mind for network where contraction does not work
so well.

Similarly, we could integrate CHs with reach-based routing [13, 6]. CHs could
contribute the shortcuts to be used, possibly simplifying the reach approxima-
tions during preprocessing. During the query, we could use reach values to prune
the search additionally.

Implementation on Mobile Devices. Due to its small memory overhead and
search space, CHs are a good starting point for route planning on mobile devices.
This is the subject of a separate paper [18].

6 Experiments

Environment. Experiments have been done on one core of a single AMD Opteron
Processor 270 clocked at 2.0 GHz with 8 GB main memory and 2 × 1 MB L2
cache, running SuSE Linux 10.3 (kernel 2.6.22). The program was compiled by
the GNU C++ compiler 4.2.1 using optimization level 3.

Test Instances. Our experiments in this section have been done on a road net-
work of Western Europe5 with 18 029 721 nodes and 42 199 587 directed edges,
which has been made available for scientific use by the company PTV AG. For
each edge, its length and one out of 13 road categories (e.g., motorway, national
road, regional road, urban street) is provided so that an expected travel time
can be derived, which we use as edge weight. Results for other test instances can
be found in the full paper.

Different Variants. Although the basic idea of CHs is simple, we have many
tuning parameters that should be set carefully and we should verify that these
choices are robust in the sense that they work reasonably well for different in-
stances. Therefore, we build up the system incrementally. Tab. 1 shows the most
fundamental performance parameters for a number of increasingly sophisticated
variants. For comparison, we add the times for the fastest variant of highway-
node routing (HNR) from [3] using the same system environment. Note that this
version of HNR outperforms all previous speedup techniques with comparable
preprocessing time so that focusing on HNR is meaningful.

Already using only the edge difference we obtain query times better than
HNR. However, the preprocessing time and space is quite large. Just adding
the uniformity parameter based on number of deleted neighbors (Line ED), we
obtain more than four times better query time than HNR. The time for hierarchy
construction becomes better than HNR once we take the search space size into
account (letter S). This also improves node ordering if we limit the size of a local
search (letter L).

Table 1. Performance of various node ordering heuristics. Terms of the priority
function: E=edge difference, D=deleted neighbors, S=search space size, W=relative
betweenness, V=

√
Voronoi region size, L=limit search space on weight calculation,

Q=upper bound on edges in search paths. Digits denote hop limits for testing short-
cuts. Space overhead is wrt an adjacency array for bidirectional Dijkstra that stores
each directed edge at both endpoints. The bottom line shows the performance for
highway-node routing using the code from [3].

method node hierarchy query nodes non-stalled edges space
ordering [s] construction [s] [µs] settled nodes relaxed overhead

[B/node]

E 13010 1739 670 1791 1127 4999 -1.6
ED 7746 1062 183 403 236 1454 -2.3
ES 5355 123 245 614 366 1803 -3.5
ESL 1158 123 292 758 465 2169 -3.5
EDL 2071 576 187 418 243 1483 -2.3
EDSL 1414 165 175 399 228 1335 -2.6
ED5 634 98 224 470 250 1674 -1.6
EDS5 652 99 213 462 256 1651 -2.1

EDS1235 545 57 223 459 234 1638 0.6
EDSQ1235 591 64 211 440 236 1621 1.0

EDSQL 1648 199 173 385 220 1378 -2.1
EVSQL 1627 170 159 368 209 1181 -2.7

EDSQWL 1629 199 163 372 218 1293 -2.5
EVSQWL 1734 180 154 359 208 1159 -3.0

HNR 594 203 802 957 630 7561 9.5

To improve the preprocessing times, it helps to limit the number of hops in
the searches during preprocessing and to take search space sizes for contraction
into account. Figure 1 shows the development of the average degree during node
contraction for different hop limits. We see that for hop limits below four, the
average degree eventually explodes. We choose limits for the average degree that
switch to a larger hop limit sufficiently before this explosion.6 Interestingly, this
also further improves query time. The algorithm in Line EDS1235 of Tab. 1
outperforms HNR in all respects and with a wide margin with respect to query
time and hierarchy construction7 time. As explained in Section 5, the latter time
is particularly interesting when we want to exchange the edge weight function.
We use this variant as our main economical8 variant for further experiments.

5 Austria, Belgium, Denmark, France, Germany, Italy, Luxembourg, the Netherlands,
Norway, Portugal, Spain, Sweden, Switzerland, and the UK

6 1 → 2 hops @ degree 3.3, 2 → 3 @ 10, 3 → 5 @ 10. After switching to hop limit
3, we remove all edges e for which there is a witness with at most 3 edges that e is
not a shortest path. This reduces the average degree and leaves some time before we
have to switch to hop limit 5.

7 There is a version of HNR in [3] with about two times faster hierarchy construction
but with slower queries and more space consumption.

8 Coefficients for priority: E=190, D=120, S=1

0 2 5 10 20 50 100 200 400 800 1600

3
4

5
6

8
10

15
20

size of overlay graph / 10 000

av
er

ag
e

de
gr

ee

1 hop
2 hops
3 hops
4 hops
5 hops
6 hops
no hop limit

Fig. 1. Average degree development for different hop limits.

By investing more preprocessing time, we can further improve the query
performance. We abandon hop limitations and take the path-length estimate
Q(v) into account. The resulting algorithm, Line EVSQL in Tab. 1, is used as our
aggressive9 variant for further experiments. Using betweenness10 approximations
(letter W) can improve the query time by additional 3%.11 It is interesting to
compare different indicators for query performance between aggressive CH and
HNR. CHs are 5 times faster although the number of settled nodes is only 2.6
times smaller. This is in part due to a simpler data structure12 and in part due
to a far larger improvement (factor 6.4) wrt the number of relaxed edges. For
many-to-many routing, we are mostly interested in the number of non-stalled
nodes, which make the bucket-scan operations more expensive. In this respect,
CHs are a factor 3 better.

Local Queries. Since random queries are unrealistic for large graphs, Fig. 2
shows the distributions of query times for various degrees of locality [4]. We
see a uniform improvement over HNR and small fluctuations in query time.

9 Coefficients for priority: E=190, V=60, S=1, Q=145, L=1000
10 The execution times for betweenness approximation [12] are not included in Tab. 1.
11 Preliminary experiments with reach-approximations were not successful.
12 The HNR implementation from [3] has to compare level information to find out

which edges should be relaxed.

0
20

0
40

0
60

0
80

0
10

00
12

00

0
20

0
40

0
60

0
80

0
10

00
12

00

211 212 213 214 215 216 217 218 219 220 221 222 223 224

Dijkstra rank

qu
er

y
tim

e
[µ

s]

CH aggressive
CH economical
HNR

PSfrag replacements

Dijkstra

Fig. 2. Local queries, box-and-whisker plot [19]: each box spreads from the lower to
the upper quartile and contains the median, the whiskers extend to the minimum and
maximum value omitting outliers, which are plotted individually. The queries generated
for x-value r are random s–t-queries under the constraint that t is the r-th node visited
by Dijkstra’s algorithm (see also [4]).

This is further underlined in Fig. 3 where we give upper bounds for the search
space size of all n × n possible queries (see [5] for the algorithm). We see a
superexponential decay of the probability to observe a certain search-space size
and maximal search-space size bound less than 2.5 times the size of the average
actual search-space sizes (see also Tab. 1).

Unpacking Paths needs an average of 317 µs for the aggressive variant and 332 µs
for the economical variant. The difference between the two variants is bigger
for the space overhead which is 5.8 B/node and 10.8 respectively. Among the
path unpacking times we have seen, this is only outperformed by the fastest
variant for highway hierarchies in [5] that explicitly stores completely unpacked
representations of the most important shortcuts. Note that this optimization
works for any shortcut-based speedup technique including CHs.

Many-to-Many Routing for a random 10000 × 10000 table using the aggressive
variant needs 10.2 s. This is about six times faster than the highway-hierarchy-
based code from [10] and more than twice as fast as the HNR-based implemen-
tation from [2]. Our current implementation of many-to-many routing does not

1
10

0
10

−
12

10
−

10
10

−
8

10
−

6
10

−
4

10
−

2

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

settled nodes

%
 o

f s
ea

rc
he

s

CH aggr. (max. 884)
CH eco. (max. 1012)
HNR (max. 2148)

Fig. 3. Upper bound on search space in settled nodes for the worst percentages of
queries.

(yet) use the asymmetry between forward and backward search that has proved
useful in [10, 2]. Hence, we can expect further improvements.

Exchanging the Edge Weight Function. The table below shows the hierarchy
construction time and query time using our economical variant for different
speed profiles which come from the company PTV (see also [3]). The times in
brackets refer to the case when node ordering was done with the same speed
profile and the main times are for the case that node ordering was done for our
default speed profile.

default fast car slow car slow truck
hier. construction [s] 57 80 (62) 82 (63) 88 (65)
query [µs] 223 208 (211) 232 (243) 294 (291)

We can see that preprocessing time goes up by about 30 %. Query times are
about the same. Query performance decreases with the speed of the vehicle
since the hierarchy induced by fast streets gets less pronounced.

Transit-Node Routing. We used the node ordering with the aggressive variant
of CHs to determine the transit-node sets for the implementation from [2]. As
we hoped for, this resulted in a reduced number of access nodes, which in turn

results in better query time (4.3 → 3.4µs) and lower space consumption (247
→ 204 Byte/node), compared to [2]. Preliminary experiments suggest that we
get further improvements with an additional term for node ordering that takes
into account the number of edges of the input graph that make up a shortcut.
We have not yet implemented a CH-based preprocessing so that it is too early
to judge the effect of CHs on preprocessing time. It is quite likely however, that
we will also see an improvement in preprocessing time.

7 Conclusions

CHs are a simple and efficient basis for many hierarchical routing methods in
road networks. The experiments in [9] suggest that CHs also work well for other
sparse networks with high locality such as transportation networks, or sparse
unit-disk graphs. For more dense networks, CHs can be used for an initial con-
traction phase whereas a goal-directed technique is applied to the resulting core
network.

Several further improvements might be possible. The performance of node
ordering is so far only slightly better than the HH based method used in [3]
for HNR. One reason is that we perform many similar searches that might be
saved if we would reuse search spaces. The main problem with reuse is that
storing search spaces would cost a lot of space. But perhaps we can partition
large networks into smaller networks; perform the node ordering separately for
each subnetwork; and only then merge the pieces into a global order. To a lesser
extend such an optimization might also accelerate hierarchy construction. As a
side effect we might also obtain a way to update the search space sizes of all
nodes affected by a node contraction.

Although we have established that uniformity is important for good node
ordering, it is not so clear whether the two uniformity measures we have in-
troduced are the final word. In particular, the right measure might depend on
the application. For example, our current code for transit-node routing uses a
geometric locality filter and hence it might be good if the uniformity measure
would take geometry into account.

We have already demonstrated that CHs yield improved preprocessing times
when changing the entire cost function. We still have to try how well the dy-
namization techniques for changing few edge weights from [3, 2] translate.

Last but not least, we are now developing a method for fast routing in road
networks with time-dependent edge weights. We hope that the simplicity and
efficiency of CHs will give us a good starting point for this challenging task. The
good performance of CHs for (unrolled) transportation networks observed in [9]
may be an indicator that this will work well.

References

1. Sanders, P., Schultes, D.: Engineering fast route planning algorithms. In: 6th
Workshop on Experimental Algorithms (WEA). Volume 4525 of LNCS., Springer
(2007) 23–36

2. Schultes, D.: Route Planning in Road Networks. PhD thesis, Universität Karlsruhe
(TH) (2008)

3. Schultes, D., Sanders, P.: Dynamic highway-node routing. In: 6th Workshop on
Experimental Algorithms (WEA). Volume 4525 of LNCS., Springer (2007) 66–79

4. Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries.
In: 13th European Symposium on Algorithms (ESA). Volume 3669 of LNCS.,
Springer (2005) 568–579

5. Sanders, P., Schultes, D.: Engineering highway hierarchies. In: 14th European
Symposium on Algorithms (ESA). Volume 4168 of LNCS., Springer (2006) 804–
816

6. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Better landmarks within reach. In: 6th
Workshop on Experimental Algorithms (WEA). Volume 4525 of LNCS., Springer
(2007) 38–51

7. Bauer, R., Delling, D.: SHARC: Fast and robust unidirectional routing. In: Work-
shop on Algorithm Engineering and Experiments (ALENEX). (2008)

8. Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast routing in road networks with
transit nodes. Science 316 (2007) 566

9. Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.:
Combining hierarchical and goal-directed speed-up techniques for Dijkstra’s algo-
rithm. In: 7th Workshop on Experimental Algorithms (WEA). (2008)

10. Knopp, S., Sanders, P., Schultes, D., Schulz, F., Wagner, D.: Computing many-
to-many shortest paths using highway hierarchies. In: Workshop on Algorithm
Engineering and Experiments (ALENEX). (2007)

11. Maue, J., Sanders, P., Matijevic, D.: Goal directed shortest path queries using
Precomputed Cluster Distances. In: 5th Workshop on Experimental Algorithms
(WEA). Number 4007 in LNCS, Springer (2006) 316–328

12. Geisberger, R., Sanders, P., Schultes, D.: Better approximation of betweenness
centrality. In: Workshop on Algorithm Engineering and Experiments (ALENEX).
(2008)

13. Gutman, R.: Reach-based routing: A new approach to shortest path algorithms
optimized for road networks. In: Workshop on Algorithm Engineering and Exper-
iments (ALENEX). (2004) 100–111

14. Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static
networks with geographical background. In: Geoinformation und Mobilität – von
der Forschung zur praktischen Anwendung. Volume 22., IfGI prints, Institut für
Geoinformatik, Münster (2004) 219–230

15. Köhler, E., Möhring, R.H., Schilling, H.: Acceleration of shortest path and con-
strained shortest path computation. In: 4th International Workshop on Efficient
and Experimental Algorithms (WEA). (2005)

16. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Highway hierarchies star. In:
9th DIMACS Implementation Challenge [?]. (2006)

17. Goldberg, A.V., Kaplan, H., Werneck, R.F.: Better landmarks within reach. In:
9th DIMACS Implementation Challenge [?]. (2006)

18. Sanders, P., Schultes, D., Vetter, C.: Mobile Route Planning (2008) in preparation,
http://algo2.iti.uka.de/schultes/hwy/.

19. R Development Core Team: R: A Language and Environment for Statistical Com-
puting. http://www.r-project.org (2004)

