
Route Planning with Flexible Objective Functions∗

Robert Geisberger, Moritz Kobitzsch and Peter Sanders
Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany

{geisberger,kobitzsch,sanders}@kit.edu

Abstract

We present the first fast route planning algorithm that
answers shortest paths queries for a customizable linear
combination of two different metrics, e. g. travel time
and energy cost, on large scale road networks. The
precomputation receives as input a directed graph, two
edge weight functions t(e) and c(e), and a discrete
interval [L,U]. The resulting flexible query algorithm
finds for a parameter p ∈ [L,U] an exact shortest path
for the edge weight t(e)+p·c(e). This allows for different
tradeoffs between the two edge weight functions at
query time. We apply precomputation based on node
contraction, which adds all necessary shortcuts for any
parameter choice efficiently. To improve the node
ordering, we developed the new concept of gradual
parameter interval splitting. Additionally, we improve
performance by combining node contraction and a goal-
directed technique in our flexible scenario.

1 Introduction

In our world, shaped by globalization, transportation
becomes more important every day. People and goods
travel from one location to another every hour in quan-
tities beyond imagination. This implies a huge demand
for computing shortest paths, for example in road net-
works. This requirement has triggered a significant
amount of research in algorithm engineering. Most of
this effort was concentrated on the classical shortest
path problem with a fixed objective function. How-
ever, today’s transportation requirements must be flex-
ible and so must be our algorithms. We contribute the
first fast algorithm for flexible queries in the following
sense:

Let G = (V,E) be a directed graph with two
nonnegative edge weight functions t(e) and c(e), e. g.
travel time and energy cost. Our algorithm augments
G in such a way, as to provide fast queries for a shortest
path between a source and target node s, t ∈ V and

∗Partially supported by DFG grant SA 933/5-1, BMWi project
‘MEREGIOmobil’ and the ‘Concept for the Future’ of Karlsruhe
Institute of Technology within the framework of the German

Excellence Initiative.

parameter p ∈ [L,U] := {x ∈ N | L ≤ x ≤ U} for an
objective edge function wp(e) := t(e) + p · c(e). We
require 0 ≤ L ≤ U to ensure wp is nonnegative. Note
that we can choose a different parameter p ∈ [L,U] for
every query.

To allow fast queries, we apply precomputation
based on node contraction; a node v is contracted by re-
moving it from the network in such a way that shortest
paths in the remaining graph are preserved. This prop-
erty is achieved by replacing paths of the form 〈u, v, w〉
by a shortcut edge (u,w). Note that the shortcut (u,w)
is only required if there is a p ∈ [L,U] for which 〈u, v, w〉
is the only shortest path from u to w. The order in
which the nodes are contracted is crucial; ‘important’
nodes should be contracted later. However, the ‘impor-
tance’ of a node depends on the parameter p, e. g. high-
ways are important for travel time optimization but less
important for distance optimization. So we developed
gradual parameter interval splitting (shortened parame-
ter splitting): we start to contract nodes while regard-
ing the whole interval [L,U], selecting the next node
to contract only after the contraction of the previous
one. When there are too many shortcuts that are not
necessary for the whole interval, we split this interval
into two intervals [L,M] and [M + 1, U]. The remain-
ing graph is contracted separately for every interval, so
we can compute different node orders for the remaining
nodes. So we can contract nodes multiple times, but at
most once for each value of p. Of course, we can repeat
the split several times, depending on the size of the in-
terval. The shortcuts are marked with the parameter
interval for which they are necessary, and the query al-
gorithm only uses shortcuts necessary for the current
value of p. Furthermore, we combined our algorithm
with a goal-directed technique. This technique can ei-
ther be applied to an uncontracted core, thus allowing
to reduce the time needed for precomputation, or to a
contracted core, thus yielding even faster query times.

Related Work There has been extensive work on
single-criteria speed-up techniques. We refer to [22,
23, 3] for an overview. These techniques fix a single

objective function before the precomputation. The
objective function can be arbitrary but the empirically
best results are achieved with the travel time metric. We
could obtain the same functionality as our algorithm
by performing the precomputation for every value of
p separately. However, this would require too much
precomputation time and space.

The classic algorithm for the shortest path problem
is Dijkstra’s algorithm [6]. Starting with a source node s
as root, it grows a tree that contains shortest paths from
s to all other nodes. A node that already belongs to the
tree is settled. If a node u is settled, a shortest path P ∗

from s to u has been found. A node that is adjacent to
a settled node is reached. Note that a settled node is
also reached. Nodes that are not reached are unreached.

We can classify current algorithms into three
categories: hierarchical algorithms, goal-directed ap-
proaches and combinations of both. The most closely
related hierarchical technique is contraction hierarchies
(CH) [8]. A CH uses a single node order and contracts
the nodes in this order. A slightly modified bidirectional
Dijkstra shortest path search then answers a query re-
quest, touching only a few hundred nodes. For our al-
gorithm, we adopt the basic concept of CH but add
significant contributions to adapt it to our flexible ob-
jective function. Namely we had to change crucial parts
of the contraction procedure and also further engineered
the query algorithm.

The most successful goal-directed approaches are
ALT and arc flags. The ALT algorithm [9, 11] is
based on A∗ search [13], landmarks, and the triangle
inequality. After selecting a small number of landmarks,
for all nodes, the distances to and from each landmark
are precomputed. For a target node, the triangle
inequality yields for each landmark two lower bounds,
which are used to add a sense of direction to the search
process. The approach of arc flags [17, 19, 14] is,
as the name suggests, to precompute for each edge
‘signposts’ that support the decision whether the target
can possibly be reached on a shortest path via this edge.

The combination of hierarchy and goal-direction is
currently the most successful approach [2]. We will show
how to adapt the CALT algorithm to our flexible sce-
nario. CALT is essentially the ALT algorithm applied
to a small core of a hierarchical algorithm. However,
ALT needs lower bounds to the source and target, even
when they are not in the core. So CALT uses proxy
nodes [10]: the proxy node of a node is the closest core
node. We adapt CALT to our flexible scenario and ex-
ploit the properties of our objective function to compute
lower bounds for whole intervals.

Recently, speed-up techniques for time-dependent
road networks have been developed ([5] presents an

overview). The cost of an edge depends on the arrival
time at this edge, but current algorithms can only
optimize the travel time. In our opinion, flexible query
algorithms are at least as important as time-dependent
query algorithms and should get more attention.

There is some work on using several optimization
criteria simultaneously without fixing their relative im-
portance before a query. In the classic approach all
Pareto-optimal paths are computed, paths being bet-
ter than any other path for respectively at least one
criteria. Such a path P is said to dominate another
path P ′ if P ′ is not better in any criterion. While
this is even more flexible than our approach, it makes
the shortest path problem NP-hard and also in practice
generates a plethora of potential paths that then have
to be pruned using additional techniques. Even then,
the computational overhead is considerably larger than
with our approach of fixing the objective function after
preprocessing, but before each query. The most com-
mon algorithm to compute all Pareto-optimal paths is a
generalization of Dijkstra’s algorithm (Pareto-Dijkstra)
[12, 18]. It does no longer have the node settling prop-
erty, as already settled nodes may have to be updated
again, and multiple Pareto-optimal paths to a node are
represented by multi-dimensional labels. To the best of
our knowledge, the most successful result on speed-up
techniques for multi-criteria is an adaptation [4] of the
SHARC algorithm [1], a combination of shortcuts and
arc flags, to compute Pareto-optimal paths. However,
Pareto-SHARC only works when the number of optimal
paths between a pair of nodes (target labels) is small.
Pareto-SHARC achieves this either by very similar edge
weight functions or by tightening the dominance rela-
tion that causes it to omit some Pareto-optimal paths
(label reduction). Yet, the label reduction entails seri-
ous problems since it may rule out possibly interesting
paths to early, as not all subpaths of a path that fulfills
those tightened domination criteria have to fulfill the
criteria themselves. Therefore, the domination criteria
do not fulfill subpath optimality. Thus, Pareto-SHARC
with label reduction cannot guarantee to find all opti-
mal paths w. r. t. to the tightened domination criteria
and is therefore a heuristic. In a setup similar to ours,
with two edge weight functions (travel time, cost), and
without label reduction, they can only handle small net-
works of the size of a city. As simple label reduction,
they propose to dominate a label if the travel time is
more than ε times longer the fastest. This is reasonable
but only works well for very small ε ≤ 0.02 with around
5 target labels. Even for slightly larger ε, the prepro-
cessing and query times become unacceptable. Also,
stronger label reduction is applied to drop the average
number of target labels to 5 even for ε = 0.5. It seems

like Pareto-optimality is not yet an efficient way to add
flexibility to fast exact shortest path algorithms.

Even though the Pareto-optimal shortest path prob-
lem has attracted more interest in the past, the para-
metric shortest path problem [16] has been studied.
However it provides less flexibility as compared to our
approach. Given a value p, we are just allowed to
subtract p from the weight of a predefined subset of
edges. All well-defined shortest path trees (when p is
too large, we may get negative cycles) can be computed
in O(nm+ n2 log n) [20].

2 Contraction

Node contraction is a central point in our algorithm.
When we contract a node v ∈ V , we remove it and all
its adjacent edges from the graph and add shortcuts to
preserve shortest path distances in the remaining graph.
We thus generate a graph G′ = (V ′, E′) with edge
set E′ that preserves shortest paths distances w. r. t.
the input graph. This is accomplished by inserting
shortcuts that represent the paths between adjacent
nodes of v over v. All original edges together with all
shortcuts are the result of the preprocessing, a flexible
contraction hierarchy. As we want to keep the graph
G′ as sparse as possible, we face the following many-
to-many shortest path problem: For each source node
u ∈ V ′ with (u, v) ∈ E′, each target node w ∈ V ′ with
(v, w) ∈ E′ and each integer parameter p ∈ [L,U], we
want to compare the shortest u-w-pathQp with minimal
wp(Qp) with the shortcut length wp(u, v) + wp(v, w) in
order to decide whether the shortcut is really needed.

Compared to single-criteria contraction, we cannot
avoid parallel edges. However, the number of parallel
edges is bound by the number of possible values of
p. In this paper, we keep identifying edges by their
two endpoints since the particular edge should always
be clear from the context. Because we use a linear
combination of the two edge weight functions, we do
not need to keep all Pareto-optimal weight pairs.

Witness Search. A witness is a path that is not longer
than the potential shortcut for a specific value of p and
does not lead through the currently contracted node v.
Hence a witness allows to omit this shortcut for this
specific value of p. A simple implementation of the
witness search could perform for each parameter p a
forward shortest-path search in G′ from each source,
ignoring node v, until all targets have been settled.
Since source and target nodes are usually not far apart,
the search usually only needs to settle a small fraction
of the nodes in the graph and is therefore called a local
search. We can also limit the depth of the computed
shortest paths tree (hop limit) to improve performance.

This preserves correctness because we may only add
superfluous shortcuts, but we never omit a necessary
one. Still, if the cardinality of [L,U] is large, this is
still infeasible as we need to perform too many local
searches. Another possible implementation could use
a Pareto-Dijkstra. However, this requires the storage
of multiple labels per node and also the results of [4]
suggest that there can be too many labels. So instead,
we do something tailored to our objective functions: Let
Qp be a u-w-path with wp(Qp) ≤ wp(u, v) + wp(v, w).
We observe that if c(Qp) ≤ c(u, v) + c(v, w), then
wq(Qp) ≤ wq(u, v) + wq(v, w) for all q ∈ [L, p]. And
if c(Qp) ≥ c(u, v) + c(v, w), then wq(Qp) ≤ wq(u, v) +
wq(v, w) for all q ∈ [p, U]. This observation implies
Lemma 2.1.

Lemma 2.1 Let 〈u, v, w〉 be a potential shortcut. Any
parameter interval [L,U] can be partitioned into three,
possibly empty partitions [L,L′], [L′ + 1, U ′ − 1] and
[U ′, U] with integers L′, U ′ and the following properties:
(a) If [L,L′] is not empty, then there exists a single
witness path for all p ∈ [L,L′].
(b) If [U ′, U] is not empty, then there exists a single
witness path for all p ∈ [U ′, U].
(c) If [L′+ 1, U ′− 1] is not empty, then for all values of
p in it, there exists no witness path.

Algorithm 1: Parameter Incr. Witness Search
input : path 〈u, v, w〉, interval [L,U]
output : max. p with witness on [L, p]

p:= L;
while p smaller or equal to U do

// Calculate the shortest path
〈u, . . . , w〉63v for parameter p

P := PerformLocalDijkstra(u, w, v, p);
if wp(P) > wp(〈u, v, w〉) return p− 1;
p:= max {k ∈ N | wk(P) ≤ wk(〈u, v, w〉)}+1;

return U ;

Algorithm 2: Parameter Decr. Witness Search
input : path 〈u, v, w〉, interval [L,U]
output : min. p with witness on [p, U]

p:= U ;
while p greater or equal to L do

// Calculate the shortest path
〈u, . . . , w〉63v for parameter p

P := PerformLocalDijkstra(u, w, v, p);
if wp(P) > wp(〈u, v, w〉) return p+ 1;
p:= min {k ∈ N | wk(P) ≤ wk(〈u, v, w〉)} − 1;

return L;

Algorithm 3: Witness Search
input : path 〈x, y, z〉, interval [L,U]
output : min. interval [L′ + 1, U ′ − 1] for

which a shortcut is necessary

L′:= ParamIncrWitnessSearch(〈x, y, z〉, [L,U]);
// no witness necessary
if L′ ≥ U return ∅;
// else [L′ + 1, U ′ − 1] 6= ∅
U ′:= ParamDecrWitnessSearch(〈x, y, z〉, [L,U]);
return [L′ + 1, U ′ − 1];

Algorithm 4: Contraction
input : node v, interval [L,U]

foreach (u, v) ∈ E′, (v, w) ∈ E′ do
// potential interval of shortcut
I:= NI(u, v) ∩NI(v, w) ∩ [L,U];
if I = ∅ then continue;
[L′, U ′]:= WitnessSearch(〈u, v, w〉, I);
if [L′, U ′] 6= ∅ then

// add shortcut (u,w)
e:= (u,w);
E′:= E′ ∪ {e};
t(e):= t(u, v) + t(v, w);
c(e):= c(u, v) + c(v, w);
NI(e):= [L′, U ′]; // necessity interv.

remove v from G′ = (V ′, E′);

Our algorithm performs multiple single source shortest
path searches from each source but with different p
(Algorithm 1). First, we start with p := L. When we
find a witness path Q, we compute the largest p′ ≥ p for
that Q is still a witness path. This works in constant
time since every path is basically a linear function over
the parameter p, and p′ is the possible intersection of
the witness path and the possible shortcut. Then, we
continue with p := p′ + 1 and repeat the procedure
increasing p until we either reach U or find no witness
path. Note that because of this ‘+1’, we only support
discrete parameter values. If we reach U , we know
that no shortcut is necessary and our witness search
(Algorithm 3) is done. If no witness can be found, we
perform the search decreasing p, starting with p := U
(Algorithm 2), to constrain the shortcut e during the
contraction of node v to the smallest parameter interval
NI(e) necessary (Algorithm 4).

In practice, we observe an average of two performed
shortest path queries. Since in some cases a large
number of queries may be necessary to find the minimal
necessity interval, we limit the number of single source
shortest paths queries to 30. Also note that we can
restrict the witness searches to the values of p in the

intersection of the necessity intervals of the two edges
constituting the potential shortcut.

Parameter Interval Reduction. Due to the locality
of our witness searches that only use a constant hop
limit, we may insert unnecessary shortcuts. Also edges
of the original graph might not be necessary for all
parameters. So whenever we perform a witness search
from u, we compare the incident edges (u, x) with the
computed path 〈u, . . . , x〉. When there are values of
p where 〈u, . . . , x〉 is shorter than (u, x), we reduce its
necessity interval and delete the edge when the interval
is empty.

Parameter Splitting. Preliminary experiments re-
vealed that a single node order for a large parameter
interval will result in too many shortcuts. That is be-
cause a single node order is no longer sufficient when
the shortest paths significantly change over the whole
parameter interval. One simple solution would be to
split the intervals into small adequate pieces beforehand,
and contract the graph for each interval separately. But
we can do better: we observed that a lot of shortcuts
are required for the whole parameter interval. Such a
shortcut for a path 〈u, v, w〉 would be present in each
of the constructed hierarchies that contracts v before u
and w. Therefore, we use a classical divide and con-
quer approach as already outlined in the introduction.
We repeatedly split the parameter intervals during the
contraction and compute separated node orders for the
remaining nodes. For that, we need to decide on when
to split and how we split the interval.

A split should happen when there are too many
‘differences’ in the classification of importance between
different values of p in the remaining graph. An indi-
cator for these ‘differences’ are the parameter intervals
of the added shortcuts. When a lot of partial shortcuts,
i. e. shortcuts not necessary for the whole parameter in-
terval, are added, a split seems advisable. So we trigger
the split when the number of partial shortcuts exceeds
a certain limit. However, in our experience, this heuris-
tic needs to be adjusted depending on the metrics used.
One reason for this imperfection is the difficult predic-
tion of the future contraction behaviour. Sometimes it is
good to split earlier although the contraction currently
works well and not too many partial shortcuts are cre-
ated. But due to the shared node order, the contraction
becomes more difficult later, even when we split then.

A very simple method to split a parameter interval
is to cut into halves (half split). However, this may
not be the best method in any case. The ‘different’
parameters can be unequally distributed among the
parameter interval and a half split would return two

unequally difficult intervals. So we may also try a
variable split where we look again on the shortcuts
and their necessity intervals to improve the parameter
interval splitting. One possibility is to split at the
smallest (largest) parameter which lets more than half
of the edges become necessary. If no such parameter
exists, we cut into halves.

To reduce main memory consumption, we also use
hard disk space during contraction. Before we split,
we swap the shortcuts introduced since the last split to
disk. When we have finished contraction of one half of
a interval, and we need to contract the other half, we
load the state of the graph before the split from disk.
This saves us a significant amount of main memory and
allows the processing of large graphs.

Node Ordering. The node order is selected using a
heuristic that keeps the nodes in a priority queue, sorted
by some estimate of how attractive it is to contract
a node. We measure the attractiveness with a linear
combination of several priority terms. After some initial
tests with the available priority terms from [8], we
decided to use the following terms. The first term
is a slightly modified version of the edge difference;
instead of the difference, we count the number of
added shortcuts (factor 150) and the number of deleted
edges (factor -40). The second term is for uniformity,
namely deleted neighbors (factor 150). The third term
favors the contraction in more sparse regions of the
graph. We count the number of relaxed edges during
a witness search as the search space (factor 80). Our
last terms focus on the shortcuts we create. For
each shortcut we store the number of original edges it
represents. Furthermore, for every new shortcut (u,w)
the contraction of a node v would yield, we calculate
the difference between the number of original edges
represented by (u, v) and (u,w) (both factor 10). Also,
we use the same heuristics for priority updates, i. e.
updating only neighbors of a contracted node and using
lazy updates.

3 Goal-Directed Technique in the Core Graph

For a hierarchy given by some node order, we call the
K most important nodes the core of the hierarchy. We
observed that preprocessing the core takes long because
the remaining graph is dense and we have to do it
several times due to parameter splitting. To speed-
up the preprocessing, we may omit contracting the
core and utilize some additional speed-up techniques
on the remaining core. In contrast, we can also utilize
further speed-up techniques on a contracted core to
improve query times at the cost of preprocessing. For
both variants, we extended CALT [2] to our bi-criteria

scenario. We need to compute appropriate landmarks
and distances for that.

Again, the straightforward approach, to compute
landmarks and distances for every value of p separately,
is too time-consuming. Also, space consumption be-
comes an issue if we compute a landmark set for ev-
ery value of p. So given a core for a parameter interval
[L,U], we compute two sets of landmarks and distances:
one for wL(·) and one for wU (·). A lower bound dL for
parameter L and a lower bound dU for parameter U
can be combined to a lower bound dp for any parameter
p ∈ [L,U]:

(3.1)
dp := (1− α) · dL + α · dU with α := (p− L)/(U − L)

The correctness of the lower bound (3.1) is a direct
consequence of Lemma 3.1.

Lemma 3.1 Let the source and target nodes of a query
be fixed. Let d(p) be the shortest path distance for a real-
valued parameter p in [L,U]. Then, d(·) is concave,
i. e. for p, q ∈ [L,U], α ∈ [0, 1] : d((1 − α)p + αq) ≥
(1− α)d(p) + αd(q).

Proof. Assume p, q, α as defined above exist with
d((1− α)p+ αq) < (1− α)d(p) + αd(q). Let P be a
shortest path for parameter (1− α)p + αq. In the case
wp(P) ≥ d(p), we deduce directly wq(P) < d(q), and
analogously for wq(P) ≥ d(p), we deduce wp(P) < d(p).
This contradicts the definition of d(·). �

The lower bound (3.1) is lower in quality as an
individual bound for any value of p, since shortest paths
are not all the same for p ∈ [L,U], but is better than
the lower bound obtained from landmarks for the two
input edge weight functions t(·) and c(·).

Due to the nature of a CH query, which we will
describe in full detail in the next section, we have to
distinguish between different possibilities with respect
to the used landmark approach. There are two possi-
ble methods for landmark-based potential function, as
described by Pohl et al. [21] and Ikeda et al. [15].
These approaches are the symmetric approach and the
consistent approach. In the consistent approach, the
potential functions are usually worse but it may still be
faster since we can stop a bidirectional search as soon as
a node is settled in both search directions. The symmet-
ric approach can only stop when the minimal distance of
all reached but unsettled nodes is not smaller than the
tentative distance between source and target. However,
a CH query, which is bidirectional, also needs the same
stop criterion as the symmetric approach. So when we
use landmarks on a contracted core, it makes no sense

to use the worse potential functions of the consistent
approach since we are not allowed stop earlier. On an
uncontracted core, we could make use of the better stop-
ping criterion of the consistent approach. However, this
did not pay off in our experiments.

4 Query

Our query algorithm is an enhanced CH query algo-
rithm, optionally augmented with CALT. We will first
describe the original algorithm, and then our enhance-
ments.

Original CH Query. After the contrac-
tion, we split the resulting graph with short-
cuts into an upward graph G↑ := (V,E↑)
with E↑ := {(u, v) ∈ E | u contracted before v}
and a downward graph G↓:= (V,E↓) with
E↓ := {(u, v) ∈ E | u contracted after v}. Our search
graph is G∗ = (V,E∗) where E↓ := {(v, u) | (u, v) ∈ E↓}
and E∗ := E↑∪E↓. And we store a forward and a back-
ward flag such that for any edge e ∈ E∗, ↑ (e) = true iff
e ∈ E↑ and ↓ (e) = true iff e ∈ E↓. For a shortest path
query from s to t, we perform a modified bidirectional
Dijkstra shortest path search, consisting of a forward
search in G↑ and a backward search in G↓. Iff there
exists an s-t-path in the original graph, then both
search scopes eventually meet at a node u with the
highest order of all nodes in a shortest s-t-path. The
query alternates between forward and backward search.
Whenever we settle a node in one direction which is
already settled in the other direction, we get a new
candidate for a shortest path. Search is aborted in one
direction if the smallest weight in the queue is at least
as large as the best candidate path found so far. We
also prune the search space using the stall-on-demand
technique [24]: Before a node u is settled in the forward
search, we check the incident downward edges available
in G↓. If there is a shorter path to u via such an edge,
we stop (stall) the search at u. Moreover, stalling can
propagate to additional nodes w in the neighborhood
of u, stalling even more nodes.

Parameter CH Query. Given a parameter p, we relax
only those edges which are necessary for this parameter.
The parameter splitting during the contraction results
in multiple node orders. Therefore we have to augment
the definition of the upward and downward graph.
Our upward/downward graph contains all edges that
are directed upwards/downwards in the hierarchy for
their parameter interval. Then E↑ := {(u, v) ∈ E |
∃p : p ∈ NI(u, v), u contracted before v for p} and
E↓ := {(u, v) ∈ E | ∃p : p ∈ NI(u, v), u contracted after
v for p}. If there are edges that are directed in both

directions, depending on a parameter in their interval,
we split them into several parallel edges and adjust their
interval. Otherwise the search graph definitions remain.
Then, our query Algorithm 51 can recognize an edge not
being directed upwards/downwards for the given value
of p by looking at its interval.

Algorithm 5: FlexibleCHQuery(s, t, p)
//tentative distances
d↑:= 〈∞, . . . ,∞〉; d↓:= 〈∞, . . . ,∞〉;
d↑[s]:= 0; d↓[t]:= 0; d:= ∞;
//priority queues
q↑ = {(0, s)}; q↓ = {(0, t)}; r:= ↑;
while (q↑ 6= ∅) or (q↓ 6= ∅) do

if d > min {q↑.min(), q↓.min()} then break;
//interleave direction
//¬ ↑=↓ and ¬ ↓=↑
if q¬r 6= ∅ then r:= ¬r;
//u is settled and new candidate
(·, u):= qr.deleteMin();
d:= min {d, d↑[u] + d↓[u]};
foreach e = (u, v) ∈ E∗ do

//have we found a shorter path?
if r(e) and p ∈ NI(e) and
(dr[u] + wp(e) < dr[v]) then

//update tentative distance;
dr[v]:= dr[u] + wp(e);
//update priority queue;
qr.update(dr[v], v);

return d;

During experiments, we observed that a query scans
over a lot of edges that are not necessary for the
respective parameter value. We essentially scan much
more edges than we relax. We alleviate this problem
with buckets for smaller parameter intervals. As data
structure, we use an adjacency array, with a node array
and an edge array. As an additional level of indirection,
we add a bucket array, storing the edge indices necessary
for each bucket. These indices are ordered like the
edge array, so a single offset into this additional array
is enough per node. Each node stores one offset per
bucket array. By this method we essentially trade fast
edge access for space consumption. A lot of edges
are necessary for the whole parameter interval, almost
all edges of the original graph and additionally many
shortcuts. We store them separately, since otherwise,
we would have an entry in each bucket array for each
of these edges. This single action makes the buckets
twice more space-efficient. Note that we can access the

1The pseudocode does not include stalling of nodes.

edges resident in all buckets without the further level
of indirection, we just use another offset per node that
points into a separate array.

Parameter CALT Query. We perform the core
query, as described in [2], in two phases. In the first
phase, we perform the parameter CH query described
before, but stop at core nodes. In the second phase,
we perform a core-based bidirectional ALT algorithm.
We split the second phase into two parts itself. The
first part is the calculation of the proxy nodes [10]. We
perform a backward search from the source node and
a forward search from the target node until we settle
the first core node. Note that it is not guaranteed to
find a path to the core in the respective searches. This
can only happen if our input graph does not consist of
strongly connected components. If this should be the
case we disable the goal-direction for the respective di-
rection by setting the potential function to zero. The
second part is a bidirectional ALT algorithm using the
symmetric approach [21]. Alternatively to performing
a proxy search we could calculate the respective proxy
nodes and their distances in advance for every node and
every core. This would result in an extra number of
3 · |#cores| integers we would have to store for every
node. Still, compared to the computation time needed
for the search in the core, the proxy search is very fast.
We observed a number of 7% to 13% of the settled nodes
to be a result of the proxy searches. For the relaxed
edges, the part of the proxy search varied between 3%
and 5%.

Profile Query. Our algorithm can also be utilized to
find all possible shortest paths between a given source
and target node for arbitrary values of p in our interval.
This can be done with a number of searches in the
number of existing paths. We give an algorithm to find
all existing k > 1 paths with 3 · k − 2 queries. Due to
case differentiations for distinct parameter values, we
will only prove a simpler bound of 2 · k− 1 queries for a
continuous parameter interval.

Lemma 4.1 For two s-t-paths P1 and P2 with
(t(P1), c(P1)) 6= (t(P2), c(P2)) the following holds: Let
p1 be a parameter value for which P1 is a shortest path
and p2 be a parameter value for which P2 is a short-
est path. If a shortest path P exists for a parameter
value p1 < p < p2 with (t(P1), c(P1)) 6= (t(P), c(P)) 6=
(t(P2), c(P2)), we can find such a path P at p chosen so
that wp(P1) = wp(P2) as in Figure 1.

Note that we rely on a continuous parameter inter-
val to choose p. If we use distinct parameter values as
in our algorithm and the ‘cutting point’ p lies between

p

w

P2

P1

p1 p2

P

Figure 1: The profile query can locate an additional
shortest path P in the interval (p1, p2) by looking at
the ‘cutting point’ p of the shortest paths P1 and P2.

two integer values, we would have to choose p′ = bpc
or p′ = dpe. Which one of these values, if any, yields
another path cannot be decided in advance.

Proof. Let us assume P and p exist with p1 < p < p2

and wp(P) < wp(P1) and wp(P) < wp(P2). Further-
more, we assume that at p̃ with wep(P1) = wep(P2) no
path P̃ exists that fulfills wep(P̃) < wep(P1) = wep(P2).
Also let w.l.o.g. p1 < p < p̃. Since wp1(P1) is mini-
mal over all existing s-t-paths at p1, wp1(P) ≥ wp1(P1).
With the assumption also wep(P) ≥ wep(P1) holds. This
cannot be true for linear functions of degree one, as
wp(P) < wp(P1). �

We can now use Lemma 4.1 to find all existing paths
in a continuous parameter interval. We start our profile
query with two point to point shortest path queries for
the parameter values pmin and pmax. Due to Lemma 4.1,
we can recursively calculate the cutting point of the
respective weight functions and perform a new query for
the cutting point pc of the weight functions and continue
the search between the respective paths for pmin and pc
as well as pc and pmax. Thus, we perform one query for
each existing path. Furthermore, we perform one query
without obtaining a new path between each adjacent
pair of paths. This yields a number of k − 1 further
queries. Thus, we get a number of 2 · k − 1 queries in
total. For the case k = 1 we obviously need a number
of two queries.

The bound of 3 · k − 2 follows from the fact that
we can only perform queries for integers p and therefore
have to perform two queries between every adjacent pair
of found paths if the cutting point is not an integer.

Profile Query with Sampling. As an alternative
to a complete profile query, our algorithm can also
be used to perform queries for a sample subset S =
{p1, p2, . . . , pk} ⊆ [L,U]. To do so, we adapt our
algorithm from the profile query. We start with a query
for the minimal parameter value p1 and the maximal
parameter value pk in S. For two paths Pi at parameter
pi and Pj at parameter pj with pi < pj we calculate the
next query parameter as p`, ` = bi+ (j − i)/2c. By this
method we recursively continue. If we find the already
known path Pi (Pj) again at p`, we need not continue
the recursion between p` and pi (pj).

Approximated Profile Query. Since the large num-
ber of queries result in a relatively long computation
time for a profile query, we also offer the possibility of
an approximated profile query with ε-guarantee:

Lemma 4.2 For two shortest s-t-paths P1 at parameter
value p1 and P2 at parameter value p2, p1 < p2 and
t(P2) ≤ (1 + ε) · t(P1) or c(P1) ≤ (1 + ε) · c(P2) holds:
if a shortest s-t-path P at parameter value p exists with
p1 < p < p2 then either t(P) ≤ (1 + ε) · t(P1) ∧ c(P) ≤
(1+ε)·c(P1) or t(P) ≤ (1+ε)·t(P2)∧c(P) ≤ (1+ε)·c(P2)
holds.

Proof. First let t(P2) ≤ (1 + ε) · t(P1). In this case we
can use P2 to approximate P . From p < p2 follows
c(P2) < c(P). From p1 < p follows t(P) > t(P1) and
with t(P2) ≤ (1 + ε) · t(P1) follows t(P2) ≤ (1 + ε) · t(P).
In the same way we can use P1 in case that c(P1) ≤
(1 + ε) · c(P2) holds. �

Therefore, we can guarantee that for every omitted
path P a path P ′ = (t′, c′) will be found with t(P ′) ≤
(1 + ε) · t(P) and c(P ′) ≤ (1 + ε) · c(P). Since we
essentially need two queries to terminate our search
for further paths between two already found paths,
the approximation might help to reduce the number
of ‘unnecessary’ searches without omitting too many
paths.

Note that the approximation method can of course
also be applied to our sampling method.

Correctness. The correctness of our query algorithm
is based on the correctness of the CH query algorithm
and the CALT query algorithm. We already described
that we add all necessary shortcut for any integer
parameter p in a given interval [L,U]. Thus the
parameter CH query is correct for any parameter inside
the interval. The correctness of the CALT query
depends on the correct lower bounds. Therefore, our
query algorithm is correct.

5 Experiments

Test Instances. We present experiments performed on
road networks from the year 2006, provided by PTV
AG. The German road network consists of 4 692 751
nodes and 10 806 191 directed edges. The European
road network consists of 29 764 455 nodes and 67 657 778
directed edges. For comparison with Pareto-SHARC,
we also performed experiments with their older net-
work of Western Europe having 18 017 748 nodes and
42 189 056 directed edges.

Environment. We did experiments on one core of a
single AMD Opteron Processor 270 clocked at 2.0 GHz,
with 8 GB main memory and 2×1 MB L2 cache. Only
the preprocessing of the European road network has
been done on one core of a Intel Xeon 5345 processor
clocked at 2.33 GHz with 16 GB main memory and
2×4 MB L2 cache. We run SuSE Linux 11.1 (kernel
2.6.27) and use the GNU C++ compiler 4.3.2 with
optimization level 3.

Annotation. In our tables we denote with param the
number of different parameters in the interval [0, x− 1].
For core approaches we may give the kind of core used
by a string of two signifiers core size/#landmarks. The
core size indicates how many nodes the core contains.
The second number gives the number of landmarks used
in the core. A core is usually uncontracted, only the
contracted cores are additionally marked with C. The
preprocessing time is given in the format hh:mm and
may split it into the compute time and the I/O time
needed for reading/writing to disk. Query performance
is given in milliseconds. For the speed-up we compare
our algorithm to the timings of a plain unidirectional
Dijkstra algorithm.

Weight Functions. For our experiments, we com-
bined the travel time and the approximate monetary
cost for traversing an edge. The travel time was com-
puted from the length of an edge and the provided aver-
age speed. To approximate the cost, we chose to calcu-
late the needed mechanical work for a standard car. We
use the standard formulas for rolling and air resistance
to compute the force F (v) = FN · cr + A · cw · ρ2 · v

2

with FN the normal force, cr the rolling resistance co-
efficient, A representing the reference area in square
meters, cw being the drag coefficient, ρ the air density
and v the average speed on the desired road. We esti-
mated the constants as FN = 15 000kg m/s2, cr = 0.015,
A = 2.67m2, cw = 0.3 and ρ = 1.2kg/m3. The result-
ing cost function is defined as C̃(v, `) = (` · c · F (v))/η
with ` denoting the length of the road, c denoting the
cost of energy and η denoting the efficiency of the en-

gine. We estimated c = 0.041e/MJ , this corresponds
to a fuel price of about 1.42e/`, and η = 0.25. For
inner city roads, we multiply the cost by a factor of
1.5 to compensate for traffic lights and right of way
situations. Note that this method is a good approx-
imation for higher speeds but disregards the bad effi-
ciency of the engine and transmission on low speeds.
To get a more realistic model, we favor an average
speed of 50 km/h and define our final weight function

as C(v, `) =

{
C̃(50 +

√
50− v, `) if v < 50

C̃(v, `) otherwise

}
.

Figure 2 plots C(v, 1) against the travel speed.

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 20 40 60 80 100 120 140
Average Travel Speed [km/h]

Default
City

C
os

t P
er

 M
et

er
 [c

en
t]

Figure 2: Energy costs per meter against the travel
speed. The upper curve is for inner city roads.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 200 400 600 800 1000

R
el

at
iv

e
V

ar
ia

tio
n

Parameter p

Travel Time
Energy Cost

Figure 3: Average increase of the travel time and
decrease of the energy cost as ratio to the best possible
routes.

Parameter Interval. A good parameter interval for
the travel time and the energy cost function is between
0 and 0.1. For p = 0, we find the fastest path and for

 0 200 400 600 800 1000

Parameter p

Splits

Figure 4: The vertical lines present the split positions.
The higher a line, the lower is the recursion depth of
the split.

p = 0.1, we observe an increase of the average travel
time by 65%. This increase is reasonable, and also
Pareto-SHARC considers at most 50% increase.

Since we only support integer parameters, we scale
all weights by a factor of 10 000 to be able to adjust the
parameter with four digits after the decimal point. This
results in a parameter interval of [0, 1 000], but actually
we rounded to [0, 1 023]. To prove the robustness of our
approach, we additionally perform some experiments for
the larger parameter interval [0, 2 047] using the same
scale factor of 10 000.

Parameter Splitting. During the contraction, we
maintain a threshold T ; when there are more than T
partial shortcuts since the last split, we trigger a split.
After a split, we increase T since there are more short-
cuts necessary in the upper hierarchy. We start with
T = 1.3% of the number of edges in the input graph.
After a split, we multiply T with 1.2. We do not split
parameter intervals of size 16 or below.

We use only half split, preliminary experiments with
variable split did not yield significant improvements. In
Figure 4, the splits of the parameter interval are visu-
alised. The longer a line, the earlier the split happened.
We see that in the interval [0, 511] 7 splits happened
whereas in [512, 1023] only 3 happen. This correlates
quite well with the observations from Figure 3, where
great changes are especially visible for the first half of
the interval.

Performance. We summarize the performance of dif-
ferent variants of our algorithm in Table 1. When we
only use contraction, preprocessing on Germany takes
2.4 hours, resulting in a average query time of 2.9 ms.
Note that the average is over 100 000 queries, where

Table 1: Preprocessing and query performance for different graphs. param specifies the number of different
parameters x in the interval [0, x− 1]. The core size and number of landmarks are given. The preprocessing time
in hh:mm is split into the compute time and the I/O time needed for reading/writing to disk. Also the number
of splits and the space consumption in Byte/node are given. The query performance is given as query time in
milliseconds, speed-up compared to plain Dijkstra, number of settled nodes and number of relaxed edges.

core/ preproc [hh:mm] # space query speed settled relaxed
graph param landmark contr IO splits [B/node] [ms] -up nodes edges
Ger 1 024 -/- - - - 60 2 037.52 1 2 359 840 5 437 900
Ger 1 024 0/0 1 : 54 29 11 159 2.90 698 579 4 819
Ger 1 024 10k,C/64 2 : 06 29 11 183 0.63 3 234 170 2 059
Ger 1 024 3k/64 1 : 13 29 11 164 2.33 874 620 9 039
Ger 1 024 5k/32 1 : 05 30 11 161 2.76 738 796 11 137
Ger 1 024 5k/64 1 : 06 30 11 167 2.58 789 735 10 191
Ger 2 048 5k/64 1 : 30 37 14 191 2.64 771 734 9 835
Eur 1 024 -/- - - - 59 15 142.31 1 6 076 540 13 937 000
Eur 1 024 5k/64 12 : 55 2 : 32 11 142 6.80 2 226 1 578 32 573
Eur 1 024 10k/64 11 : 58 2 : 31 11 144 8.48 1 784 2 151 39 030
Eur 1 024 10k,C/64 18 : 37 2 : 35 11 145 1.87 8 097 455 7 638
WestEur 16 10k,C/64 1 : 00 0 : 10 0 60 0.42 14 427 270 2 103
WestEur 1 024 10k,C/64 5 : 12 1 : 12 7 151 0.98 6 183 364 3 360

source, target and the value of p are selected uniformly
at random. We split the precomputation time into the
compute part and the I/O part. The I/O part is the
time to write the intermediate results to disk when a
split happens. You see that it can take a significant
percentage of the overall precomputation time, up to
one third, but easily be avoided by using more main
memory.

We usually select 64 avoid landmarks [11] per core.
Compared to full contraction, a 5k uncontracted core
has 12% better query time and significantly decreases
the precomputation by one third. As expected, a 3k
core results in even better query times, at the cost
of precomputation time. However, switching to 32
landmarks is not significantly better for precomputation
time and space, but increases the query time by 7%.
Our best query times are with a 10k contracted core
yielding speed-up of more than 3 000.

You cannot directly compare our performance to
previously published results of single-criteria CH, since
the performance heavily depends on the edge weight
function. We computed single-criteria CH for Germany
with p = 0, p = 1000 and for p = 300, one of
the most difficult parameters from Figure 5. The
preprocessing time varied by about 100% between these
parameters and the query time even by 270%. Only
space consumption2 is quite constant, it changed by
less than 3% and is around 22 B/node. We compare
our 5k/64 core to economical CH [7] as both have the

2do not mistake it for space overhead

best preprocessing times. Our space consumption is a
factor 7.6 larger, however we could greatly reduce space
in relation to our 1 024 different parameters, even below
the number of 12 different cores that exist due to 11
splits. Also, we could compute 18.9 different hierarchies
within the time needed by our new algorithm. For
this comparison, we ignored the preprocessing I/O time
since the single-criteria CH also needs to be written to
disk. The reduction in preprocessing time is therefore
not as large as for space, but still good. However,
our efficient preprocessing comes at the cost of higher
query times. Single-criteria CH has 0.82 ms query time
on average but our query time is about three times
larger. One reason for our higher query time is the
shared node order within a parameter interval that is
not split, but we also have a larger constant factor
because of the data structure: there is an additional
level of indirection due to the buckets, and we store
two weights and a parameter interval per edge, resulting
in more cache faults. The frequently occurring weight
comparisons are also more expensive and noticeable,
since multiplications and additions are necessary. But
e. g. for web services, the query time is still much lower
than other delays, e. g., for communication latency.
Using landmarks on a contracted core would yield
even faster query times than single-criteria CH, but
this would not be a fair comparison as we should use
landmarks there as well.

Our algorithm scales well with the size of the
interval. Increasing it to twice the size only increases
the preprocessing time by 32% and the space by 14%

without affecting query time much. We also did some
experiments on Europe with parameters that worked
well for Germany, but we could not perform a thorough
investigation, since the precomputation took very long.
The query times are very good, yielding speed-ups of
more than 8 000. Better speed-ups are expected for
larger graphs, as for single-criteria CH, too. The space
consumption is even better, the dense road network
of Germany is more difficult than the rest of Europe.
Preprocessing time is however super-linear, but we
expect that tuning the node ordering parameters and
the split heuristic will alleviate the problem.

Edge Buckets. As already explained earlier, the num-
ber of scanned edges has a large impact on the quality
of the query. When the number of memory accesses
for non-necessary edges is large enough, it pays of to
omit the respective edges, even if an additional level of
indirection has to be used for some of the edges. By de-
fault, for each parameter interval that was not further
split, we have one bucket, i. e. with 11 splits we have 12
buckets that split the parameter interval as in Figure 4.
To investigate the effect further, we take two computed
hierarchies from Table 1, remove the original buckets
and use different numbers buckets that split the param-
eter interval in equally spaced pieces. The results are in
Table 2 and show the different tradeoffs between query
time and space consumption. If we compare the data to
Table 1, we can see that even with buckets, the number
of scanned edges is more than two times larger than the
number of relaxed edges. Comparing the different num-
bers of buckets, we notice that around a quarter of all
edges would be stored in all buckets. Therefore, storing
them separately helps to control the space, since buckets
already consume a major part. About 40% of our space
is due to buckets but we get almost the same percent-
age as improvement of the query time. Using just two
buckets even increases the query time as another level of
indirection is necessary to address the edges in the buck-
ets even though we only halve the number of scanned
edges. Our choice of 12 buckets is in favor of fast query
times, more buckets bring only marginal improvements.
Figure 5 visualises the effects of buckets for different
values of p. We see that ≥ 4 buckets improve the query
time for all parameters but in the interval [0, 511] more
buckets are necessary than in [512, 1023] as 12 buckets
show the most uniform performance over the whole in-
terval. When we ignore the different bucket sizes, we
also note that our algorithm achieves the best query
times for p = 0, when we optimize solely for travel time.
Therefore, our performance depends on the chosen value
of p and furthermore on the chosen edge weights func-
tions as they have a strong impact on the hierarchical

structure of the network.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 200 400 600 800 1000

Q
ue

ry
 T

im
e

[m
s]

Parameter p

0 Buckets
2 Buckets
4 Buckets
8 Buckets

12 Buckets
16 Buckets

Figure 5:

Profile Query. Utilizing our flexible fast query algo-
rithm, we can also compute the shortest paths for all
values of p. We get about k = 31 different paths on
average and need 88 queries for different values of p to
compute them (Table 3). This is close to the bound of
3k − 2 = 91 queries, which are theoretically necessary.
So applications that need all shortest paths between two
locations should use our fastest version.

Table 3: Performance of the profile search in different
versions.

core/ # performed time
graph landmark paths queries [ms]
Ger 10k,C/64 30.7 88.1 59.4
Ger 3k/64 30.7 88.1 307.0
Ger 5k/64 30.7 88.1 349.6

When a reasonable subset of all such paths is suf-
ficient, our sampling approach provides better perfor-
mance. A possible application could be to present a
number of samples for the user to choose from and
maybe calculate more detailed information on demand
for certain parameter intervals of the presented choices.
In Table 4, we give an overview over the performance of
our sampling version of the profile query, with the main
focus on the number of found routes and running time
for different numbers of equidistant sample values of p.
As expected, we see a linear increase of the query time
compared to the number of performed queries. Up to
9 samples, we get a new path with almost every query.
However, the more samples we choose, the more queries
are done in vain. Still, we can chose at query time very
fine-grained how many different paths we want. This
is a clear advantage over Pareto-SHARC, were the av-

Table 2: Impact of edge buckets onto the query times. Experiments on the German road network with complete
contraction for different numbers of buckets.

core/ % edges query scanned memory overhead
graph landmark # buckets all buckets [ms] edges [B/node]

Ger 10k,C/64 1 100.0 0.96 41 613 0
Ger 10k,C/64 2 26.9 1.02 23 486 19
Ger 10k,C/64 4 26.5 0.81 13 388 28
Ger 10k,C/64 8 26.4 0.69 7 757 49
Ger 10k,C/64 12 26.4 0.63 5 769 71
Ger 10k,C/64 16 26.4 0.62 5 270 96
Ger 3k/64 1 100.0 3.75 170 483 0
Ger 3k/64 2 27.5 3.90 94 876 18
Ger 3k/64 4 27.0 3.18 53 082 28
Ger 3k/64 8 26.9 2.60 29 866 48
Ger 3k/64 12 26, 9 2.33 21 694 70
Ger 3k/64 16 26.9 2.32 20 754 95

erage number of target labels (= #paths) is limited to
5–6 since otherwise the precomputation and query time
gets out of hand.

Table 4: Performance of sampled profile search on the
German road network with a contracted core of 10 000
nodes using 64 landmarks.

time
samples queries paths [ms]

2 1.8 1.8 1.0
3 2.7 2.7 1.7
5 4.4 4.3 2.9
9 8.0 7.2 5.5

17 15.8 11.4 10.2
33 31.4 17.3 18.9
65 58.3 22.8 34.3

129 95.9 27.1 57.1

Approximated Profile Query. Another possibil-
ity to reduce the profile query time is using ε-
approximation. We prune our profile query when all
paths that we may miss are within an ε factor of the
currently found paths. By that, we balance the query
time without missing significant differently valued paths
as it may happen with sampling. In Table 5 we see the
same ratio between found paths and query time as for
the sampling approach. Many of the 31 different paths
are very close as for a small ε = 1% the number of paths
is cut in halves. Still, there are significant differences in
the paths as even ε = 16% still has more than 4 different
paths.

Table 5: Performance of the approximated profile query
on the German road network with a contracted core of
10 000 nodes an 64 avoid landmarks.

time
ε paths queries [ms]

0.00 30.7 88.3 59.4
0.00125 26.5 55.0 36.4
0.0025 23.7 46.0 30.0
0.005 20.4 36.9 24.4
0.01 17.0 28.3 18.9
0.02 13.3 20.1 13.5
0.04 9.7 12.9 8.7
0.08 6.5 7.6 5.3
0.16 4.2 4.4 3.0
0.32 2.7 2.7 1.7

Comparison with Previous Work. Even though
Pareto-SHARC can handle continent-sized networks
only heuristically and we have exact shortest paths, we
perform very well in comparison since we do not rely on
Pareto-optimality. We used the same network of West-
ern Europe (WestEur) and costs as Pareto-SHARC.
With 16 values of p, the average travel time increases
by 4.3%. This case allows in our opinion the closest
comparison to Pareto-SHARC with simple label reduc-
tion with ε = 0.02 (4:10 hours preprocessing and 48.1 ms
query). Our precomputation is 3.6 times faster (see Ta-
ble 1) and our profile query (2 ms) is more than 24 times
faster. Computing a single path is even faster, taking
just 0.4 ms. For 1024 different values of p, the aver-
age travel time increases by 43.4%, that might be close
to heuristic Pareto-SHARC with strong label reduction
(ε = 0.5 and γ = 1.0 in [4], 7:12 hours preprocessing
and 35.4 ms query). We could not reach an average in-

crease of 50%, even doubling the values of p yields less
than 44% travel time increase. We need 12% less pre-
processing time, and an approximate profile query with
ε = 0.01 returning 5.7 different paths (6.2 ms) is 5.7
times faster. A query for a single value of p is even
below 1 ms. Furthermore, we provide more flexibility
with 12.5 different paths available on average over the
whole parameter interval. But compared to our Ger-
man road network, we have less different paths. This is
due to the different ‘costs’: Pareto-SHARC uses a sim-
ple model to calculate fuel- and toll-costs whereas our
model of the energy cost is based upon laws of physics.
The only downside of our algorithm is that we need
more space than Pareto-SHARC (22.5 B/node prepro-
cessing + 23.7 B/node input graph for Pareto-SHARC).
However, we can also provide more different routes. In
conclusion, our linear combination of two edge weight
functions is superior to Pareto-optimality. We scale
better since we can split parameter intervals, whereas
Pareto-optimal weights naturally cannot be split and
distributed to buckets. Adapting the SHARC algo-
rithm to our flexible scenario is possible. However, such
a Flexible-SHARC algorithm also needs, for efficiency,
necessity intervals, edge buckets, or maybe multiple arc
flags for different parts of the parameter interval. There-
fore it is not clear, whether it will turn out to be more
space-efficient than our CH-based algorithm.

6 Conclusion

Our algorithm is the first one for fast flexible queries,
and still we achieve query times comparable with single-
criteria algorithms. We were able to engineer the pre-
processing to be very time- and space-efficient. This is
perfectly suitable for a server scenario where a server an-
swers a lot of subsequent queries. We successfully avoid
the problems of Pareto-optimality and still provide very
diverse routes.

There is some open work. The I/O-time is too
high for larger cores, in-memory compression can maybe
make the disk storage obsolete. To reduce the prepro-
cessing time, we can parallelize it. We can process dif-
ferent parameter intervals after a split in parallel and
additionally we can apply the parallelization techniques
from [25]. Also, our parameter splitting is efficient but
leaves room for further improvements. One could pos-
sibly merge intervals later when they seem to be very
similar. This could save preprocessing time since a lot
of time is spent contracting highest ordered nodes. Ad-
ditionally, our heuristics for the split decision are very
simple, and more sophisticated methods might achieve
better and more robust results. To reduce the space
overhead, we can reduce the number of splits by us-
ing approximate shortcuts, but this will also reduce the

number of different routes.
It would be interesting to adapt our solution to a

continuous range of parameter values. In principle, it
should be possible to do this but we believe that the
added level of complication required makes this more
of an academic question than something worthwhile in
practice.

Even more flexibility is possible with more than
two edge weights functions or nonlinear combinations.
However, it is a open problem how to efficiently compute
shortcuts in such a scenario, since our current approach
only works well for one linear parameter dimension.
Time-dependent routing algorithms should also become
flexible. This is a challenge, as there it is even difficult
to optimize for a single criterion that is not travel time
but also depends on the time. One such criterion might
be a time-dependent cost, that is e. g. different in slow-
and fast-moving traffic. The main problem is the time-
dependency of the edge weights, and therefore most
likely all Pareto-optimal pairs of travel time and the
other weight need to be computed. But hopefully, road
networks are good-natured enough that this causes no
hard problems in practice.

Acknowledgements. We thank Veit Batz for support
when starting this project and Daniel Delling for his
ALT implementation.

References

[1] Reinhard Bauer and Daniel Delling. SHARC: Fast
and Robust Unidirectional Routing. In Ian Munro
and Dorothea Wagner, editors, Proceedings of the 10th
Workshop on Algorithm Engineering and Experiments
(ALENEX’08), pages 13–26. SIAM, April 2008.

[2] Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis
Schieferdecker, Dominik Schultes, and Dorothea Wag-
ner. Combining Hierarchical and Goal-Directed Speed-
Up Techniques for Dijkstra’s Algorithm. In Cather-
ine C. McGeoch, editor, Proceedings of the 7th Work-
shop on Experimental Algorithms (WEA’08), volume
5038 of Lecture Notes in Computer Science, pages 303–
318. Springer, June 2008.

[3] Daniel Delling. Engineering and Augmenting Route
Planning Algorithms. PhD thesis, Universität
Karlsruhe (TH), Fakultät für Informatik, 2009.
http://i11www.ira.uka.de/extra/publications/

d-earpa-09.pdf.
[4] Daniel Delling and Dorothea Wagner. Pareto Paths

with SHARC. In Jan Vahrenhold, editor, Proceedings
of the 8th International Symposium on Experimental
Algorithms (SEA’09), volume 5526 of Lecture Notes in
Computer Science, pages 125–136. Springer, June 2009.

[5] Daniel Delling and Dorothea Wagner. Time-
Dependent Route Planning. In Ravindra K. Ahuja,

http://i11www.ira.uka.de/extra/publications/d-earpa-09.pdf
http://i11www.ira.uka.de/extra/publications/d-earpa-09.pdf

Rolf H. Möhring, and Christos Zaroliagis, editors, Ro-
bust and Online Large-Scale Optimization, volume 5868
of Lecture Notes in Computer Science, pages 207–230.
Springer, 2009.

[6] Edsger W. Dijkstra. A Note on Two Problems in
Connexion with Graphs. Numerische Mathematik,
1:269–271, 1959.

[7] Robert Geisberger. Contraction Hierarchies. Master’s
thesis, Universität Karlsruhe (TH), Fakultät für Infor-
matik, 2008. http://algo2.iti.uni-karlsruhe.de/

documents/routeplanning/geisberger_dipl.pdf.
[8] Robert Geisberger, Peter Sanders, Dominik Schultes,

and Daniel Delling. Contraction Hierarchies: Faster
and Simpler Hierarchical Routing in Road Networks.
In Catherine C. McGeoch, editor, Proceedings of the
7th Workshop on Experimental Algorithms (WEA’08),
volume 5038 of Lecture Notes in Computer Science,
pages 319–333. Springer, June 2008.

[9] Andrew V. Goldberg and Chris Harrelson. Comput-
ing the Shortest Path: A* Search Meets Graph The-
ory. In Proceedings of the 16th Annual ACM–SIAM
Symposium on Discrete Algorithms (SODA’05), pages
156–165, 2005.

[10] Andrew V. Goldberg, Haim Kaplan, and Renato F.
Werneck. Better Landmarks Within Reach. In Camil
Demetrescu, editor, Proceedings of the 6th Workshop
on Experimental Algorithms (WEA’07), volume 4525
of Lecture Notes in Computer Science, pages 38–51.
Springer, June 2007.

[11] Andrew V. Goldberg and Renato F. Werneck. Com-
puting Point-to-Point Shortest Paths from External
Memory. In Proceedings of the 7th Workshop on Al-
gorithm Engineering and Experiments (ALENEX’05),
pages 26–40. SIAM, 2005.

[12] P. Hansen. Bricriteria Path Problems. In Günter
Fandel and T. Gal, editors, Multiple Criteria Decision
Making – Theory and Application –, pages 109–127.
Springer, 1979.

[13] Peter E. Hart, Nils Nilsson, and Bertram Raphael.
A Formal Basis for the Heuristic Determination of
Minimum Cost Paths. IEEE Transactions on Systems
Science and Cybernetics, 4:100–107, 1968.

[14] Moritz Hilger. Accelerating Point-to-Point Shortest
Path Computations in Large Scale Networks. Master’s
thesis, Technische Universität Berlin, 2007.

[15] T. Ikeda, Min-Yao Hsu, H. Imai, S. Nishimura, H. Shi-
moura, T. Hashimoto, K. Tenmoku, and K. Mitoh. A
fast algorithm for finding better routes by AI search
techniques. In Proceedings of the Vehicle Navigation
and Information Systems Conference (VNSI’94), pages
291–296. ACM Press, 1994.

[16] Richard M. Karp and James B. Orlin. Parame-
ter Shortest Path Algorithms with an Application to
Cyclic Staffing. Discrete Applied Mathematics, 2:37–
45, 1980.

[17] Ulrich Lauther. An Extremely Fast, Exact Algorithm
for Finding Shortest Paths in Static Networks with Ge-
ographical Background. In Geoinformation und Mo-

bilität - von der Forschung zur praktischen Anwendung,
volume 22, pages 219–230. IfGI prints, 2004.

[18] Ernesto Queiros Martins. On a Multicriteria Shortest
Path Problem. European Journal of Operational Re-
search, 26(3):236–245, 1984.

[19] Rolf H. Möhring, Heiko Schilling, Birk Schütz,
Dorothea Wagner, and Thomas Willhalm. Partition-
ing Graphs to Speedup Dijkstra’s Algorithm. ACM
Journal of Experimental Algorithmics, 11:2.8, 2006.

[20] James B. Orlin, Neal E. Young, and Robert Tarjan.
Faster Parametric Shortest Path and Minimum Bal-
ance Algorithms. Networks, 21(2):205–221, 1991.

[21] Ira Pohl. Bi-directional Search. In Bernard Meltzer
and Donald Michie, editors, Proceedings of the Sixth
Annual Machine Intelligence Workshop, volume 6,
pages 124–140. Edinburgh University Press, 1971.

[22] Peter Sanders and Dominik Schultes. Engineering Fast
Route Planning Algorithms. In Camil Demetrescu, ed-
itor, Proceedings of the 6th Workshop on Experimental
Algorithms (WEA’07), volume 4525 of Lecture Notes in
Computer Science, pages 23–36. Springer, June 2007.

[23] Dominik Schultes. Route Planning in Road Networks.
PhD thesis, Universität Karlsruhe (TH), Fakultät für
Informatik, February 2008. http://algo2.iti.uka.

de/schultes/hwy/schultes_diss.pdf.
[24] Dominik Schultes and Peter Sanders. Dynamic

Highway-Node Routing. In Camil Demetrescu, editor,
Proceedings of the 6th Workshop on Experimental Al-
gorithms (WEA’07), volume 4525 of Lecture Notes in
Computer Science, pages 66–79. Springer, June 2007.

[25] Christian Vetter. Parallel Time-Dependent Con-
traction Hierarchies, 2009. Student Research
Project. http://algo2.iti.kit.edu/documents/

routeplanning/vetter_sa.pdf.

http://algo2.iti.uni-karlsruhe.de/documents/routeplanning/geisberger_dipl.pdf
http://algo2.iti.uni-karlsruhe.de/documents/routeplanning/geisberger_dipl.pdf
http://algo2.iti.uka.de/schultes/hwy/schultes_diss.pdf
http://algo2.iti.uka.de/schultes/hwy/schultes_diss.pdf
http://algo2.iti.kit.edu/documents/routeplanning/vetter_sa.pdf
http://algo2.iti.kit.edu/documents/routeplanning/vetter_sa.pdf

	1 Introduction
	2 Contraction
	3 Goal-Directed Technique in the Core Graph
	4 Query
	5 Experiments
	6 Conclusion

