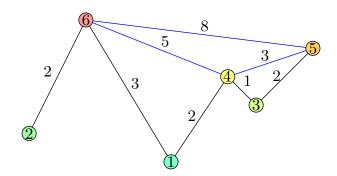
# 2) Multi-Criteria1) Contraction Hierarchies3) for Ride Sharing

Robert Geisberger

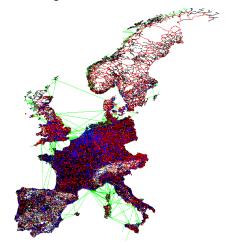
Bad Herrenalb, 4th and 5th December 2008

# Contraction Hierarchies (CH)



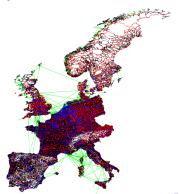
#### Motivation

- exact shortest paths calculation in large road networks
- minimize:
  - query time
  - preprocessing time
  - space consumption
- + simplicity



# Hierarchy

- find the hierarchy
- the more hierarchy is available the more you can find
- exploit it to speedup your algorithm



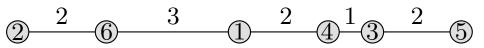
#### Main Idea

#### Contraction Hierarchies (CH)

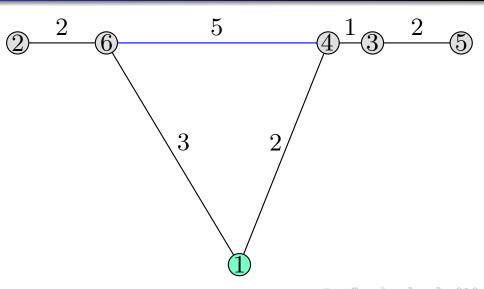
contract only one node at a time
 ⇒ local and cache-efficient operation

#### in more detail:

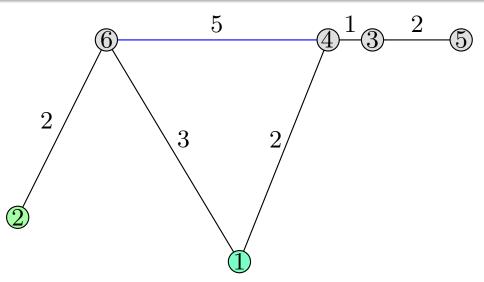
- order nodes by "importance",  $V = \{1, 2, ..., n\}$
- contract nodes in this order, node v is contracted by foreach pair (u, v) and (v, w) of edges do
  if (u, v, w) is a unique shortest path then
  add shortcut (u, w) with weight w((u, v, w))
- query relaxes only edges to more "important" nodes
  valid due to shortcuts



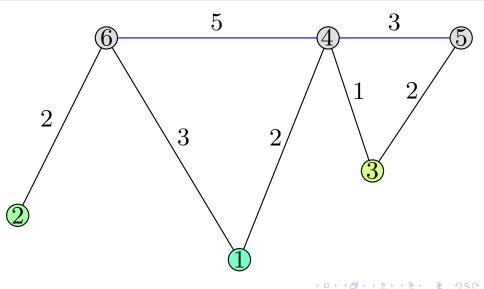
Robert Geisberger

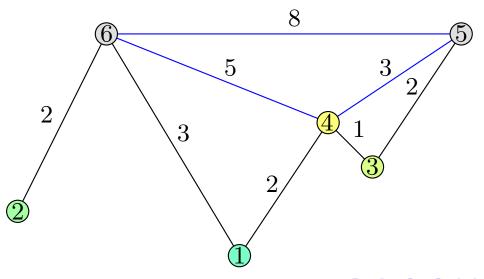


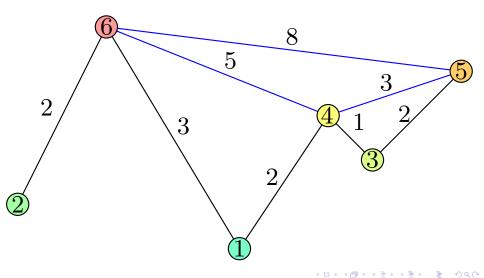
6



6



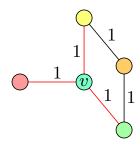




#### Construction

#### to identify necessary shortcuts

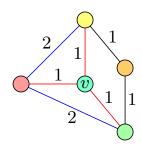
- local searches from all nodes u with incoming edge (u, v)
- ignore node v at search
- add shortcut (u, w) iff found distance
  d(u, w) > w(u, v) + w(v, w)



#### Construction

#### to identify necessary shortcuts

- local searches from all nodes u with incoming edge (u, v)
- ignore node v at search
- add shortcut (u, w) iff found distance
  d(u, w) > w(u, v) + w(v, w)

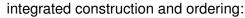


#### **Node Order**

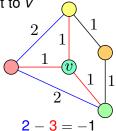
use priority queue of nodes, node *v* is weighted with a linear combination of:

edge difference #shortcuts – #edges incident to v

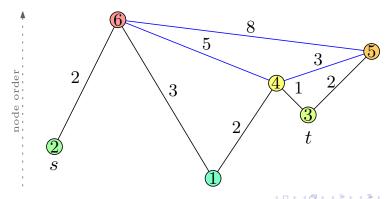
- uniformity e.g. #deleted neighbors
- ...



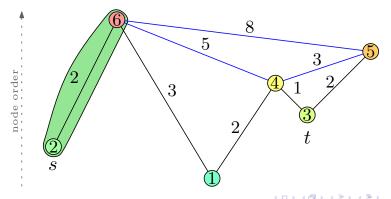
- remove node *v* on top of the priority queue
- contract node v
- update weights of remaining nodes



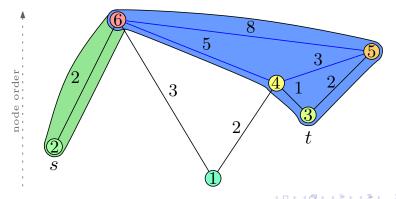
- modified bidirectional Dijkstra algorithm
- upward graph  $G_{\uparrow} := (V, E_{\uparrow})$  with  $E_{\uparrow} := \{(u, v) \in E : u < v\}$  downward graph  $G_{\downarrow} := (V, E_{\downarrow})$  with  $E_{\downarrow} := \{(u, v) \in E : u > v\}$
- ullet forward search in  $G_{\uparrow}$  and backward search in  $G_{\downarrow}$



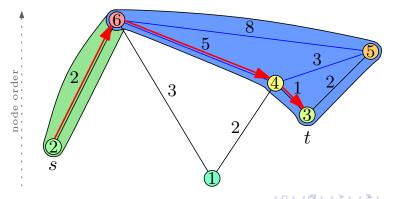
- modified bidirectional Dijkstra algorithm
- upward graph  $G_{\uparrow} := (V, E_{\uparrow})$  with  $E_{\uparrow} := \{(u, v) \in E : u < v\}$  downward graph  $G_{\downarrow} := (V, E_{\downarrow})$  with  $E_{\downarrow} := \{(u, v) \in E : u > v\}$
- ullet forward search in  $G_{\uparrow}$  and backward search in  $G_{\downarrow}$



- modified bidirectional Dijkstra algorithm
- upward graph  $G_{\uparrow} := (V, E_{\uparrow})$  with  $E_{\uparrow} := \{(u, v) \in E : u < v\}$  downward graph  $G_{\downarrow} := (V, E_{\downarrow})$  with  $E_{\downarrow} := \{(u, v) \in E : u > v\}$
- ullet forward search in  $G_{\uparrow}$  and backward search in  $G_{\downarrow}$

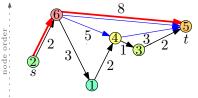


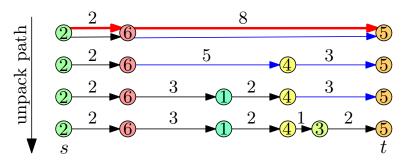
- modified bidirectional Dijkstra algorithm
- upward graph  $G_{\uparrow} := (V, E_{\uparrow})$  with  $E_{\uparrow} := \{(u, v) \in E : u < v\}$  downward graph  $G_{\downarrow} := (V, E_{\downarrow})$  with  $E_{\downarrow} := \{(u, v) \in E : u > v\}$
- ullet forward search in  $G_{\uparrow}$  and backward search in  $G_{\downarrow}$



# **Outputting Paths**

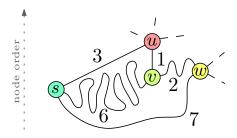
- for a shortcut (u, w) of a path (u, v, w),
  store middle node v with the edge
- expand path by recursively replacing a shortcut with its originating edges





#### Stall-on-Demand

- v can be "stalled" by u (if d(u) + w(u, v) < d(v))
- stalling can propagate to adjacent nodes
- search is not continued from stalled nodes



 does not invalidate correctness (only suboptimal paths are stalled)

### **Experiments**

#### environment

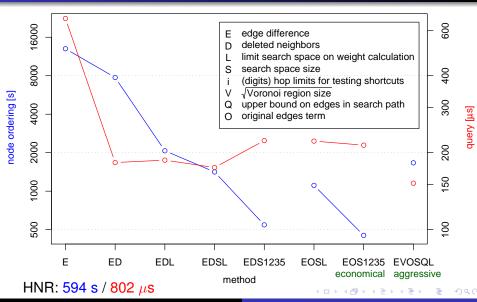
- AMD Opteron Processor 270 at 2.0 GHz
- 8 GB main memory
- GNU C++ compiler 4.2.1

#### test instance

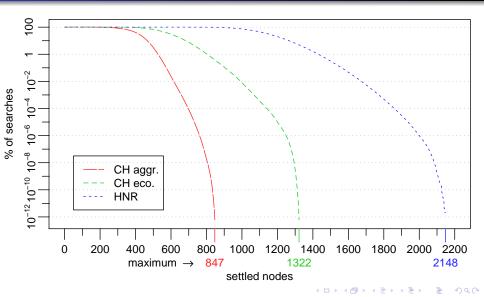
- road network of Western Europe (PTV)
- 18 029 721 nodes
- 42 199 587 directed edges



#### Performance



#### **Worst Case Costs**



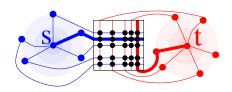
# Hierarchy is not hierarchy

#### Many-to-Many Shortest Paths [KSSSW07]

| method        | query [ $\mu$ s] | settled | non-stalled | $10000 \times 10000$ |
|---------------|------------------|---------|-------------|----------------------|
|               |                  | nodes   | nodes       | table                |
| EVSQL         | 159              | 368     | 209         | 10.2 s               |
| <b>EVOSQL</b> | 152              | 356     | 207         | 11.0 s               |

#### Transit Node Routing [BFSS07]

preprocessing time with method EDOSQ1235 46 min query time still at 3.3  $\mu$ s



# Summary

- Contraction Hierarchies are simple and fast
- 7.5 min preprocessing results in 0.21 ms queries
- foundation for other methods
- definition of "best" hierarchy selection depends on application

#### Part II

Multi-Criteria Contraction Hierarchies

# Feasibility Study of Young Scientist (FYS)

- Do you have a very good master-/diploma-/phd-thesis?
- Is there a interesting question left?
- Then they may give you money.

#### Goals

- multiple optimization criterias e.g.: distance, time, costs
- flexibility at route calculation time e.g.: individual vehicle speeds
- diversity of results
  e.g.: calculate Pareto-optimal results
- roundtrips with scenic value e.g.: for tourists



# Challenges and New Insight

- Every optimization criterion has a specific influence on the hierarchy of a road network.
  - e.g.: Finding the fastest route contains more hierarchy than finding the shortest route.
- Challenge: Multiple criteria interfere with hierarchy, but the algorithm should work fast on large graphs.
  - e.g.: Motorways drop in the hierarchy because of road tolls.
- New insight: Combinations und weightings of optimization criteria that preserve hierarchy (and which not).

# Algorithmic Ideas

- modifiy the contraction so the query stays simple
- add all necessary shortcuts during contraction
- do this by modifying the local search
  - linear combination of two: x + ay with  $a \in [l, u]$  label is now a function of x (see timedependent CH)
  - linear combination of more:  $a_1x_1 + \cdots + a_nx_n$  with  $a_i \in [l_i, u_i]$
  - Pareto-optimal (may add too many shortcuts)
- let us see what works best ;-)

#### Part III

Fahrtenfinder

## Ride Sharing

#### **Current approaches:**

- match only ride offers with identical start/destination (perfect fit)
- sometimes radial search around start/destination

#### Our approach:

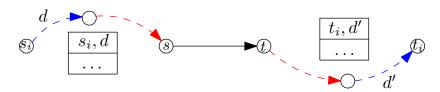
- driver picks passenger up and gives him a ride to his destination
- find the driver with the minimal detour (reasonable fit)

#### Efficient algorithm:

adaption of the many-to-many algorithm

# **Efficient Algorithm**

- store forward search space from each start node s<sub>i</sub> in a bucket
- request from s to t needs to calculate all distances  $d(s_i, s)$
- scan buckets of all reached nodes
- analogously for distances  $d(t, t_i)$



## Experiments

matching a request is really fast

- $\approx$  25 ms
- it can sort by detour and output e.g. the best ten offers
- departure windows as selection criterion
- online adding/removal of offers supported  $\approx 0.2/2 \, \text{ms}$