
Space Efficient Approximation of

Piecewise Linear Functions

Student thesis
at

Institute for Theoretical Computer Science, Algorithmics II
Universität Karlsruhe (TH)

of

Sabine Neubauer

supervised by:

Prof. Dr. Peter Sanders
G. Veit Batz

Abstract

In this work, we compute upper bounds of piecewise linear functions which is a special case of piecewise linear
approximation. There are several application areas like pattern recognition or cartography. The goal is to
reduce the number of sampling points while still preserving the characteristics of given data. The problem of
approximating a given piecewise linear function with n sampling points by another piecewise linear function
such that the euclidean distance between the two functions is limited by an error bound and the number of the
resultant sampling points is minimum can be solved in O(n) time.

Therefore, we study and implement an algorithm of Imai and Iri [II87]. We describe the basic idea and
all needed components in detail. In our experiments we examine the results and analyse the benefit for our
application, time-dependent route planning.

Contents

1 Introduction 4

1.1 Motivation . 4
1.2 Problem Definition . 4
1.3 Related Work . 5
1.4 Outline . 5

2 Algorithmic Details 5

2.1 Idea . 5
2.2 Convex Hull . 7
2.3 Windows . 9
2.4 Algorithm . 11
2.5 Output: Upper Bound . 13

3 Experiments 14

3.1 Environment . 14
3.2 Instances . 14
3.3 Results - Computing Upper Bounds . 15
3.4 Results - Benefit for Application . 18

4 Future Work 22

5 Conclusion 22

6 Appendix 23

1 Introduction

1 Introduction

1.1 Motivation

Piecewise linear approximation has several applications in various fields of computer science like pattern recog-
nition, motion planning or cartography. The goal is to reduce the complexity of given data as much as possible
while still preserving the most important characteristics as the case may be the geometrically run of a street or
river in the context of cartography.

Our application lies in the context of route planning. In order to offer time-dependent routing a hierarchical
speedup technique, the so-called contraction hierarchies [Gei08], is generalized to networks with time-dependent
edge weights [BDSV09]. The objective function in this case is travel-time. The edge costs are functions
f : R→ R represented as piecewise linear functions and fulfill the FIFO-property: ∀τ < τ ′ : τ+f(τ) < τ ′+f(τ ′),
i.e. there is no overtaking. Because the complexities of these time-dependent edge weights grow with progressive
contraction approximations are needed.

1.2 Problem Definition

Let p1 = (x1, y1), p2 = (x2, y2), . . . , pn = (xn, yn) be an ordered set of points in R
2 with x1 < x2 < . . . < xn.

Let f : [x1, xn] → R be a function whose graph y = f(x) in the xy-plane is a polygonal line connecting points
p1, p2, . . . , pn. Then f is a piecewise linear and x-monotone function.

Such a function f with n sampling points should be approximated by another piecewise linear function g with
a smaller number of links m. In general there are the following two kinds of problems in this context.

min-# problem: minimize m under consideration of a given error bound for the distance between f and g

min-ǫ problem: minimize the distance ǫ between f and g for a given number of links m

Furthermore, there are two categories depending on whether the sampling points of g are required to be a subset
of the input function f . In the following, we focus on the min-#-problem and arbitrary approximated sampling
points.

There are several ways to define the error bounds concerning the limited gap between the given function and
the approximated function. On the one hand, it can be requested to compute an upper or a lower bound of the
given function. But also approximations lying inside a corridor between a lower and an upper error bound are
interesting. That means, it should be possible to define only one or both error bounds. On the other hand, the
error bounds can be absolute or relative.

(1 + ǫ) · f

g

f

f − e

Figure 1: This figure illustrates the described model. A piecewise linear function f with n = 14 sampling points
is plotted. This function is approximated given a relative upper error bound ǫ and an absolute lower
error e. The resultant function g has m = 8 sampling points.

4

2 Algorithmic Details

Figure 1 shows an approximation of a piecewise linear function lying inside a corridor around the given
function. The upper bound is defined by a relative error ǫ whereas the lower bound is specified by an absolute
error e. The given function f has n = 14 sampling points. This number is minimized to m = 8 sampling points
of the approximated function g.

In the following sections, we present an algorithm which is adaptable to the different conditions. It is possible
to compute upper or lower bounds as well as approximations with this algorithm. Furthermore, it can deal with
relative and absolute error bounds. In this work, we focus on computing upper bounds satisfying a relative error
bound. For a given piecewise linear function f and a relative error ǫ we compute a piecewise linear function
g ≥ (1 + ǫ) · f with minimal number of sampling points which is an upper bound of f .

1.3 Related Work

Several papers concerning piecewise linear approximation of polygons have been published. One of the most
famous algorithms solving this problem is the heuristic Douglas-Peucker [DP73] line simplification algorithm.
But the points of the approximated function are restricted to be a subset of the input function. Suri [Sur86]
described an algorithm allowing arbitrary points. The basic idea is to compute a minimum link path in a simple
polygon using shortest path trees and visibility polygons. In order to achieve a runtime of O(n) methods of
[GHL+86] are used. However, this algorithm is rather complicated.

There are also some papers focusing on the approximation of piecewise linear functions. In general, these
algorithms are simpler because several characteristics of piecewise linear functions like x-monotonicity and
simplicity can be utilized. On the one hand, Tomek [Tom74] gave two heuristic algorithms for this special
problem. On the other hand, Imai and Iri [II87] have presented an algorithm running in O(n) which is optimal
in matters of the output complexity. The algorithm is based on the same idea as [Sur86] and utilizes an algorithm
for the convex hull problem.

1.4 Outline

We present the algorithm in [II87] and analyse the results. Furthermore, we study the advantages we can take of
using this algorithm approximating the travel-time functions. In particular we make the following contributions:

• We illustrate the basic idea of the algorithm in [II87]. Moreover, we address all elements of the algorithm
before formulating it and analysing the output. (Section 2)

• We give an overview of our experiments. On the one hand, we have implemented the algorithm of [II87]
in order to compute upper bounds and study the results of our implementation. On the other hand,
we generalize the algorithm. We compute piecewise linear approximations and show the benefit for our
application, time-dependent route planning. (Section 3)

2 Algorithmic Details

2.1 Idea

The basic idea of the algorithm in [II87] is to compute a minimum link path through a tunnel. In our case,
the tunnel is built by the function f itself and the upper error bound. Imagine a light source covering the
entry of the tunnel. This light source illuminates a part of the tunnel and divide it in a visible part and several
invisible parts. The intersection of boundaries of the visible part and the invisible part containing the exit of
the tunnel is the so-called window where the first point of the approximated function lies. The remaining points
are computed in the same way.

This idea is illustrated by Figure 2. In order to formalize it we need some definitions of different terms on
visibility.

Definition 1 (visibility):

point-to-point-visibility: Two points p and q are visible, if the line segment joining them lies inside P .

edge-to-point-visibility: A point p of a polygon P is visible from an edge e of P , if there exists a point q on e
which is visible from p.

edge-to-edge-visibility: An edge e′ is visible from an edge e, if there is a point on e′ which is visible from e.

5

2 Algorithmic Details

weak visibility polygon: The set of points in P which are visible from at least one point of the edge e is called
the weak visibility polygon from P concerning e and is denoted by V P (P, e).

Note: The visibility from e separates the polygon P into V P (P, e) and several other polygons invisible from e.

Definition 1 is visualized by Figure 2. A tunnel, which is a closed polygon P , with an imagined light source
covering the entry e of the tunnel is plotted. The weak visibility polygon V P (P, e) from the entry e of the
polygon P is shaded. Furthermore, the polygons invisible from e are denoted by P1, . . . , P5.

P1

P2

P3

P4

P5

V P (P, e)

e

Figure 2: This figure depicts the basic idea of the algorithm. It shows the tunnel, which is a polygon P , with
an imagined light source covering the entry e of the tunnel. This light source illuminates a part of the
tunnel, the so-called visible polygon V P (P, e), which is shaded. In this way the tunnel is partitioned
in V P (P, e) and several invisible parts P1, . . . , P5. The first window determined by the intersection of
boundaries of the visible polygon and the invisible part P5 containing the exit of the tunnel is drawn.
In the next step, we move the light source so that it covers this window. The remaining windows are
computed in the same way.

Algorithm 1 puts the described idea in practice. First of all, the polygon P1 which is the starting point of the
algorithm is initialized and the entry of the tunnel e1 is memorized (line 1-6). The condition in line 7 checks
whether the exit of the tunnel is visible from the current edge ei. If the exit is not visible, the next window
ei+1 is computed. Furthermore, the remaining polygon Pi+1 which is the base for the next step is determined
and a further point of the approximated function qi is appointed (line 8-11). If the exit of the tunnel is visible,
the last two points of the approximated function are computed (line 12-13).

6

2 Algorithmic Details

Algorithm 1: Basic idea

Input: function f defined by p1 = (x1, y1), p2 = (x2, y2), . . . , pn = (xn, yn), relative error bound ǫ
Output: approximated function q1, q2, . . . , qm
for j=1 to n do1

p−j ←− pj ; // lower boundary of tunnel2

p+j ←− (xj , (1 + ǫ)yj) ; // upper boundary of tunnel3

P1 ←− polygon p−1 p
−

2 . . . p
−

n p
+
n p

+
n−1 . . . p

+
1 ;4

e1 ←− [p+1 , p
−

1];5

i←− 1;6

while [p+n , p
−

n] is not visible from ei in polygon Pi do7

ei+1 ←− window from ei to [p+n , p
−

n] in polygon Pi;8

Pi+1 ←− polygon invisible from ei containing [p+n , p
−

n] in polygon Pi ;9

qi ←− point of intersection of the line containing ei+1 and the edge ei;10

i++;11

m←− i+ 1 ;12

find a point qm−1 on edge ei and a point qm on edge [p+n , p
−

n] which are visible from each other in polygon13

Pm−1 ;
return q1, . . . , qm14

In [II87] Imai and Iri show that Algorithm 1 solve the given problem. They give a proof for the following
theorem whereas they consider an absolute error bound.

Theorem 1. The polygonal line q1q2 . . . qm obtained by Algorithm 1 is an approximate polygonal line with
relative upper error bound ǫ having the minimum number of points.

2.2 Convex Hull

The crucial point of Algorithm 1 is to compute the windows efficiently. Of course, one possibility is to compute
the visibility polygons itself, but this leads to a runtime of O(mn log n) where m denotes the output complexity
and is rather slow. Hence, we use computational-geometric algorithms for the convex hull problem in order to
avoid computing the visibility polygons explicitly. Thereby we achieve a runtime of O(n).

Definition 2 (convex hull):

convex set: A set M ⊆ R
2 is convex, if for any two points p, q ∈M , and any 0 ≤ λ ≤ 1, λp+ (1 − λ)q ∈M .

convex hull: The convex hull CH(P) of a polygon P is the smallest convex set containing P .

For computing the convex hull we utilize an algorithm of Sklansky [Skl72]. Bykat [Byk78] has detected that
the algorithm does not always work. But Toussaint and Avis [TA82] have shown that Sklansky’s algorithm
works for a special class of simple polygons so-called weakly externally visible polygons. A polygonal chain like
the given function belongs to this class of simple polygons.

Definition 3 (visibility):

weak external visibility: A simple polygon P is called weakly externally visible, if for every point p on the
boundary of P there exists an infinite half-line starting at p in any direction which intersects P only in p.

Note: Every point on the boundary of P is visible from some “observation” point external to P . If a simple
polygon P is weakly externally visible, it can be completely surrounded by a circle.

Figure 3 illustrates Definition 3. It shows two polygons surrounded by a circle whereas the left one is not
weakly externally visible in contrast to the right one. On the left hand side, there is no “observation” point o
on the surrounding circle which is visible to p.

7

2 Algorithmic Details

p p

o

Figure 3: This figure depicts two similar polygons surrounded by a circle. The left one is not weakly externally
visible, because it exists no infinite half-line starting at p in any direction which intersects the polygon
only in p. On the right hand, the point p is visible from the “observation” point o on the surrounding
circle. The right polygon is weakly externally visible.

Algorithm 2: CH-Polygon

Input: vertices of polygon P p1p2 . . . pn in clockwise order
Output: convex hull of P

j ←− index of vertex with minimum y coordinate;1

k ←− j ;2

finished ←− false ;3

while not finished do4

S ←− C(p(k+1)mod n); // convexity indicator of vertex p(k+1)mod n5

if S > 0 then // p(k+1)mod n is a convex vertex6

if (k + 2)mod n == j then7

finished ←− true;8

else9

k++;10

else // p(k+1)mod n is a concave vertex11

delete(p(k+1)modn);12

if kmod n 6= j then13

k−−;14

else15

k++;16

return P ;17

The formulation of Algorithm 2 is based on [TA82]. The algorithm checks for each vertex successively whether
it is part of the convex hull or not. The convexity indicator of vertex p(k+1)mod n in line 5 specifies whether it
is about a right turn (convex vertex) or a left turn (concave vertex). It is defined as follows:

C(p(k+1) mod n) = (y(k+1) mod n − yk mod n)(x(k+2) mod n − x(k+1) mod n)

+ (xk mod n − x(k+1) mod n)(y(k+2) mod n − y(k+1) mod n)
(1)

The value of the convexity indicator is assigned to the variable S. The sign indicates whether the angle at
p(k+1)mod n is convex. If S > 0 the angle is convex whereas when S < 0 it is concave. If S = 0 the three points
pk mod n, p(k+1)mod n and p(k+2)mod n are collinear and the point p(k+1)mod n is definitely no vertex of the convex
hull of P .

8

2 Algorithmic Details

Figure 4 shows the result of Algorithm 2 applied to the weakly externally visible polygon of Figure 3. The
algorithm starts at point p6 and checks for each vertex of the polygon in clockwise order whether it is convex.
The points p4, p8 and p9 are deleted because they are concave vertices. The remaining vertices form the convex
hull of the given polygon.

p5

p6

p8

p4

p3

p2

p1

p9

p7

p10

p11

Figure 4: This figure presents the result of Algorithm 2 applied to the weakly externally visible polygon of
Figure 3. The algorithm starts at point p6 and checks for each vertex of the polygon in clockwise
order whether it is convex. The points p4, p8 and p9 are concave vertices. Hence, they are not part of
the dashed polygon which depicts the determined convex hull.

Toussaint and Avis [TA82] show the correctness of Algorithm 2 for weakly externally visible polygons. This
result is formulated in Theorem 2.

Theorem 2. Given a weakly externally visible polygon P ′, Algorithm 2 finds the convex hull of P ′.

2.3 Windows

As described in Algorithm 1 we iteratively compute windows in order to find the points of the approximated
function. Of course, it is possible to determine the windows by computing the visibility polygons explicitly. But
there are some geometric properties of windows concerning the convex hulls of the function itself and the upper
error bound which we utilize to compute the windows more efficiently. These properties are taken from [II87].

Definition 4 (window):

window: The window in P from an edge e to another edge e′ is defined as the intersection of boundaries of
V P (P, e) and the invisible polygon P ′ containing e′.

Let [p+, p−] be a window with p+ ∈ [p+i−1, p
+
i] and p− ∈ [p−j−1, p

−

j]. Let the polygon P ′ be built by the upper

boundary p+p+i p
+
i+1 . . . p

+
n and the lower boundary p−p−j p

−

j+1 . . . p
−

n . The goal is to determine the window from

edge [p+, p−] to [p+n , p
−

n] in P ′.
For a piecewise linear function g given by the polygonal line of u1u2 . . . uk with ui = (xi, yi) CH

+(u1 . . . uk)
denotes the convex hull of the region {(x, y)|y ≥ g(x), u1 ≤ x ≤ uk} and CH−(x1 . . . xk) denotes the convex
hull of the region {(x, y)|y ≤ g(x), x1 ≤ x ≤ xk}.

For three points u, v and w the angles ∠
+uvw and ∠

−uvw are defined as in Figure 5. The angle ∠
+uvw

identifies the angle between the edges [v, u] and [v, w] measured counterclockwise. The angle ∠
−uvw is defined

as the angle between the edges [v, u] and [v, w] measured clockwise.

9

2 Algorithmic Details

u

w

∠
+uvw

∠
−uvw

v

Figure 5: Definition of ∠
+uvw and ∠

−uvw

The following two lemmas concerning the correlation of convex hulls and windows are extracted from [II87].

Lemma 1. For k ≥ max{i, j}, the following three propositions are equivalent.

(i) [p+k , p
−

k] is visible from [p+, p−]

(ii) CH+(p+p+i p
+
i+1 . . . p

+
k) and CH−(p−p−j p

−

j+1 . . . p
−

k) have no common interior point (but they may touch
each other)

(iii) there are two separating lines (which coincide with each other in case the two convex hulls touch each other
at more than one point) of CH+(p+p+i p

+
i+1 . . . p

+
k) and CH−(p−p−j p

−

j+1 . . . p
−

k) each of which supports the

two convex hulls at points r+ and l− or at r− and l+, respectively.

Figure 6 visualize the introduced terms of Lemma 1. Depending on the edge [p+, p−] the convex hulls, the
supporting points and the separating lines [r+, l−] and [l+, r−] are plotted exemplarily.

r−

l−

r+

CH−

CH+

p+

p−

l+
=

Figure 6: This figure illustrates the introduced terms depending on the edge [p+, p−]. CH+ and CH− denote
the convex hulls and are depicted as shaded areas. r−, r+, l− and l+ identify the supporting points.
The two separating lines are dotted.

10

2 Algorithmic Details

Lemma 2. For k ≥ max{i, j}, let us suppose that CH+(p+p+i p
+
i+1 . . . p

+
k) and CH−(p−p−j p

−

j+1 . . . p
−

k) have no

common interior point and let r−, r+, l− and l+ be the four supporting points as defined in Lemma 1.
Then, we have

(i) if ∠
+p+k+1l

+r− ≥ π and ∠
−p−k+1l

−r+ ≥ π, then CH+(p+p+i p
+
i+1 . . . p

+
k+1) and CH−(p−p−j p

−

j+1 . . . p
−

k+1)
have no common interior point

(ii) if ∠
+p+k+1l

+r− < π, then CH+(p+p+i p
+
i+1 . . . p

+
k+1) and CH−(p−p−j p

−

j+1 . . . p
−

k+1) have a common interior

point, and the window is [r−, v] where v is the point of intersection of line l+r− and [p+k , p
+
k+1]

(iii) the proposition obtained by interchanging superscripts + and − in (ii)

2.4 Algorithm

Based on the summarised results in the previous subsections we now formulate the complete algorithm based
on [II87]. Algorithm 3 computes a piecewise linear function g : [x1, xn]→ R with minimum number of sampling
points and f(x) ≤ g(x) ≤ (1 + ǫ)f(x)∀x ∈ [x1, xn] for another given piecewise linear function f : [x1, xn] → R

and an upper error bound ǫ. Starting with p+ = p+1 and p− = p−1 we check for each further point pk whether
CH+(p+ . . . p+k) and CH−(p− . . . p−k) have a common interior point. If the convex hulls intersect, we determine
the window from [p+, p−] to [p+n , p

−

n] by using Lemma 2 and p+ and p− become the points of the window.
Furthermore, we utilize the separating lines to ascertain the first point of the approximated function. Then
we repeat these steps until [p+n , p

−

n] is visible from [p+, p−]. Finally, we identify the last two points of the
approximated function on the last two windows.

The update of the convex hulls is performed by line 13-18. The correctness of this step follows from the
correctness of Algorithm 2. The condition ∠

∗p∗i pt
∗(p) > π in line 15 of Algorithm 3 is equivalent to the

condition S > 0 in line 6 of Algorithm 2. Therefore, all conditions in Algorithm 3 whether an angle is smaller
or greater than π can be evaluated without utilizing any trigeometric function. We only have to identify the
position of one point to a line. This is similar to the convexity indicator specified in equation 1.

By utilizing Lemma 2 we check whether CH+ and CH− intersect or not. If CH+ and CH− have a common
interior point, we compute a further point of the approximated function and the resulting window (line 19-32).
After updating all variables, we continue with computing the next approximated point. If CH+ and CH−

have no common interior point, we need to update the supporting points and separating lines (line 33-37) and
proceed by extending the convex hulls by one further point of the tunnel. If the convex hulls cover the whole
functions, we define the two last points of the approximated function (line 38-40).

The correctness of Algorithm 3 results from the correctness of the presented results in the previous subsections
especially Algorithm 2 and Lemma 2. Because of the properties of the given function like x-monotonicity, the
algorithm obviously runs in O(n).

The following theorem summarizes the above results. It is derived from [II87] whereas Imai and Iri consider
the case of an absolute error bound.

Theorem 3. An approximate polygonal line p1p2 . . . pn with relative upper error bound ǫ with the minimum
number of points can be found in O(n).

11

2 Algorithmic Details

Algorithm 3: Approximate PWL-function

Input: function f defined by p1 = (x1, y1), p2 = (x2, y2), . . . , pn = (xn, yn), error bound ǫ
Output: approximated function q1, q2, . . . , qm
// Initialization

for j=1 to n do1

p−j ←− pj ;2

p+j ←− (xj , (1 + ǫ)yj);3

foreach ∗ ∈ {+,−} do4

p∗ ←− p∗1;5

l∗ ←− p∗1 ; // supporting points6

r∗ ←− p∗1;7

s∗(p∗1)←− p∗2 ; // right-adjacent point of p∗1 in CH∗8

t∗(p∗2)←− p∗1 ; // left-adjacent point of p∗2 in CH∗9

j ←− 1;10

nextWindow ←− false ;11

for i = 3 to n− 1 do12

// Updating the convex hulls

foreach ∗ ∈ {+,−} do13

p←− p∗i−1;14

while p 6= p∗ and ∠
∗p∗i pt

∗(p) > π do15

p←− t∗(p);16

s∗(p)←− p∗i ;17

t∗(p∗i)←− p;18

// Checking whether the convex hulls intersect or not

foreach (∗, ⋄) ∈ {(+,−), (−,+)} do19

if not nextWindow and ∠
∗p∗i l

∗r⋄ < π then20

qj ←− point of intersection of line l∗r⋄ and [p∗, p⋄] ;21

j + +;22

p⋄ ←− r⋄;23

p∗ ←− point of intersection of line l∗r⋄ and [p∗i−1, p
∗

i];24

s∗(p∗)←− p∗i ;25

t∗(p∗i)←− p
∗;26

r∗ ←− p∗i ;27

r⋄ ←− p⋄i ;28

l∗ ←− p∗;29

l⋄ ←− p⋄;30

while ∠
⋄l⋄r∗s⋄(l⋄) < π do l⋄ ←− s⋄(l⋄);31

nextWindow ←− true;32

// Updating the supporting points and separating lines

if not nextWindow then33

foreach (∗, ⋄) ∈ {(+,−), (−,+)} do34

if ∠
∗p∗i l

⋄r∗ < π then35

r∗ ←− p∗i ;36

while ∠
∗p∗i l

⋄s⋄(l⋄) < π do l⋄ ←− s⋄(l⋄);37

// Compute the two last approximated points

m←− j − 1;38

qm−1 ←− point of intersection of line l−r+ and [p+, p−] ;39

qm ←− point of intersection of line l−r+ and [p+n , p
−

n];40

return q1, . . . , qm;41

12

2 Algorithmic Details

2.5 Output: Upper Bound

As mentioned in Section 1 our goal is to minimize the number of sampling points of a given piecewise linear
function f : [x1, xn] → R. Algorithm 3 computes an upper bound g : [x1, xn] → R with g <= (1 + ǫ)f for a
given relative error bound ǫ. The number of sampling points is minimum restricted to the x-range between x1

and xn. Hence, the approximated function fulfils all constraints.
In Figure 7 and 8 we plot an example taken from our application. The function defines the travel-time for

a certain street section dependent from the moment of pulling into this section. The given function has 125
sampling points whereas many points lie on the lines. The determined upper bound has nine sampling points.
That means, seven windows are determined. These windows are plotted in Figure 7.

7

8

9

10

11

12

13

14

15

16

0 5 10 15 20 25

tr
av

el
-t

im
e

[m
in

]

moment of pulling into section [h]

Figure 7: This figure illustrates the result of Algorithm 3. We approximate a piecewise linear function with
125 sampling points taken from our application and plot the tunnel (dashed) with the determined
windows. The lower border of the tunnel is the given function which defines the travel-time for a
certain street section dependent from the moment of pulling into this section.

Figure 8 also shows the example with 125 sampling points. Compared to Figure 7 this figure illustrates the
approximated function with nine sampling points which is an upper bound of the given function.

13

3 Experiments

7

8

9

10

11

12

13

14

15

16

0 5 10 15 20 25

tr
av

el
-t

im
e

[m
in

]

moment of pulling into section [h]

Figure 8: Same as Figure 7 but the resultant piecewise linear approximated function instead of the windows is
plotted.

Furthermore, the given piecewise linear functions satisfy the FIFO-property. In our experiments Algorithm 3
always preserves this property on the computed upper bounds, but we do not have yet a proof for the following
Hypothesis 1.

Hypothesis 1. If the input function fulfils the FIFO-property, the approximated function, which is an upper
bound of the input function, also satisfy the FIFO-property.

3 Experiments

3.1 Environment

All experiments were conducted using one core of a Quad Core Intel Xeon E5345 Processor running at 2.33
GHz. The machine has 16 GB RAM and is running openSuSE version 10.3 with kernel 2.6.22.17 x86_64. The
programs used for the approximation (Section 3.3) were compiled using gcc version 4.2.1 with optimization level
3 whereas we used gcc version 4.2.3 for the programs evaluating the benefit for our application (Section 3.4).
The CPU was running in 64bit mode. This environment is the same as used in [BDSV09].

3.2 Instances

For our experiments described in the following sections, we used a real-world time-dependent road network of
Germany provided by PTV AG for scientific use. The initial point of our computation is a preprocessed time-
dependent contraction hierarchy of this graph. It has approximately 4.7 million nodes and 18.9 million edges.
Further information about time-dependent contraction hierarchies can be found in [BDSV09]. The network
reflects the traffic at midweek (Tuesday till Thursday) which leads to ≈ 12% time-dependent edges. That
means, the edge weights of 2 246 790 edges are given as periodic, piecewise linear functions instead of constants
specifying the time it takes to travel each edge by car. Figure 9 shows the cumulative distrubution function
(CDF) of the given travel-time functions’ number of sampling points which ranges between 4 and 8220. About
82% (99%) of the functions have less than 100 (1 000) points. In average each travel-time function has 88.7
sampling points.

14

3 Experiments

0

20

40

60

80

100

1 10 100 1000 10000

p
ro

b
a
b
il
it

y
d
en

si
ty

[%
]

points original function

Figure 9: Plot of the cumulative distribution function (CDF) of the given travel-time functions’ number of
sampling points. The y-axis shows the possibility that a function have less than the given number of
points.

The same network is also used in the experiments of [BDSV09]. Accordingly, the results are comparable.

3.3 Results - Computing Upper Bounds

In our experiments we approximate the travel-time functions of all given edges with more than two sampling
points. All time-dependent edges of the input graph fulfill this condition. We repeat this computation for
several relative upper error bounds. The results are presented in this section. In the following plots we only
consider a relative upper error bound of 0.01 and 0.1. Further plots with other relative upper error bounds
are depicted in the appendix section 6. The given numerical results contain all considered relative upper error
bounds.

Figure 10 shows the average runtime per given point over 100 runs depending on the input complexity. Most of
the values are arithmetic means because there are several travel-time functions with the same input complexity.
The measured runtime is not absolutely linear in terms of the input complexity. This behaviour dues probably
to memory operations.

15

3 Experiments

75

100

125

150

175

200

10 100 1000

ru
n
ti

m
e

[n
s]

/
p

o
in

t

points original function

eps=0.01
eps=0.1

Figure 10: This figure shows the runtime per point of the original function depending on the input complexity
for the relative upper error bounds 0.01 and 0.1.

Table 1 gives exact numerical results for several input complexities. For each considered relative upper error
bound the total runtime per given point is denoted.

n=10 n=100 n=500 n=1000 n=2502 n=5000 n=8220

0.010 166.0 ns 109.5 ns 96.2 ns 97.3 ns 95.3 ns 94.4 ns 96.0 ns
0.025 159.5 ns 102.7 ns 92.0 ns 94.7 ns 93.7 ns 88.9 ns 93.4 ns
0.050 149.0 ns 97.5 ns 89.3 ns 91.7 ns 89.2 ns 88.9 ns 94.1 ns
0.075 141.6 ns 95.1 ns 89.4 ns 91.1 ns 89.8 ns 90.2 ns 89.7 ns
0.100 139.8 ns 97.0 ns 89.1 ns 91.1 ns 89.1 ns 89.8 ns 85.6 ns

Table 1: Some explicit numerical results for easier comparison. For several relative upper error bounds and
different input complexities n the total runtime per point is indicated.

Table 2 shows for each relative upper error bound the maximum and the minimum value of the measured
runtime with the corresponding input complexities. The total runtime per point amounts between 49.6 ns and
914.1 ns.

min total runtime max total runtime

0.010 49.6 ns (10) 629.9 ns (20)
0.025 49.8 ns (10) 914.1 ns (12)
0.050 49.8 ns (10) 544.5 ns (8)
0.075 55.3 ns (10) 831.0 ns (13)
0.100 51.7 ns (10) 661.7 ns (41)

Table 2: Some explicit numerical results. For several relative upper error bounds the smallest and the greatest
value of the measured runtime per point are indicated. The number in brackets identify an input
complexity leading to this value. For minimum values the maximal corresponding input complexity is
mentioned. For maximum values the minimum corresponding input complexity is given.

16

3 Experiments

Except from the runtime we are also interested in the output complexity. In our experiments all approximated
functions have less than 72 sampling points. Figure 11 illustrates the ratio of the output complexity to the
input complexity. Most of the values of the output complexities are average values because several of the given
functions have the same input complexity.

0

5

10

15

20

25

30

35

40

45

10 100 1000

#
p

o
in

ts
a
p
p
ro

x
im

a
te

d
fu

n
ct

io
n

points original function

eps=0.01
eps=0.1

Figure 11: In this figure we plot the output complexity depending on the input complexity for an upper relative
error bound of 0.01 and 0.1 respectively.

Table 3 gives exact numerical results for several relative upper error bounds. For each considered input
complexity the average output complexity is denoted.

n=10 n=100 n=500 n=1000 n=2502 n=5000 n=8220

0.010 7.8 19.9 22.5 19.9 14.3 7.0 14.0
0.025 7.1 14.6 11.7 9.8 7.3 4.0 8.0
0.050 6.1 10.0 6.3 5.6 4.3 3.0 7.0
0.075 5.1 7.4 4.6 4.1 4.0 3.0 5.0
0.100 4.7 6.0 3.7 3.5 3.0 2.0 3.0

Table 3: Some explicit numerical results for easier comparison. For several relative upper error bounds and
different input complexities n the number of approximated sampling points is indicated.

Table 4 shows for each considered relative upper error bound the minimum and maximum value of the output
complexity. Furthermore, the corresponding input complexity are mentioned like described above. The output
complexity lies between 2 and 72.

17

3 Experiments

minimum maximum

0.010 2 (718) 72 (207)
0.025 2 (2446) 56 (367)
0.050 2 (5048) 40 (61)
0.075 2 (6027) 34 (36)
0.100 2 (7283) 32 (36)

Table 4: Some explicit numerical results for easier comparison. For several relative upper error bounds the
minimal and maximal output complexities are indicated. As in Table 2 the number in brackets identify
an input complexity leading to this result.

Furthermore, we also consider the overall complexity of the used graph. It has a total of 215 858 628 sampling
points as input. Table 5 gives some numerical results regarding the output complexity of the computed ap-
proximated graphs, the compression ratio and the saving for several relative upper error bounds ǫ. The output
complexity lies between 29 865 037 (ǫ=0.1) and 53 308 993 (ǫ=0.01). The compression ratio ranges between 4.05
(ǫ=0.01) and 7.23 (ǫ=0.1). The saving is between 75.30% (ǫ=0.01) and 86.16% (ǫ=0.1).

output complexity compression ratio saving [%]
0.000 215 858 628 1 0.00
0.010 53 308 993 4.05 75.30
0.025 45 986 640 4.69 78.70
0.050 38 375 260 5.62 82.22
0.075 33 018 612 6.54 84.70
0.100 29 865 037 7.23 86.16

Table 5: Compression ratio and saving for different relative upper error bounds.

3.4 Results - Benefit for Application

In order to analyse the benefit of approximations determined with the presented algorithm for our application
we generalize Algorithm 3. We compute approximations lying in a tunnel defined by a relative upper and lower
error bound ǫ. Hence, the approximated travel-times are always within a factor 1± ǫ from the true travel-time.
We perform 1000 random s-t queries whereas the source s, target t and the starting time are picked uniformly
at random. The option Stall-on-Demand was deactivated.

In the following, we study three aspects. We focus on space requirements, query times and exactness of the
performed queries.

Space Requirements

For several error bounds we measured the needed space per node and determined the space overhead. The
results are plotted in Figure 12.

18

3 Experiments

0

250

500

750

0
0.
00

1

0.
00

25

0.
00

5

0.
00

75
0.
01

0.
02

5
0.
05

0.
07

5
0.
1

sp
a
ce

ov
er

h
ea

d
[B

/
n
]

relative error bounds of approximation

Figure 12: This figure shows the determined space overhead for several error bounds. The difference between
the error bound ǫ=0 (no approximation) and the other values illustrates the saving.

In Table 6 the numerical results are indicated. The saving of space overhead in comparision to the original
time-dependent contraction hierarchy (ǫ = 0) is between 76.24% and 96.75%.

output complexity space overhead [B/n] saving [%]
0.0000 215 858 628 739.4 0
0.0010 64 191 034 175.7 76.24
0.0025 58 226 735 153.5 79.24
0.0050 53 272 119 135.1 81.73
0.0075 50 163 074 123.6 83.29
0.0100 47 816 427 114.9 84.46
0.0250 38 038 689 78.9 89.33
0.0500 29 357 222 46.8 93.67
0.0750 25 291 908 31.8 95.69
0.1000 23 120 681 24.1 96.75

Table 6: Some explicit numerical results for easier comparison. For several relative error bounds the output
complexity, space overhead and saving of space overhead are indicated.

Query Time

For the 1 000 random s-t queries we determine the average runtime for each approximated time-dependent
contraction hierarchy and compare it with the query time on the original contraction hierarchy. The experiments
show a reduction of the query times for error bounds ǫ ≤ 0.05. The results are presented in Figure 13.

19

3 Experiments

0

0.5

1

1.5

2

0
0.
00

1

0.
00

25

0.
00

5

0.
00

75
0.
01

0.
02

5
0.
05

0.
07

5
0.
1

q
u
er

y
ti

m
e

[m
s]

relative error bounds of approximation

Figure 13: This figure illustrates the average query time for several error bounds. The saving is the difference
between the value of ǫ=0 (no approximation) and the other values.

Table 7 gives the numerical results regarding query times. The query time profits from the approximation.
It is between 2.28 ms (original contraction hierarchy) and 1.84 ms (approximated contraction hierarchy with
error bound 0.05).

query time [ms]
0.0000 2.28
0.0010 2.01
0.0025 1.98
0.0050 1.95
0.0075 1.93
0.0100 1.91
0.0250 1.86
0.0500 1.84
0.0750 1.87
0.1000 1.94

Table 7: Some explicit numerical results for easier comparison. For several relative error bounds the average
query times are indicated.

Exactness

One goal of approximation is to preserve the most important characteristics as the geometrically run of the
given function. This is very important in order to obtain the exactness. In our experiments we measured the
differences between the computed travel-time and the exact travel-time. We determine relative and absolute
values of the errors. Figure 14 shows the maximum and average absolute error for each considered approximation
error bound. Figure 15 presents the same results for the relative error.

20

3 Experiments

0

500

1000

1500

2000

0.001 0.0025 0.005 0.0075 0.01 0.025 0.05 0.075 0.1

a
b
so

lu
te

er
ro

r
[s

]

relative error bounds of approximation

average
maximum

Figure 14: The absolute error of the performed queries.

0

2

4

6

8

0.001 0.0025 0.005 0.0075 0.01 0.025 0.05 0.075 0.1

re
la

ti
v
e

er
ro

r
[%

]

relative error bounds of approximation

average
maximum

Figure 15: Like Figure 14 but with relative instead of absolute error.

Table 8 shows the numerical results concerning the exactness of the performed random s-t queries. The error
increases rather fast with the error bound of the approximation. Consequently, we have to find a trade-off
between travel-time functions with less sampling points and exactness of queries.

21

5 Conclusion

max abs. err [s] max rel. err [%] avg abs. err [s] avg rel. err [%]
0.0010 15.788 0.074 2.829 0.006
0.0025 30.676 0.126 7.007 0.016
0.0050 75.659 0.320 14.577 0.036
0.0075 98.452 0.539 22.958 0.057
0.0100 129.407 0.608 31.146 0.077
0.0250 479.781 1.503 97.485 0.220
0.0500 821.673 3.307 214.098 0.470
0.0750 1 186.005 5.447 340.245 0.782
0.1000 1 847.365 7.449 474.786 1.151

Table 8: Some explicit numerical results for easier comparison. For several relative error bounds used for
approximation the different determined errors are indicated.

4 Future Work

We do not know yet whether the upper bounds computed by Algorithm 3 preserves the FIFO-property. In our
experiments the approximated function always fulfills the FIFO-property, if the input function satisfy it and we
compute upper bounds. The challenge is to proof Hypothesis 1 or to find a counter-example.

Furthermore, our experiments show that the FIFO-property is not preserved, if we compute piecewise linear
functions lying inside a corridor around the given functions. If an approximated function violates the FIFO-
property, it should be adjusted. This is currently not supported.

The current implementation only minimizes the output complexity. On the other hand, it is interesting to
minimize also the gap between given function and approximated function. The task is to find an approximated
function with minimum number of sampling points minimizing the error.

5 Conclusion

In this work, we computed upper bounds of piecewise linear functions. Therefore, we implemented a linear time
algorithm of Imai and Iri [II87]. In our experiments we approximated travel-time functions of a time-dependent
contraction hierarchy. We analyzed the results and study the benefit for our application, time-dependent route
planning.

The experiments show that in practice the runtime of the approximation algorithm is not absolutely linear
probably because of memory operations. But the complexity reduction is remarkable. Our application takes
advantage of less sampling points per edge. But of course the approximation of the travel-time functions leads
to a cognizable error. Consequently, we have to find a trade-off between less sampling points and exactness of
queries.

22

6 Appendix

6 Appendix

75

100

125

150

175

200

10 100 1000

ru
n
ti

m
e

[n
s]

/
p

o
in

t

points original function

eps=0.01
eps=0.025
eps=0.05

eps=0.075
eps=0.1

Figure 16: This figure shows as Figure 10 the runtime per point of the original function depending on the input
complexity for all considered relative upper error bounds.

0

5

10

15

20

25

30

35

40

45

10 100 1000

#
p

o
in

ts
a
p
p
ro

x
im

a
te

d
fu

n
ct

io
n

points original function

eps=0.01
eps=0.025
eps=0.05

eps=0.075
eps=0.1

Figure 17: In this figure we plot as in Figure 11 the output complexity depending on the input complexity.

23

References

References

[BDSV09] Veit Batz, Daniel Delling, Peter Sanders, and Christian Vetter. Time-Dependent Contraction
Hierarchies. In Proceedings of the 11th Workshop on Algorithm Engineering and Experiments
(ALENEX’09), pages 97–105. SIAM, 2009.

[Byk78] A. Bykat. Convex hull of a finite set of points in two dimensions. Inf. Process. Lett., 7(6):296–298,
1978.

[DP73] D.H. Douglas and T.K. Peucker. Algorithms for the reduction of the number of points required to
represent a digitized line or its caricature. Canadian Cartographer, 10:112–122, 1973.

[Gei08] R. Geisberger. Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks.
Diploma thesis, Fakultät für Informatik, Universität Karlsruhe (TH), 2008.

[GHL+86] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan. Linear time algorithms for visibility
and shortest path problems inside simple polygons. In SCG ’86: Proceedings of the second annual
symposium on Computational geometry, pages 1–13, New York, NY, USA, 1986. ACM.

[II87] H. Imai and M. Iri. An optimal algorithm for approximating a piecewise linear function. Journal of
information processing, 9(3):159–162, 1987.

[Skl72] J. Sklansky. Measuring concavity on a rectangular mosaic. IEEE Trans. Comput., 21(12):1355–1364,
1972.

[Sur86] S. Suri. A linear time algorithm with minimum link paths inside a simple polygon. Comput. Vision
Graph. Image Process., 35(1):99–110, 1986.

[TA82] G. T. Toussaint and D. Avis. On a convex hull algorithm for polygons and its application to
triangulation problems. Pattern Recognition, 15(1):23–29, 1982.

[Tom74] I. Tomek. Two algorithms for piecewise-linear continuous approximation of functions of one variable.
IEEE Trans. Comput., C-23(4):445–448, 1974.

24

	Introduction
	Motivation
	Problem Definition
	Related Work
	Outline

	Algorithmic Details
	Idea
	Convex Hull
	Windows
	Algorithm
	Output: Upper Bound

	Experiments
	Environment
	Instances
	Results - Computing Upper Bounds
	Results - Benefit for Application

	Future Work
	Conclusion
	Appendix

