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Abstract. We prove that longest common prefix (LCP) information can be stored in much less space
than previously known. More precisely, we show that in the presence of the text and the suffix array,
o(n) additional bits are sufficient to answer LCP-queries asymptotically in the same time that is needed
to retrieve an entry from the suffix array. This yields the smallest compressed suffix tree with sub-
logarithmic navigation time.

1 Introduction

Augmenting the suffix-array [7, 15] with an additional array holding the lengths of longest common
prefixes drastically increases its functionality [15, 1, 2]. Stored as a plain array, this so-called LCP-
array occupies ndlog ne bits for a text of length n. Sadakane [21] shows that less space is actually
needed, namely 2n+ o(n) bits if the suffix array is available at lookup time (see Sect. 2.3 for more
details). Due to the 2n-bit term, this data structure is nevertheless incompressible, even for highly
regular texts. As a simple example, suppose the text consists of only a’s. Then the suffix array can
be compressed to almost negligible space [20, 9, 3], while Sadakane’s LCP-array cannot.

Text regularity is usually measured in k-th order empirical entropy Hk [16]. We have 0 ≤ Hk ≤
log σ for a text on an alphabet of size σ, with Hk being “small” for compressible texts. In Sect.
3 of this article, we prove that the LCP-array can be stored in O

(
n

log logn

)
or nHk + o(n) bits

(depending on how the text itself is stored), while giving access to an arbitrary LCP-value in time
O(logδ n) (arbitrary constant 0 < δ < 1). This should be compared to other compressed or sampled
variants of the LCP-array. We are aware of three such methods:
1. Russo et al. [19] achieve nHk + o(n) space, but retrieval time at least O(log1+ε n), hence super-

logarithmic (arbitrary constant 0 < ε < 1).
2. Fischer et al. [5] achieve nHk(log 1

Hk
+ O(1)) bits, with retrieval time O(logβ n), again for any

constant 0 < β < 1. Although the space vanishes if Hk does, it is worse than our data structure.
3. Kärkkäinen et al. [12, Lemma 3] also employ the idea of “sampling” the LCP-array, but achieve

only amortized time bounds. Allowing the same space as for our data structure (O( n
log logn) bits

on top of the suffix array and the text), one would have to choose q = logn log log n in their
scheme, yielding super-logarithmic O(log n log logn) amortized retrieval time.

Finally, in Sect. 4, we apply our new representation of the LCP-array to suffix trees. This yields
the first compressed suffix tree with O(nHk) bits of space and sub-logarithmic navigation-time for
almost all operations.

2 Definitions and Previous Results

This section sketches some known data structures that we are going to make use of. Throughout
this article, we use the standard word-RAM model of computation, in which we have a computer
with word-width w, where log n = O(w). Fundamental arithmetic operations (addition, shifts,
multiplication, . . . ) on w-bit wide words can be computed in O(1) time.



T = C A C A A C C A C $

A =10 4 8 2 5 9 3 7 1 6
H = 0 0 1 2 2 0 1 2 3 1

I = 4 4 4 4 7 7 9 9 9 10

S =00001 1 1 1 0001 1 001 1 1 01

Fig. 1. Illustration to the succinct representation of the LCP-array.

2.1 Rank and Select on Binary Strings

Consider a bit-string S[1, n] of length n. We define the fundamental rank - and select-operations
on S as follows: rank1(S, i) gives the number of 1’s in the prefix S[1, i], and select1(S, i) gives
the position of the i’th 1 in S, reading S from left to right (1 ≤ i ≤ n). Operations rank0(S, i)
and select0(S, i) are defined similarly for 0-bits. There are data structures of size O(n log logn

logn ) bits
in addition to S that support O(1)-rank- and select-operations, respectively [11, 6]. For an easily
accessible exposition of these techniques, we refer the reader to the survey by Navarro and Mäkinen
[18, Sect. 6.1].

2.2 Suffix- and LCP-Arrays

The suffix array [7, 15] for a given text T of length n is an array A[1, n] of integers s.t. TA[i]..n <
TA[i+1]..n for all 1 ≤ i < n; i.e., A describes the lexicographic order of T ’s suffixes by “enumerating”
them from the lexicographically smallest to the largest. It follows from this definition that A is a
permutation of the numbers [1, n]. Take, for example, the string T = CACAACCAC$. Then A =
[10, 4, 8, 2, 5, 9, 3, 7, 1, 6]. Note that the suffix array is actually a “left-to-right” (i.e., alphabetical)
enumeration of the leaves in the suffix tree [10, Part II] for T$. As A stores n integers from the
range [1, n], it takes n words (or ndlog ne bits) to store A in uncompressed form. However, there are
also different variants of compressed suffix arrays; see again the survey by Navarro and Mäkinen
[18] for an overview of this field. In all cases, the time to access an arbitrary entry A[i] rises to
ω(1); we denote this time by tA. All current compressed suffix arrays have tA = Ω(logε n) in the
worst case (arbitrary constant 0 < ε ≤ 1), and there are indeed ones that achieve this time [9].

In the same way as suffix arrays store the leaves of the corresponding suffix tree, the LCP-array
captures information on the heights of the internal nodes as follows. Array H[1, n] is defined such
that H[i] holds the length of the longest common prefix of the lexicographically (i− 1)’st and i’th
smallest suffixes. In symbols, H[i] = max{k : TA[i−1]..A[i−1]+k−1 = TA[i]..A[i]+k−1} for all 1 < i ≤ n,
and H[1] = 0. For T = CACAACCAC$, H = [0, 0, 1, 2, 2, 0, 1, 2, 3, 1]. Kasai et al. [13] gave an
algorithm to compute H in O(n) time, and Manzini [17] adapted this algorithm to work in-place.1

2.3 2n + o(n)-Bit Representation of the LCP-Array

Let us now come to the description of the succinct representation of the LCP-array due to Sadakane
[21]. The key to his result is the fact that the LCP-values cannot decrease too much if listed in
1 Mäkinen [14, Fig. 3] gives another algorithm to compute H almost in-place.
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the order of the inverse suffix array A−1 (defined by A−1[i] = j iff A[j] = i), a fact first proved by
Kasai et al. [13, Thm. 1]:

Proposition 1. For all i > 1, H[A−1[i]] ≥ H[A−1[i− 1]]− 1. ut
Because H[A−1[i]] ≤ n− i+ 1 (the LCP-value cannot be longer than the length of the suffix!), this
implies that H[A−1[1]] + 1, H[A−1[2]] + 2, . . . ,H[A−1[n]] + n is an increasing sequence of integers
in the range [1, n]. Now this list can be encoded differentially : for all i = 1, 2, . . . , n, subsequently
write the difference I[i] := H[A−1[i]] − H[A−1[i − 1]] + 1 of neighboring elements in unary code
0I[i]1 into a bit-vector S, where we assume H[A−1[−1]] = 0. Here, 0x denotes the juxtaposition
of x zeros. See also Fig. 1. Combining this with the fact that the LCP-values are all less than n,
it is obvious that there are at most n zeros and exactly n ones in S. Further, if we prepare S for
constant-time rank0- and select1-queries, we can retrieve an entry from H by

H[i] = rank0(S, select1(S,A[i]))−A[i] . (1)

This is because the select1-statement gives the position where the encoding for H[A[i]] ends in H,
and the rank0-statement counts the sum of the I[j]’s for 1 ≤ j ≤ A[i]. So subtracting the value
A[i], which has been “artificially” added to the LCP-array, yields the correct value. See Fig. 1 for
an example. Because rank0(H, select1(H,x)) = select1(H,x)− x, we can rewrite (1) to

H[i] = select1(S,A[i])− 2A[i] , (2)

such that only one select-call has to be invoked.
This leads to

Proposition 2 (Succinct representation of LCP-arrays). The LCP-array for a text of length
n can be stored in 2n + O(n log logn

logn ) bits in addition to the suffix array, while being able to access
its elements in time O(tA). ut

3 Less Space, Same Time

The solution from Sect. 2.3 is admittedly elegant, but certainly leaves room for further improve-
ments. Because the bit-vector S stores the LCP-values in text order, we first have to convert the
position in A to the corresponding position in the text. Hence, the lookup time to H is dominated
by tA, the time needed to retrieve an element from from the compressed suffix array. Intuitively,
this means that we could take up to O(tA) time to answer the select-query, without slowing down
the whole lookup asymptotically. Although this is not exactly what we do, keeping this idea in
mind is helpful for the proof of the following theorem.

Theorem 1. Let T be a text of length n with O(1)-access to its characters. Then the LCP-array
for T can be stored in O( n

log logn) = o(n) bits in addition to T and to the suffix array, while being
able to access its elements in O(tA + logδ n) time (arbitrary constant 0 < δ ≤ 1).

Proof. We build on the solution from Sect. 2.3. Let j = A[i]. From (2), we compute H[i] as
select1(S, j) − 2j. Computing A[i] takes time tA. Thus, if we could answer the select-query in the
same time (using O( n

log logn) additional bits), we were done. We now describe a data structure
that achieves essentially this. Our description follows in most parts the solution due to Navarro
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Fig. 2. Illustration to the proof of Thm. 1. We know from the value of a that the first m = max(a− 2j, 0) characters
of Tj...n and Tj′...n match (here with common prefix α). At most s = logδ n further characters will match (here β),
until reaching a mismatch character x <lex y.

and Mäkinen [18, Sect. 6.1], except that it does not store sequence S and the lookup-table on the
deepest level.

We divide the range of arguments for select1 into subranges of size κ = blog2 nc, and store in
N [i] the answer to select1(S, iκ). This table N [1, dnκe] needs O(nκ log n) = O( n

logn) bits, and divides
S into blocks of different size, each containing κ 1’s (apart from the last).

A block is called long if it spans more than κ2 = Θ(log4 n) positions in S, and short otherwise.
For the long blocks, we store the answers to all select1-queries explicitly in a table P . Because
there are at most κ2 long blocks, P requires O

(
n
κ2 × κ× log n

)
= O(n/ log4 n × log2 n × log n) =

O (n/ log n) bits.
Short blocks contain κ 1-bits and span at most κ2 positions in S. We divide again their range

of arguments into sub-ranges of size λ = blog2 κc = Θ(log2 log n). In N ′[i], we store the answer
to select1(S, iλ), this time only relative to the beginning of the block where i occurs. Because the
values in N ′ are in the range [1, κ2], table N ′[1, dnλe] needs O

(
n
λ × log κ

)
= O (n/ log log n) bits.

Table N ′ divides the blocks into miniblocks, each containing λ 1-bits.
Miniblocks are called long if they span more than s = logδ n bits, and short otherwise. For

long miniblocks, we store again the answers to all select-queries explicitly in a table P ′, relative to
the beginning of the corresponding block. Because the miniblocks are contained in short blocks of
length ≤ κ2, the answer to such a select-query takes O(log κ) bits of space. Thus, the total space for
P ′ is O(n/s× λ× log κ) = O

(
n log3 logn

logδ n

)
bits. This concludes the description of our data structure

for select.
To answer a query select1(S, j), let a = select1(S, bj/λcλ) be the beginning of j’s mini-block in

S. Likewise, compute the beginning of the next mini-block as b = select1(S, bj/λcλ + λ). Now if
b − a > s, then the mini-block where i occurs is long, and we can look up the answer using our
precomputed tables N , N ′, P , and P ′. Otherwise, we return the value a as an approximation to
the actual value of select1(S, j).

We now use the text T to compute H[i] in additional O(logδ n) time. To this end, let j′ = A[i−1]
(see also Fig. 2). The unknown value H[i] equals the length of the longest common prefix of suffixes
Tj...n and Tj′...n, so we need to compare these suffixes. However, we do not have to compare letters
from scratch, because we already know that the first m = max(a−2j, 0) characters of these suffixes
match. So we start the comparison at Tj+m and Tj′+m, and compare as long as they match. Because
b − a ≤ s = logδ n, we will reach a mismatch after at most s character comparisons. Hence, the
additional time for the character comparisons is O(logδ n). ut
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If the text is not available for O(1) access, we have two options. First, we can always compress
it with recent methods [22, 4, 8] to nHk + o(n) space (which is within the space of all compressed
suffix arrays), while still guaranteeing O(1) random access to its characters:

Corollary 1. The LCP-array for a text of length n can be stored in nHk+O
(
n(k log σ+log logn)

logσ n
+ n

log logn

)
bits in addition to the suffix array (simultaneously over all k ∈ o(logσ n) for alphabet size σ), while
being able to access its elements in time O(tA + logδ n) (arbitrary constant 0 < δ ≤ 1). ut

The second option is to use the compressed suffix array itself to retrieve characters in O(tA)
time. This is either already provided by the compressed suffix array [20], or can be simulated [5].
This leads to

Corollary 2. Let A be a compressed suffix array for a text of length n with access time tA =
O(logε n). Then the LCP-array can be stored in o(n) bits in addition to the suffix array, while being
able to access its elements in time O(logε+δ n) (arbitrary constant 0 < δ ≤ 1). ut

Note in particular that all known compressed suffix arrays have worst-case lookup time Θ(logε n)
at the very best, so the requirements on tA in Cor. 2 are no restriction on its applicability. Further,
by choosing ε and δ such that ε+δ < 1, the time to access the LCP-values remains sub-logarithmic.

3.1 Improved Retrieval Time

Additional time could be saved in Thm. 1 and Cor. 1 by noting that a chunk of logσ n text characters
can be processed in O(1) time in the RAM-model for alphabet size σ. Hence, when comparing the
at most s = logδ n characters from suffixes Tj+m...n and Tj′+m...n (end of the proof of Thm. 1),
this could be done by processing at most s/ logσ n = log σ logδ−1 n such chunks. This is especially
interesting if the alphabet size is small; in particular, if σ = O

(
2(log1−δ n)

)
, the retrieval time

becomes constant.
The same improvement is possible for Kärkkäinen et al.’s solution [12], resulting inO(q log σ/ log n)

amortized retrieval time in their scheme.

4 A Small Entropy-Bounded Compressed Suffix Tree

The data structure from Thm. 1 is particularly appealing in the context of compressed suffix
trees. Fischer et al. [5] give a compressed suffix tree that has sub-logarithmic time for almost
all navigational operations. It is based on the compressed suffix array due to Grossi et al. [9], a
compressed LCP-array, and data structures for range minimum- and previous/next smaller value-
queries (RMQ and PNSV). Its size is nHk(2 log 1

Hk
+ 1

ε + O(1)) + o(n) bits, where the “ugly”
nHk(log 1

Hk
+O(1))-term comes from a compressed form of the LCP-array. If we replace this data

structure with our new representation, we get (using Cor. 2 for simplicity):

Theorem 2. A suffix tree can be stored in (1 + 1
ε )nHk + o(n) bits such that all operations can be

computed in sub-logarithmic time (except level ancestor queries, which have an additional O(log n)
penalty).

Proof. The space can be split into (1 + 1
ε )nHk + o(n) bits from the compressed suffix array [9],

additional o(n) bits from the LCP-array of Cor. 2, plus o(n) bits for the RMQ- and PNSV-queries.
The time bounds are obtained from the third column of Table 1 in [5]. ut
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Other trade-offs than those in Thm. 2 are possible, e.g., by taking different suffix arrays, or by
preferring the LCP-array from Cor. 1 over that of Cor. 2.

Acknowledgments

The author wishes to express his gratitude towards the anonymous reviewers, whose insightful
comments helped to improve the present material substantially.

References

1. M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with enhanced suffix arrays. J. Discrete
Algorithms, 2(1):53–86, 2004.

2. R. Cole, T. Kopelowitz, and M. Lewenstein. Suffix trays and suffix trists: Structures for faster text indexing. In
Proc. ICALP (Part I), volume 4051 of LNCS, pages 358–369. Springer, 2006.

3. P. Ferragina and G. Manzini. Indexing compressed text. J. ACM, 52(4):552–581, 2005.
4. P. Ferragina and R. Venturini. A simple storage scheme for strings achieving entropy bounds. Theor. Comput.

Sci., 372(1):115–121, 2007.
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14. V. Mäkinen. Compact suffix array — a space efficient full-text index. Fundamenta Informaticae, 56(1-2):191–210,

2003. Special Issue - Computing Patterns in Strings.
15. U. Manber and E. W. Myers. Suffix arrays: A new method for on-line string searches. SIAM J. Comput.,

22(5):935–948, 1993.
16. G. Manzini. An analysis of the Burrows-Wheeler transform. J. ACM, 48(3):407–430, 2001.
17. G. Manzini. Two space saving tricks for linear time lcp array computation. In Proc. Scandinavian Workshop on

Algorithm Theory (SWAT), volume 3111 of LNCS, pages 372–383. Springer, 2004.
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