
New Common Ancestor Problems in Trees and
Directed Acyclic Graphs

Johannes Fischer∗, Daniel H. Huson

Universität Tübingen, Center for Bioinformatics (ZBIT), Sand 14, D-72076 Tübingen

Abstract

We derive a new generalization of lowest common ancestors (LCAs) in dags,

called the lowest single common ancestor (LSCA). We show how to preprocess

a static dag in linear time such that subsequent LSCA-queries can be answered

in constant time. The size is linear in the number of nodes.

We also consider a “fuzzy” variant of LSCA that allows to compute a node

that is only an LSCA of a given percentage of the query nodes. The space and

construction time of our scheme for fuzzy LSCAs is linear, whereas the query

time has a sub-logarithmic slow-down. This “fuzzy” algorithm is also applicable

to LCAs in trees, with the same complexities.

Key words: Algorithms, Data Structures, Computational Biology

1. Introduction

The lowest common ancestor (LCA) of a set of nodes in a static tree is a

well-known concept [1] that arises in numerous computational tasks. The fact

that the LCA of any two nodes can be determined in constant time, after a

linear amount of preprocessing [9], is considered one of the classical results of

computer science.

The LCA of two nodes u and v in a tree T is defined as the deepest node

in T that is an ancestor of both u and v. This node, denote it by `, can be

∗Corresponding author.
Email addresses: fischer@informatik.uni-tuebingen.de (Johannes Fischer),

huson@informatik.uni-tuebingen.de (Daniel H. Huson)

Preprint submitted to Information Processing Letters September 14, 2009

interpreted in at least two ways:

1. ` is an ancestor of both u and v, but no descendant of ` has this property.

2. ` lies on all root-to-u- and on all root-to-v-path, but no descendant of `

has this property.

Both of the above points are natural interpretations of the term “lowest” in

the name “LCA,” and they coincide in the case of trees. However, this is not the

case for dags. As an example, look at nodes 3 and 4 in the dag of Fig. 1. Under

interpretation (1), nodes 1 and 2 satisfy the definition of LCA, whereas under

interpretation (2), only node 0 does. To distinguish between the two concepts

in dags, we refer to interpretation (1) as the lowest common ancestors of u and

v (in accordance to the literature), whereas interpretation (2) is referred to as

the lowest single common ancestor (LSCA) of u and v.

In dags, only the first of the above interpretations (LCA) has been consid-

ered so far, but not the second one (LSCA). This is surprising, as LSCA has

several interesting applications in computational biology, especially in “rooted

phylogenetic networks.” These are rooted, connected dags, whose leaves are

labeled by biological taxa. They are used as a generalization of phylogenetic

trees to model evolution in the presence of evolutionary events other than simple

mutation and speciation [12]. They give rise to several applications of LSCA.

Firstly, if the network N was obtained as the “cluster network” of a set of

rooted phylogenetic trees, all defined on the same set of taxa, then the LSCA of

any two species s1 and s2 gives the evolutionary closest (hypothetical) species

on which all input trees agree that it is an ancestor of s1 and s2. For the

biologist, this is much better to interpret than the (probably many) species

returned by LCA [12]. Secondly, if the network was obtained from trees on

different, but overlapping taxon sets, then LSCA makes it possible to compute

common ancestor relationships which are not represented in any of the input

trees alone. Thirdly, recent algorithms for drawing rooted phylogenetic networks

use a variant of LSCA to draw the network [10].

2

0

21

3 4 5 6

7

8 9

Figure 1: A directed acyclic graph G.

1 2 3 4

0

5 6 8

7 9

Figure 2: The LSA-tree TG of the dag in Fig. 1.

3

1.1. Our Results

We propose to use LSCA instead of LCA. The first contribution of this

article is summarized in the following theorem.

Theorem 1. A static dag can be preprocessed in optimal O(n+m) time into a

data structure of size O(n) such that subsequent LSCA-queries can be answered

in constant time.

This should be directly compared to the LCA-schemes in dags [3, 4, 6, 7,

14, 15], which have at least three computational drawbacks:

1. The preprocessing time is ω(n2).

2. In order to answer LCA-queries in optimal time, no better solutions exist

than storing the answers to all
(
n
2

)
queries explicitly in Ω(n2) space.

3. The only way to reduce the O(n) output-size of a single LCA-query is

to return an arbitrary member of the set of all LCAs (called representa-

tive LCA in the literature). However, this is not necessarily one with an

additional useful property (such as minimal distance to the query nodes).

A possible objection against LSCA is that it is overly conservative, as the

LSCA will always be an ancestor of any LCA. To account for this, in Sect. 4

we will allow for some kind of “fuzziness” by considering a variant of LSCA

that requires to compute a node which lies only on a certain percentage of all

root-to-W -paths, if W is the set of nodes for which the LSCA is computed.

Theorem 2. A static tree or dag with n vertices and m edges can be pre-

processed in O(n + m) time such that fuzzy-LSCA-queries of the form “re-

turn the deepest node that lies on at least k root-to-W -paths” can be answered

in O(min{|W | log n/ log log n, n}) time, for any subset of nodes W , and any

k > |W |/2.

We emphasize that parameter k is specified only at query time, and must

not be given to the preprocessing algorithm. An application where fuzziness is

desired comes from metagenomics, where a main computational task is “tax-

onomical binning”: given a set of environmental DNA sequences of unknown

4

taxonomical origin, assign each sequence to some node in a taxonomical tree or

network, where the leaves represent different species and internal nodes repre-

sent higher order taxa such as Bacteria, Proteobacteria, Alpha-Proteobacteria

etc. [11]. To bin a DNA sequence d, the sequence is first compared against a

database of reference sequences to obtain a set of species W that have a segment

of DNA that closely matches the sequence d. The LSCA is then computed and

the read d is then assigned to the taxon associated with that node. However,

due to outlier matches this could result in assigning a DNA sequence d to an

overly high level taxon near the root of the taxonomy. To obtain a more specific

assignment or “prediction” that is insensitive to outliers, one could replace the

LSCA computation by the fuzzy LSCA computation to determine the LSCA of

90% of the matched species, say.

1.2. Outline

Having presented the necessary definitions and previous results in the fol-

lowing section, Sect. 3 and 4 are devoted to prove Thm. 1 and 2, respectively.

2. Definitions and Previous Results

Let G = (V,E) denote a connected dag with vertices V and edges E. Let

n = |V | and m = |E|. We assume that G has a unique source-node (a node

with in-degree 0) which we denote by ⊥. If this is not the case, we add a new

(virtual) super-root to V which is connected to all (original) source nodes of G.

A parent node of v ∈ V is any node w such (w, v) ∈ E. By parents(v) we denote

the set of all parent nodes of v. A tree node is a node v with |parents(v)| ≤ 1.

For trees, we have the well-known concept of lowest common ancestors [1].

Definition 1. Given two nodes v and w in a tree, their lowest common ancestor

lcaT (v, w) is the node of maximum depth that is an ancestor of both v and w.

As mentioned in the introduction, a static tree T can be preprocessed in

linear time such that subsequent LCA-queries for a set of two nodes can be

answered in constant time. This implies that the LCA of k nodes can be found in

5

O(k) time, where the LCA for a set is defined inductively as lcaT (v1, . . . , vk) =

lcaT (v1, lcaT (v2, . . . , vk)) for k ≥ 3. For the dynamic case, we have:

Fact 1 ([8]). An n-node tree can be maintained dynamically such that starting

with the empty tree, a sequence of n leaf additions, interspersed with m LCA-

computations, can be processed in O(n+m) time and O(n) space.

Fact 2 ([2]). A rooted tree on n nodes can be stored in O(n) space such that

each of the following operations can be processed in O(log n/ log log n) time:

• mark(v)/unmark(v): mark or unmark node v.

• lma(v): return the lowest marked ancestor of v.

Note that the data structure from Fact 2 is not fully dynamic, as we require

the tree topology be static.

3. A Preprocessing Scheme for Lowest Single Common Ancestors

Definition 2. Let v, w ∈ V be two nodes in G. Then the lowest single common

ancestor lscaG(v, w) of v and w is the unique node ` that lies on all paths from

⊥ to v and on all paths from ⊥ to w, but no descendant of ` has this property.

In the special case of trees the notions of lowest single common ancestors

and lowest common ancestors coincide, lcaT (v, w) = lscaT (v, w).

We remark that node ` in Def. 2 is well-defined, because if there are multiple

nodes `i with the property that all paths from ⊥ to v or w go through `i, these

nodes must be ordered by the ancestor-relationship; hence, the lowest such node

is unique. As with LCAs, the definition of LSCAs can be extended beyond pairs

of nodes by setting lscaG(w1, . . . , wk) = lscaG(w1, lscaG(w2, · · · , wk)).

Definition 3. Let v 6=⊥ be a node in G. The lowest single ancestor lsaG(v)

of v is the deepest node ` 6= v that lies on all all paths from ⊥ to v.

Note that lsaG(v) is equal to the unique parent of v if v is a tree node in

G. We can now define the LSA-tree of a dag G [12].

6

Definition 4. The LSA-tree TG of G = (V,E) is defined to have vertices V ,

and its edges are defined such that the parent node of v 6=⊥ is given by lsaG(v).

It follows immediately from the definition of LSA that this yields a well-

defined tree. See Fig. 2 for an example.

The next lemma will be fundamental to our scheme, as it gives the desired

connection between LSCAs in G and LCAs in TG.

Lemma 3. Let G be a dag and TG its corresponding LSA-tree. Further, let

v, w ∈ V be two arbitrary nodes in G. Then lscaG(v, w) = lcaTG
(v, w).

Proof. Let ` = lcaTG
(v, w). We need to show that (1) ` lies on all paths

from ⊥ to v or w in G, and (2) no descendant of ` has property (1).

Let ` = u0 → u1 → · · · → ux = v be the (unique) path from ` to v in TG.

By the definition of LSA, ui−1 = lsaG(ui) lies on all paths from ⊥ to ui for all

0 < i ≤ x, so we see that ` lies on all paths from ⊥ to v. As the same is true

for w, we get (1).

For proving (2), assume for the sake of contradiction that there is a descen-

dant `′ of ` with property (1). Then `′ must lie on the path from ` to v (or w)

in TG, for otherwise `′ would not lie on all paths from ⊥ to v (or w) in G. But

this contradicts the fact that ` is the lowest node in TG that is an ancestor of

both v and w.

In essence, Lemma 3 implies that all we have to do for constant-time LSCAs

on G is to compute G’s LSA-tree TG and prepare it for constant-time LCA-

queries. The next lemma suggests how the LSA-tree can be computed efficiently.

Lemma 4. For any node v 6=⊥, lsaG(v) = lscaG(parentsG(v)).

Proof. Let P = parentsG(v). First note that all paths from ⊥ to v must

go through some p ∈ P and hence through ` = lscaG(P). For the sake of

contradiction, assume there is a descendant `′ of ` such that `′ = lsaG(v).

Because v 6=⊥, there must be a non-empty path π from ` to some p ∈ P which

does not go through `′, for otherwise ` would not be the LSCA of P . Adding

7

v to the end of π gives a path π′ from ` to v which does not go through `′, a

contradiction. We thus conclude that ` is the LSA of v.

Combining Lemmas 3 and 4, we see that lsaG(v) = lcaTG
(parents(v)). We

can thus formulate the construction algorithm for the LSA-tree as follows. The

idea is to build the LSA-tree in a top-down manner, as suggested by Lemma 4.

1. In a depth-first traversal of G, compute a topological sort L of G.

2. Initialize TG to be the empty tree. TG will be stored using the dynamic

data structure for O(1)-LCAs from Fact 1.

3. For all v ∈ V in the order of L: compute ` = lcaTG
(parents(v)) as the

LSA of v, and add v to TG as the child of `.

Due to the order in which the vertices in G are processed, when visiting a

node v in step 3, all nodes from parents(v) have already been added to TG, and

hence the operation lcaTG
(parents(v)) yields the correct result.

Let us now analyze the time complexity of the above algorithm. Steps 1–2

take O(n + m) time in total. In each iteration of the loop in step 3, the time

needed is O(|parents(v)|). Because each node in V is visited exactly once, the

overall time for step 3 is O(n+m). This finishes the proof of Thm. 1

4. Fuzzy Lowest Common Ancestors

We now come to the problem of computing fuzzy lowest common ancestors

in a static rooted tree T = (V,E) with n nodes. As LSCA-queries are inter-

nally reduced to LCA-queries in the corresponding LSA-tree (see the previous

section), this also captures the problem of computing fuzzy LSCAs in dags, and

hence proves Thm. 2.

Definition 5. Let T be a tree and let W denote an arbitrary set of nodes from

T . Further, let k be an integer with |W |/2 < k ≤ |W |. The fuzzy lowest

common ancestor of W w.r.t. k is defined as the deepest node ` in T that is an

ancestor of at least k nodes v ∈W . This node ` is denoted by flcaT (W,k).

Throughout this section, let Tv denote the subtree of T rooted at v ∈ V .

8

4.1. A Naive Solution

First, find the true LCA ` of all nodes in W in O(|W |) time. Then, in a

depth-first traversal of T`, for each node v compute a number α(v,W), where

α(v,W) counts the number of nodes from W in Tv, α(v,W) = |W ∩ V (Tv)|.

The lowest node with α(v) ≥ k is the node flcaT (W,k).

The problem with this approach is that in the worst case, the size of T` is

O(n) — thus, answering flca-queries cannot be bounded better than O(n),

and the whole machinery used for constant-time (true) LCAs could have been

avoided in the first place. We overcome this problem in the following section.

4.2. A Better Solution

The idea of an improved solution is to apply the naive algorithm from Sect.

4.1 to a restricted subtree of Tlca(W).

Definition 6. The LCA-skeleton-tree T lca
W of W ⊆ V is defined as follows.

Its vertices V ′ ⊆ V are defined such that v ∈ V ′ iff ∃x, y ∈ W such that

v = lcaT (x, y). Its edges E′ are defined such that (v, w) ∈ E′ iff the unique

path from v to w in T contains no nodes in V ′ other than v and w.

Note that the number of nodes in T lca
W is Θ(|W |). The LCA-skeleton-tree

is also called “the subtree of T induced by W” [5]. Because α(·,W) can only

change at nodes that are an LCA of two nodes x, y ∈ W , T lca
W contains all

candidate nodes for flcaT (W). Hence, it is enough to process T lca
W with the

naive algorithm from Sect. 4.1 in order to answer flcaT (W).

4.2.1. Building the LCA-Skeleton-Tree

It remains to show how to compute the LCA-skeleton-tree efficiently. Despite

extensive research we could not find such an algorithm in the literature, although

the concept of the LCA-skeleton-tree seems quite natural.

Algorithm 1 processes W element-wise and maintains the property that S is

the LCA-skeleton-tree for the subset of W that has been processed so far. The

variable ` always points to the root of S. We assume that T is preprocessed

9

Algorithm 1: Construction of the LCA-skeleton-tree T lca
W of W in T .

Let w1 ∈W be arbitrary. Set `← w1. Initialize S with leaf w1. Mark w1.1

foreach v ∈W \ {w1} do2

if v is not marked then {otherwise nothing to do}3

Add v to S and mark v. Compute `′ ← lcaT (`, v).4

if `′ 6= ` then5

Add `′ and edges (`′, `) and (`′, v) to S. Mark `′. Set `← `′.6

else7

Compute m← lmaT (v).8

Let m′ be the child of m (in T) on the path from m to v.9

if there is an edge (m,w) in S s.th. w ∈ Tm′ then10

Compute x← lcaT (v, w).11

Delete (m,w) from S. Add (m,x) and (x,w) to S. Mark x.12

if x 6= v then add (x, v) to S.13

else14

Add (m, v) to S.15

Unmark all marked nodes in T .16

return S17

for marked-ancestor-queries with the data structure from Fact 2. During the

construction, the marked nodes in T are exactly those nodes that are in S.

The aim of the outer for-loop (lines 2–16), where all v ∈W are successively

inserted into S, is to make sure that lca(v, w) is present in S for all nodes w

that are already in S. In line 3, we first calculate the LCA `′ of S’s root ` and

the new element v. The easy case is when `′ is different from `, because then `′

will be the new root of S (lines 5–6), and lca(v, w) = `′ for all nodes w that are

already in S. Otherwise, we have to find out if there is an edge in S that has to

be broken up by lca(v, w) for some node w already in S. To this end, we first

compute the nearest (i.e., lowest) ancestor m of v that is already present in S

by a marked ancestor query (line 8), and then check if there is an outgoing edge

10

e = (m,w) from m that points “in the direction of v.” Note that there can only

be one such edge, for otherwise m would not be the nearest ancestor of v in S.

If e exists, we know that x = lca(v, w) breaks up e into (m,x) and (x,w), and

that v must be added as a child of x (lines 10–13). If there is no such edge e, v

is simply added to S as a child of m (line 15).

4.2.2. Implementation Details

Two implementation details are in order at this point. The first is on line

9, where we need to find the child m′ of m that lies on the path from m to v,

without looking at all outgoing edges of m. This can be accomplished if we use

the constant time LCA-algorithm presented by Jansson et al. [13], and execute

lcaT (m, v). Since v is in Tm, the result of the LCA-query will be m itself.

However, inspecting the proof of Lemma 3.2 in [13], we see that computing

lcaT (m, v) is actually done by first finding the child m′ of m that is on the

path to v, and then moving to the parent of m′. Hence, we can find the correct

child m′ in constant time.

The second detail is on finding the (unique) edge (m,w) in line 10. This can

be accomplished by coupling all edges (v, w) in S to the edge (v, w′) in T , such

that w′ is the child of v that is on the path from v to w. Using the mechanism

explained in the previous paragraph, w′ can be found in constant time. Hence,

if each edge added to S is coupled with its corresponding edge in T , then the

edge (m,w) can be found in constant time by looking at the coupled edge of

(m,m′), where m′ is the node computed in line 9. Naturally, all edges from S

need to be uncoupled once the computation of the LCA-skeleton-tree is done.

Observe that all operations in Alg. 1 can be implemented in O(1) time,

except marking the nodes and finding the LMA that take O(log n/ log log n)

time each. As each node in S is marked/unmarked exactly once and the size of

S is O(|W |), Thm. 2 follows.

11

5. Summary

We have introduced two new common ancestors operations in trees and

dags, and given data structures for efficient query answering. This way, we have

introduced the first sound definition of lowest common ancestors in dags (called

LSCA) that allows for a linear preprocessing scheme with constant query time

(Thm. 1). In applications where LSCAs are too restrictive one can use a relaxed

version called fuzzy LSCA (Thm. 2).

Acknowledgments

We thank Regula Rupp for a fruitful discussion on this subject.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. On finding lowest common

ancestors in trees. SIAM J. Comput., 5(1):115–132, 1976.

[2] S. Alstrup, T. Husfeldt, and T. Rauhe. Marked ancestor problems. In Proc.

FOCS, pages 534–543. IEEE Computer Society, 1998.

[3] M. Baumgart, S. Eckhardt, J. Griebsch, S. Kosub, and J. Nowak. All-pairs

ancestor problems in weighted dags. In Proc. ESCAPE, volume 4614 of

LNCS, pages 282–293. Springer, 2007.

[4] M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and

P. Sumazin. Lowest common ancestors in trees and directed acyclic graphs.

J. Algorithms, 57(2):75–94, 2005.

[5] R. Cole, M. Farach-Colton, R. Hariharan, T. M. Przytycka, and M. Thorup.

An O(n log n) algorithm for the maximum agreement subtree problem for

binary trees. SIAM J. Comput., 30(5):1385–1404, 2000.

[6] A. Czumaj, M. Kowaluk, and A. Lingas. Faster algorithms for finding

lowest common ancestors in directed acyclic graphs. Theor. Comput. Sci.,

380(1–2):37–46, 2007.

12

[7] S. Eckhardt, A. M. Mühling, and J. Nowak. Fast lowest common ancestor

computations in dags. In Proc. ESA, volume 4698 of LNCS, pages 705–716.

Springer, 2007.

[8] H. N. Gabow. Data structures for weighted matching and nearest common

ancestors with linking. In Proc. SODA, pages 434–443. ACM/SIAM, 1990.

[9] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common

ancestors. SIAM J. Comput., 13(2):338–355, 1984.

[10] D. H. Huson. Drawing rooted phylogenetic networks. IEEE/ACM Trans-

actions in Computational Biology and Bioinformatics, 2008. (in press).

[11] D. H. Huson, A. F. Auch, J. Qi, and S. C. Schuster. MEGAN analysis of

metagenomic data. Genome Res., 17(3):377–386, 2007.

[12] D. H. Huson and R. Rupp. Summarizing multiple gene trees using cluster

networks. In Proc. WABI, volume 5251 of LNCS, pages 296–305. Springer,

2008.

[13] J. Jansson, K. Sadakane, and W.-K. Sung. Ultra-succinct representation

of ordered trees. In Proc. SODA, pages 575–584. ACM/SIAM, 2007.

[14] M. Kowaluk and A. Lingas. Unique lowest common ancestors in dags are

almost as easy as matrix multiplication. In Proc. ESA, volume 4698 of

LNCS, pages 265–274. Springer, 2007.

[15] M. Kowaluk, A. Lingas, and J. Nowak. A path cover technique for LCAs

in dags. In Proc. SWAT, volume 5124 of LNCS, pages 222–233. Springer,

2008.

13

