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Abstract

We propose new data structures for navigation in sequences of balanced parentheses, a standard tool for
representing compressed trees. The most striking property of our approach is that it shares most of its internal
data structures for all operations. This is reflected in a large reduction of space, and also in faster navigation
times. We exhibit these advantages on two examples: succinct range minimum queries and compressed suffix
trees. Our data structures are incorporated into a ready-to-use C++-library for succinct data structures.

I. INTRODUCTION

Sequences of balanced parentheses are at the core of all tree-based compressed data structures [1]–[4].
They are used to describe the topology of an ordered (or binary) tree in a succinct manner, namely using
2n bits for an n-node tree [5], [6]. In order to simulate navigation in the represented tree, a lot of effort
has been made to support more and more complex operations: subtree-size, depth, parent, and sibling
are among the simpler ones; level ancestor queries or the i-th child operation among the more difficult
ones. In all cases, o(n) bits on top of the 2n from the sequence suffice to carry out the operations in
O(1) time [3], [6], [7].

A fundamental operation in many applications is that of computing the lowest common ancestor (LCA
for short) of two given nodes. Up to now, for constant-time LCAs [2] one has to employ specialized
data structures for range minimum queries (RMQs) over bit-arrays, similar to the famous LCA-solution
in non-succinct trees [8]. The disadvantage of this RMQ-based approach is that is uses entirely new
data structures, while the other operations can be implemented to share the most space-consuming parts
[7].

We resolve this problem by showing that O(1)-LCAs can also be implemented by sharing the space
with the other operations. The key idea is a new operation called range restricted enclose, whose
definition is analogous to operations already present in succinct trees (enclose, findclose, findopen). Our
work is quite similar in spirit to a recent development due to Sadakane and Navarro [9], who also noted
that there is a need for re-using data structures.

This article is organized as follows. Having introduced the necessary background (Sect. II), in Sect.
III we describe our theoretical contributions (solution to range restricted enclose). A large part of our
work, however, is devoted to practical applications: in Sect. IV, we show that our new data structure
leads to significant improvements (in terms of both time and space) in state-of-the-art schemes for
RMQs, attesting again the strong connection between RMQs and LCAs. Finally, in Sect. V, we apply
our solution to compressed suffix trees, and show again that we can improve on time and space.

We point out that all our data structures have been implemented and included in the first author’s
Succinct Data Structure Library (sdsl), available at http://www.uni-ulm.de/in/theo/research/sdsl.



II. DEFINITIONS AND PREVIOUS RESULTS

We use the standard word-RAM model of computation, where we have a computer with word-width
w, where log n = O(w) for problem size n. Fundamental arithmetic operations on w-bit wide words
can be computed in O(1) time.

A. Rank and Select on Binary Strings
Consider a bit-string S[0, n− 1] of length n. We define the fundamental rank- and select-operations

on S as follows: rank1(S, i) gives the number of 1’s in the prefix S[0, i − 1], and select1(S, i) gives
the position of the i’th 1 in S, reading S from left to right (1 ≤ i ≤ n). Operations rank0(S, i)
and select0(S, i) are defined similarly for 0-bits. There are data structures of size O(n log log n

log n
) bits in

addition to S that support O(1)-rank- and select-operations [10]. If the number of ones in S is small,
namely O(n/ log n), we can store S in O(n log log n

log n
) bits of space, including structures for O(1)-rank-

and select-operations [11].

B. Succinct Tree Representations
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Figure 1. An ordered tree.

A string S[0, 2n − 1] of n opening parentheses ‘(’ and n closing
parentheses ‘)’ is called balanced if in each prefix S[0, i], 0 ≤ i <
2n, the number of ‘)’s is no more than the number of ‘(’s. Such
balanced sequences can be used in at least two different ways to
represent an ordered tree T on n nodes succinctly in 2n bits: BPS
(“balanced parentheses sequence”) and DFUDS (“depth first unary
degree sequence”). The BPS is obtained by a depth-first traversal of
T , writing an opening parenthesis ’(’ when visiting a node for the
first time, and a closing parenthesis ’)’ when all of its subtrees have
been traversed. Thus, a node v is represented by a pair of matching parentheses (. . . ). As an example, the
tree in Fig. 1 has BPS ((()(()()))()(()())), and the pair of parentheses representing node 2 is underlined.

For DFUDS, we also visit the nodes in depth-first order, and encode a node with out-degree w as
‘(w)’. If an initial open parenthesis ’(’ is prepended, then the resulting sequence is also balanced. For
example, the tree in Fig. 1 has DFUDS (((()(())(())))(())), again with node 2 underlined.

C. Navigation in Succinct Trees
In order to navigate in succinctly represented trees, we need additional data structures on top of the

2n bits from Sect. II-B. It is known [6] that all basic navigational operations (parent, firstChild, sibling,
depth, isLeaf, isAncestor, etc.) can be expressed by the operations from the top half of Tbl. I. We have
already seen in Sect. II-A that ranka and selecta (and hence also excess) can be solved with O(n log log n

log n
)

additional bits of space (interpreting a ’(’ as a ’1’ and a ’)’ as a ’0’). For operations find open, find close,
and enclose, Geary et al. [7] give a neat recursive data structure which we are going to describe next
using the example of the find close-operation; the solutions to find open and enclose are similar.

Let S be the sequence of n balanced parentheses pairs. First, S is subdivided into blocks of fixed size
s = 1

2
log n. Let β(i) = bi/sc denote the block of i. We say that there are two kinds of parentheses: near

and far. The matching parenthesis µ(i) of a near parenthesis i lies in the same block as i, β(i) = β(µ(i)).
All other parentheses are called far. To answer find close for near parentheses, we construct a look-up
table of size 2s×s× log s = o(n) bits (number of different blocks × number of query positions × space
for answers). This table can also be used to identify far parentheses, by storing a special value ⊥ as the
answer if there is no near parenthesis. Unfortunately, we cannot store all answers for far parentheses,



Table I
FUNDAMENTAL OPERATIONS ON A SEQUENCE S[0, 2n− 1] OF BALANCED PARENTHESES.

operation description
ranka(S, i) Returns the number of symbol a ∈ {(, )} in S[0..i− 1].
selecta(S, i) Returns the index of the ith a ∈ {(, )} in S (counting starts at 1).
excess(S, i) Returns the number of opening parentheses minus the number of closing parentheses in S[0, i].
find close(S, i) If parenthesis i is opening, find close(i) returns the position of the matching closing parentheses, defined as

min{j | j > i ∧ excess(j) = excess(i)− 1}.
find open(S, i) If parenthesis i is closing, find open(i) returns the position of the matching opening parentheses, defined as

max{j | j < i ∧ excess(j) = excess(i) + 1}.
µ(S, i) Combines the last two operations. If i is opening, µ(i) = find close(i). Otherwise, µ(i) = find open(i).
enclose(S, i) Let i be opening. enclose(i) returns the opening parenthesis of the pair (j, µ(j)) that encloses (i, µ(i)) most

tightly, or ⊥ if no such pair exists.
double enclose(S, i, j) Let i and j be opening parentheses of two parentheses pairs (i, µ(i)) and (j, µ(j)) with µ(i) < j.

double enclose returns the opening parenthesis of the pair (k, µ(k)) that encloses (i, µ(i)) and (j, µ(j))
most tightly, or ⊥ if no such pair exists.

rr enclose(S, i, j) Let i and j be opening parentheses of two parenthesis pairs (i, µ(i)) and (j, µ(j)) with µ(i) < j. The
range restricted enclose operation rr enclose returns the opening parenthesis of the pair (k, µ(k)) with
k = min{` > µ(i) | (`, µ(`)) encloses (j, µ(j))}, or ⊥ if no such pair exists.

as there can be Θ(n) far parentheses in S, and so it would take Θ(n log n) bits of space to store all the
answers.

So we need a different approach. To this end, let Mfar = {i | β(i) 6= β(µ(i))} be the set of far
parenthesis in S. The subset

Mpio = {i | i ∈Mfar∧ 6 ∃j : (β(j) = β(i) ∧ β(µ(j)) = β(µ(i)) ∧ excess(j) < excess(i))}

of Mfar is called the set of pioneers of S. It has three nice properties:
(a) The set is symmetric with regard to opening and closing pioneers. That is, if parenthesis i is a

pioneer, µ(i) is also a pioneer.
(b) The sub-sequence S ′ of S consisting only of the parentheses from Mpio is again balanced.
(c) The size of Mpio depends on the number of blocks (say b) in S, as there are ≤ 4b−6 pioneers [5].

Now we show how to answer find close queries for far parentheses. First, we add a pioneer bitmap
P of length 2n to the data structure which indicates whether a parenthesis is in the set Mpio or not
(see Fig. 2). Because of property (c), P needs O(n log log n

log n
) bits of space, including structures for rank

and select (see Sect. II-A). Now let parenthesis i be opening and far. If it is a pioneer itself, we return
µ(i). Otherwise, by consulting P we determine the maximal pioneer p < i, which must be opening.
We determine µ(p), which lies per definition in the same block (say b) as µ(i). As all excess values in
the range [i, µ(i) − 1] are greater than excess(i) − 1, we have to find the minimal position, say k, in
block b with excess(k) = excess(i)− 1. This is done again by look-up tables.

It remains to show how to determine µ(p), the position of the matching parenthesis of pioneer p.
Instead of storing these values in a plain array (using O(n/s× log n) = O(n) bits), we use properties
(a) and (b) to get a recursive data structure. Recall that S ′ denotes the reduced (balanced) sequence of
pioneers. It need not be represented explicitly, as S ′[i] = S[select1(P, i+1)]. Because S ′ is a subsequence
of S, it holds that the answers to µ in S ′ are the same as in the original S. Hence, we can use the data
structure from the previous paragraph to answer µ(·) recursively.

There are two options to end the recursion. First, we can stop on a fixed level k ≥ 2 and store the
answers explicitly on level k, in which case one can show that the total space is o(n) bits. The second
possibility is to end the recursion when nk ≤ s, where ni denotes the number of parentheses on level i,
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Figure 2. Illustration to Geary et al.’s succinct tree representation. The pioneer bitmap S is stored only implicitly using o(n) bits, and
the bottommost array (storing block numbers) is represented recursively by the same data structure.

and then use table lookups to find the answers on level k. Because nk = 4k(2n
sk −2)+2 and s = O(log n)

for all levels, we get about k = log n
log log n

levels, and the find close-operation takes O( log n
log log n

) time. This
latter variant is particularly easy to implement.

III. RANGE RESTRICTED ENCLOSE

min excess pos(S, `, r)
01 if ` ≥ r
02 return ⊥
03 k ← ⊥
04 if β(`) = β(r)
05 k ← near min excess pos(S, `, r) 1©
06 else
07 min ex← excess(r) + 2 · (S[r] = ’)’) 2©
08 p′

` ← rank1(P, `)
}

3©09 p′
r ← rank1(P, r)

10 k′ ← min excess pos(S′, p′
`, p

′
r)

4©
11 if k′ 6= ⊥
12 k ← select1(P, k′ + 1) 4’©
13 min ex← excess(k)
14 else
15 k′←near min excess pos(S, β(r)·s, r)

 5©
16 if k′ 6= ⊥
17 k ← k′

18 min ex← excess(k)
19 k′←near min excess pos(S, `, (β(`)+1)·s)  6©
20 if k′ 6= ⊥ and excess(k′) < min ex
21 k ← k′

22 return k

Figure 3. The min excess pos-operation.

The main advantage of the recursive approach
from Sect. II-C over previous solutions [6] is
that the most space consuming part, the pioneer
bitmaps, is shared by find close , find open , and
enclose . However, these functions cannot be
used for solving the important LCA-operation.
It seems that it had already been tried to cope
with LCA by means similar to the solution
of find open, as Munro and Raman introduced
the double enclose-operation in the conference
version [12] of their work (see bottom half of
Tbl. I). However, this approach contained a bug,
and was therefore dropped in the final version
[6].

It was Sadakane [2] who quietly introduced
the first o(n)-bit solution for LCAs in BPS-
encoded trees. His approach is quite differ-
ent, as it is based on solving RMQs on the
excess-values of the BPS. Because the sequence
of excess-values has the property that subse-
quent elements differ by only 1, this is in fact
a restricted version of RMQ, called ±1RMQ.
Sadakane’s data structure for±1RMQ needs O(n log2 log n

log n
) bits, which was recently lowered to O(n log log n

log n
)

bits [13]. A similar RMQ-based approach for LCA works also for DFUDS [3]. However, all of these
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Figure 4. Splitting the interval [i, j − 1] into three subintervals.

solutions have the disadvantage that they do not share any component of the pioneer-structure from
Sect. II-C, and thus constitute a large practical overhead in space.

In this section, we show that the addition of a new operation, called rr enclose for range restricted
enclose, solves the above-mentioned problems. Method rr enclose takes two opening parentheses i, j
(i < j) and calculates the leftmost opening parentheses k ∈ [µ(i)+1, j−1] such that (k, µ(k)) encloses
(j, µ(j)), or ⊥ if no such parentheses pair exists. We get a nice recursive formulation of the method if we
change the parameters slightly: Method min excess pos takes two (not necessarily opening) parentheses
` and r (` < r), and calculates the leftmost opening parenthesis k ∈ [`, r − 1] with µ(k) ≥ r. If
no k ∈ [`, r − 1] exists, ⊥ is returned. See Fig. 3 for the code of this method, which is invoked by
min excess pos(S,find close(i) + 1, j) to solve rr enclose(S, i, j).

To prove the correctness of the algorithm, we show that min excess pos(S, `, r) returns the leftmost
parenthesis k ∈ [`, r−1] with µ(k) ≥ r, or ⊥ if no such k exists. We will prove this by induction on n. If
n ≤ s, ` and r lie in the same block and the subroutine near min excess pos will find the correct answer
by making a look-up in precomputed tables of size O(s2 · 2s · log s) = O(

√
n polylog n) bits (step 1©).

Otherwise, n > s and β(`) 6= β(r). Let k̂ be the correct solution of min excess pos(S, `, r). We divide
the interval I = [`, r−1] into three subintervals I` = [`, (β(`)+1)·s−1], Im = [(β(`)+1)·s, β(r)·s−1],
and Ir = [β(r) · s, r − 1]; see Fig. 4.

We will show that if k̂ lies in Im, it follows that k̂ is a pioneer. To prove that, for the sake of
contradiction suppose that k̂ is not a pioneer. As k̂ ∈ Im and µ(k̂) does not belong to Im, it follows
that k̂ has to be a far parenthesis. Since k̂ is a far parenthesis but no pioneer, there has to be an pioneer
k̃ < k̂ in the same block. Consequently, (k̃, µ(k̃)) encloses (k̂, µ(k̂)). This is a contradiction to the
assumption that k̂ is the right solution.

By induction, we know that if k′ 6= ⊥ after step 4©, the corresponding pioneer k in S (calculated by
a select query in step 4’©) lies in I , and µ(k) ≥ r.

The look-up in the interval Ir (see step 5©) for a solution is unnecessary if a pioneer k is found in
step 4’©. To show this, let kr ∈ Ir be the solution from step 5©. If kr is not a pioneer, (kr, µ(kr)) is
enclosed by (k, µ(k)); otherwise it was already considered in step 4©. Finally, we have to check the
interval I` for the solution k̂, because if k̂ lies in I` it does not necessarily follow that k̂ is a pioneer.
This is due to the fact that there can be a pioneer in β(k̂) < `.

We have shown the algorithm in the variant that keeps recursing until the length of the sequence
is less than s, which has a running time of O(log n/ log log n) (see Sect. II-C). As before, we could
also stop recursing on a fixed level k ≥ 2, and store the answers to min excess pos explicitly on the
last level. As there are n2

k queries on level k, storing all answer would not result in sub-linear space.
However, we can use similar ideas as in the sparse-table algorithm from Bender and Farach-Colton [8]
to get a final space consumption of O(n2 log n2) = O( n

(log n)2
log n2) = O( n

log n
) bits. We formulate a

final theorem that summarizes this section:

Theorem 1. On top of the O(n log log n
log n

) bits from the data structures for find open, find close, and



enclose, there are data structures for rr enclose with either O( log n
log log n

) query time and O(
√
n polylog n)

bits of space, or with O(1) query time and space O( n
log n

) bits.

A. Computing Lowest Common Ancestors
We can use rr enclose to compute LCAs in a BPS S[0, 2n − 1] as follows: given two nodes i < j

(we identify nodes with the position of their opening parenthesis), first compute k = rr enclose(S, i, j).
Now if k 6= ⊥, return enclose(S, k) as LCA(i, j). The other possibility is that k = ⊥, which happens if
and only if j is the son of LCA(i, j). In this case, we return enclose(S, j).

In DFUDS, computing LCAs is also simple if we “reverse” the definition of min excess pos from
mini≤k<j{k : µ(k) ≥ j} to min excess pos′(S, i, j) = maxi≤k<j{k : µ(k) < i}. It is easily verified that
the algorithm above can be adapted to deal with this modified definition. Then

k = find open(S,min excess pos′(S, i, j))

brings us directly to the description of LCA(i, j) (in DFUDS, we identify nodes with the position of
their closing parenthesis). We can thus jump to the appropriate closing parenthesis by LCA(i, j) =
select)(S, rank)(S, k + 1) + 1).

IV. APPLICATION I: RANGE MINIMUM QUERIES

A. Problem Definition and Existing Algorithms
For an array A[0, n − 1] of n natural numbers or other objects from a totally ordered universe, a

range minimum query RMQA(i, j) for i ≤ j returns the position of a minimum in the sub-array A[i, j];
in symbols, RMQA(i, j) = argmini≤k≤j{A[k]}. This fundamental algorithmic problem has numerous
applications, for example in data compression [14]; see recent articles on RMQs [8], [13] for more
examples. In all of these applications, the array A in which the RMQs are performed is static and
known in advance. Hence it makes sense to preprocess A into a scheme such that future RMQs can be
answered quickly.

name space in bits
succ [15] 2n+ o(n) + |A|

compr [16] nHk + o(n) + |A|
sada [17] 4n+ o(n)

2dmin [13] 2n+ o(n)
sct [18] 2n+ o(n)

Figure 5. State-of-the art preprocess-
ing schemes for O(1)-RMQs, where
|A| denotes the space for the read-
only input array.

Preprocessing schemes for O(1)-RMQs can be classified into two
different types: systematic and non-systematic. Systematic schemes
must store the input array A verbatim along with the additional
information for answering the queries. In such a case the query
algorithm can consult A when answering the queries; this is indeed
what all systematic schemes make heavy use of. On the contrary,
non-systematic schemes must be able to obtain their final answer
without consulting the array. This latter type is important for cases
where only the position of the minimum matters, and not the value
itself. The table in Fig. 5 summarizes existing data structures for
RMQs; the top half displays the best systematic schemes, whereas
the bottom half shows all known non-systematic schemes. Among the systematic ones, compr is a
compressed scheme building on succ; there, Hk is the empirical entropy of order k, which is a common
measure of compression. All of the non-systematic methods rely on constant-time LCA-computation in
some succinctly encoded tree, either implicitly or explicitly.
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Figure 6. Left: sizes and query times of RMQ-structures on two LCP-arrays of texts from the Pizza& Chili-Corpus. Right: running time
and memory consumption for the construction of the data structures.

B. Empirical Tests
The aim of this section is to show the practical advantages of using an LCA-method based on

rr enclose instead of ±1RMQ. In principle, rr enclose could be used in any of the non-systematic methods
(as a substitute for ±1RMQ). However, we opted for implementing previous methods [13], [17] as they
were described at the time of their writing, and use rr enclose only in the sct-scheme [18] that is
based on the Super-Cartesian Tree [19]. We use the O( log n

log log n
)-variant from Thm. 1. For reasons of

completeness, we also included the two systematic schemes [15], [16] from Fig. 5 in our tests. We
do not include the ±1RMQ-solution of Sadakane and Navarro [9] in our tests, as their implementation
appeared only after our work was conducted.

We implemented all data structures from Fig. 5 in C++. For a fair comparison we use the same
support data structures (e.g., ±1RMQ,rank/select/findopen,. . . ) wherever possible. We compiled each data
structure with g++ version 4.1.2 with options -O3 -DNDEBUG. All tests were executed on an AMD
Opteron 2220 (2.8 GHz) equipped with 24GB of RAM. We ran tests on random integer arrays and on
LCP-arrays of all texts of size 50MB and 200MB from the Pizza&Chili site (http://pizzachili.di.unipi.it).
As the results were all rather similar, we only display those for two LCP-arrays on English texts. The
results of the complete test suite are available on the sdsl site.

The left bar plot of Fig. 6 shows the final space of the schemes; for a deeper analysis of the non-
systematic schemes, we partition the bars into different components:

2dmin: From bottom to top, the boxes correspond to the 2n bits of the BPS of the 2d-Min-Heap [13],
structures for navigation in the 2d-Min-Heap (see Sect. II-C), and ±1RMQ-information on the
excess-array of the BPS.

sada: The boxes — again from bottom to top — represent the space for: the BPS of the extended
Cartesian Tree (4n bits), rank structures for the pattern ’()’, rank structures for ’)’, a select
structure for the pattern ’()’, and a ±1RMQ structure on the excess sequence.

sct: Because we replace ±1RMQ by rr enclose, it consists of only two parts (again from bottom to
top): the BPS of the Super-Cartesian Tree (2n bits), and navigational information (Sect. II-C
and Sect. III).

The final size of the non-systematic schemes highly depends on the size of the balanced parentheses



sequence (depicted as the lowest box of the stacks in Fig. 6). However, the space for the o(n)-terms is
non-negligible, and we can indeed observe a clear advantage of the method that was pimped up with
rr enclose , namely scheme sct. Note again that this is not due to an inherent supremacy of the Super-
Cartesian Tree — scheme 2dmin (and, to a lesser extent, also sada) would show the same reduction in
space if its ±1RMQ were replaced with rr enclose. Compared with the two systematic schemes (succ
and compr), sct is almost as small as compr, the best of these1 — this becomes even more amazing
when we take into account that the bars for succ and compr in the left plot of Fig. 6 do not include
the space of the input array, although it is needed at query time!

The running times for 107 random queries are also shown on the left of Fig. 6. Scheme 2dmin is
slowest, as it needs to invoke the find open-operation for each query. The systematic scheme succ is
fastest, which is not surprising given that it does not use any compressed data structures (all arrays
are byte-aligned). The other three schemes (sada, sct, and compr) are about equally fast, showing that
rr enclose is also competitive in time.

The construction space (we measured the resident size) is depicted in the right plot of Fig. 6. In all bars,
the lower box (dark gray) represents the space for the input array (we actually packed the LCP-values
into dlogMe-bit wide words for arrays with maximum LCP-value M ). Due to the explicit construction
of the Cartesian Tree, sada takes about 1.0GB or 4.0GB for the LCP-array over a text of length 50MB
or 200MB, respectively. Both other non-systematic implementations, 2dmin and sct, do not need a
construction of a tree and therefore take only the space of the input, the output, and a stack to build the
2d-Min-Heap or the Super-Cartesian tree. However, because the non-systematic implementations have
to construct bit vectors and many support structures, the construction takes significant longer in contrast
to the systematic schemes.

V. APPLICATION II: COMPRESSED SUFFIX TREES

A. Description of Compressed Suffix Trees
Given a text T ∈ Σ? of length n, the suffix tree of T is a rooted tree S with edge labels from Σ?, such

that exactly all of T ’s sub-strings Ti..j are spelled out when reading off edge labels from S (starting at
the root). Compressed suffix trees (CSTs) can be viewed as a data structure with the same functionality
as a plain suffix tree (access to edge labels, navigation, etc.), but with lower space occupancy [2], [4],
[18], [20]. CSTs are all based on the suffix array of T , which is an array A[0, n − 1] of integers s.t.
TA[i]...n−1 < TA[i+1]...n−1 for all 0 ≤ i < n−1; i.e., A describes the lexicographic order of T ’s suffixes by
“enumerating” them from the lexicographically smallest to the largest. Suffix arrays can be compressed
to occupy less than the ndlog ne bits that they would need normally; however, the time to access an
arbitrary entry A[i] rises to ω(1).

The LCA-operation is central to all compressed suffix trees. Indeed, it is used not only as an ‘end-
user’ routine to actually compute lowest common ancestors, but also as a tool for other fundamental
suffix-tree-specific operations like string depth, suffix links, moving to a child, etc.

B. Empirical Tests
All CSTs consist of at least 4 parts: a compressed suffix array (called csa henceforth), a compressed

LCP-table (lcp), a BPS to represent the tree topology (bp), and navigational information on the BPS
(bp support). The original proposal of Sadakane (called cst sada) uses 4n bits for bp and has three
additional components: rank- and select-structures for patterns ’10’ (called rank10 and select10), and

1The reason that the space for the compressed scheme compr is significantly lower than that of succ is that we now use much smaller
data structures for rank and select than in the original implementation [16].
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Figure 7. Sizes of different CST-implementations and their components on a DNA-file of size 50MB.

structures for ±1RMQ on the (implicit) excess sequence. Fig. 7 shows the sizes of each part of cst sada
for a 50MB DNA-file. The structure for ±1RMQ takes about a fifth of the whole cst sada. This structure
is now obsolete, as we can use rr enclose instead. We call the resulting CST cst sada comp, and we can
observe a significant gain in space. An even smaller CST (called cst sct) was presented by Ohlebusch
and Gog [18]. It uses a kind of DFUDS of the Super-Cartesian Tree [19] of the LCP-array for the tree
topology (similar to the CST with constant-time previous-/next-smaller-value queries [4, Sect. 4.1]),
which has only 2n bits. Therefore, both bp and bp support for cst sct have only half the size compared
to cst sada.

Concerning navigation time, we opted for testing the suffix-link method, which is a rather complex
operation needing RMQs, access to LCP, and much more [4]. We got the following query times for
107 (truly) random suffix link operations: cst sada: 31.6s, cst sada comp: 26.7s, and cst sct: 579.0s.
Comparing cst sada with cst sada comp, we can observe that the use of rr enclose also leads to faster
navigation times. Concerning cst sct, the huge increase in space is explained by the fact that its suffix-
link operation depends on access to the LCP-array (this is not the case for cst sada and cst sada comp).
To balance out this bias, we also implemented a byte-aligned LCP-table and plugged it into cst sct; the
resulting CST is called cst sct 8bit lcp. It needs 30.1s for the suffix-link operations, showing that the
slow-down in cst sct originates indeed from the slow LCP-table, and not from the rr enclose-operation.
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