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Route Planning
Goals:

[ | exact shortest paths in large (time-dependent) road network
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[ | fast queries (point-to-point, many-to-many)
[ ] fast preprocessing
] low space consumption

[ | fast update operations

Applications:
] route planning systems in the internet, car navigation systems,

L] ride sharing, traffic simulation, logistics optimisation
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Advanced Route Planning

What we can do:
] plain static routing (very fast)
] distance tables (even faster)
] turn penalties
I mobile implementation
[ ] time dependent edge weights
L] flexible objective functions

L] traffic jams
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Advanced Route Planning

What we are working on:
| energy efficient routes
| modelling alternative routes
| detouring traffic jams realistically
| integration with public transportation

| novel applications
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Contraction Hierarchies (CH)
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Contraction Hierarchies
Our Contributions Experiments

Main Idea

Contraction Hierarchies (CH)

@ contract only one node at a time
= local and cache-efficient operation

in more detalil:
@ order nodes by “importance”, V = {1,2,...,n}
@ contract nodes in this order, node v is contracted by
foreach pair (u, v) and (v, w) of edges do

if (u, v, w) is a unique shortest path then
| add shortcut (u, w) with weight w({u, v, w))

@ query relaxes only edges to more “important” nodes
= valid due to shortcuts

R. Geisberger, P. Sanders, D. Schultes, D. Delling Contraction Hierarchies
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Example: Construction
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Contraction Hierarchies
Our Contributions Experiments

Construction

to identify necessary shortcuts
@ local searches from all nodes u with incoming edge (u, v)
@ ignore node v at search

@ add shortcut (u, w) iff found distance
d(u,w) > w(u,v)+ w(v,w)

er, P. Sanders, D. Schultes, D. Delling Contraction Hierarchies
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Contraction Hierarchies
Our Contributions Experiments

Node Order

use priority queue of nodes, node v is weighted with a linear
combination of:

@ edge difference #shortcuts — #edges incident to v
@ uniformity e.g. #deleted neighbors
o ...

integrated construction and ordering:
@ remove node v on top of the priority queue 2 _3=_1
@ contract node v
© update weights of remaining nodes

R. Geisberger, P. Sanders, D. Schultes, D. Delling Contraction Hierarchies
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Our Contributions Experiments

@ modified bidirectional Dijkstra algorithm

@ upward graph  Gy:=(V, E;) with E;:= {(u,v) e E:u< v}
downward graph G:=(V, E|) with E:= {(u,v) € E:u> v}

@ forward search in G; and backward search in G|

node order

R. Geisberger, P. Sanders, D. Schultes, D. Delling Contraction Hierarchies
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Contraction Hierarchies
Our Contributions Experiments

Outputting Paths

@ for a shortcut (u, w) of a path (u, v, w),
store middle node v with the edge 5
@ expand path by recursively replacing a *:
shortcut with its originating edges 2
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Contraction Hierarchies

|| foundation for our other methods
[ ] conceptually very simple

| handles dynamic scenarios

Static scenario:

[ ] 7.5 min preprocessing
[ ] 0.21 ms to determine the path length
[ ] 0.56 ms to determine a complete path description

L] little space consumption (23 bytes/node)
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Dynamic Scenarios

] change entire cost function

] change a few edge weights

(e.g., due to a traffic jam)
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Karlsruhe Institute of Technology

Mobile Contraction Hierarchies
[ESA 08]

|| preprocess data on a personal computer
] highly compressed blocked graph representation 8 bytes/node

[ | compact route reconstruction data structure + 8 bytes/node

experiments on a Nokia N800 at 400 MHz

] cold query with empty block cache 56 ms
[ ] compute complete path 73ms
| recomputation, e.qg. if driver took the wrong exit 14 ms

| query after 1 000 edge-weight changes, e.g. traffic jams 699 ms
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Even Faster — Transit-Node Routing B

[DIMACS Challenge 06, ALENEX 07, Science 07]

joint work with H. Bast, S. Funke, D. Matijevic

] very fast queries

(downto 1.7 15, 3000 000 times faster than DIJKSTRA)

[ winner of the 9th DIMACS Implementation Challenge

| more preprocessing time (2:37 h) and space (263 bytes/node) needed

-t SciAm50 Award
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Example
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Many-to-Many Shortest Paths

joint work with S. Knopp, F. Schulz, D. Wagner
[ALENEX 07]

|| efficient many-to-many variant of

hierarchical bidirectional algorithms

[ ] 10000 x 10000 table in 10s
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Karlsruhe Institute of Technology

Energy Efficient Routes

Project MeRegioMobil

Moritz Kobitzsch 7 e et
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Even more detailed model ...
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Flexible Objective Functons

Two labels at each edge, e.g., travel time and cost

(mostly ~energy consumption)

Cost function: arbitrary linear combination
|deas:

[ | CHSs with valid parameter ranges at each shortcut

|| Different node orderings for important nodes

[ | combine with landmark based goal directed search



Sanders: Route Planning ﬂ(IT

Alternative Routes DA Jonathan Dees, BMW e
L] What are good alternative route graphs

| Evaluate heuristics for finding them
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Time-Dependent Route Planning

[ | edge weights are travel time functions:

- {time of day — travel time}

- piecewise linear

- FIFO-property = waiting does not help

[] Earliest Arrival Query: (s, t, Tg)

— a fastest s—t¢-route departing at 7

[ | Profile Query:(S, t, [77 T/])

— fastest travel times departing between 7 and tau’'.
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Travel Time Functions e

we need three operations

] evaluation: f(7) “O(1)” time
] merging: min( f, g) O(|f] + |g|) time
] chaining: f * g (f “after” g) O(|f] + |g|) time

note: min(f,g)and f x g have O(|f| + |g|) points each.

—> Increase of complexity

T
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Time-Dependent Dijkstra

Only one difference to standard Dijkstra:

[ ] Cost of relaxed edge (u, v) depends...

L] ...on shortest path to wu.
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Profile Search e

Modified Dijkstra:

] Node labels are travel time functions

[] Edge relaxation: frew := min( foid, fuw * fu)
] PQ key is min f,

— A label correcting algorithm

f

u

A :
fU,V ;
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Avoiding Shortcuts T

in the time-dependent case

How to know that a shortcut is not needed?

= No shortest path leeds ever over (u, v, w)
= Don’t insert a shortcut!

11 G.V. Batz, R. Geisberger, S. Neubauer, and P. Sanders: Faculty of Informatics
Time-Dependent Contraction Hierarchies and Approximation Institute for Theoretical Informatics, Algorithmics Il



Avoiding Shortcuts T

in the time-dependent case

How to know that a shortcut is not needed?

= If a shortest path leeds over (u, v, w) for at least one departure time
= Insert a shortcut!

12 G.V. Batz, R. Geisberger, S. Neubauer, and P. Sanders: Faculty of Informatics
Time-Dependent Contraction Hierarchies and Approximation Institute for Theoretical Informatics, Algorithmics Il



ATCH = Approximated TCH IT

A Space Efficient Data Structure

a For each edge of the TCH do

m Replace weights of shortcuts by two approximated functions...
a ...an upper bound

...a lower bound

...both with much less points

...lower bound given implicitly by upper bound

= Needs much less space (10 vs. 23 points).

26 G.V. Batz, R. Geisberger, S. Neubauer, and P. Sanders: Faculty of Informatics
Time-Dependent Contraction Hierarchies and Approximation Institute for Theoretical Informatics, Algorithmics Il



Earliest Arrival Queries on ATCHs IT

Performance

e || space [B/n] query error [%]
graph | method | [%] || ABS OVH [ms] SPD | MAX AVG
Earliest Arrival Query
TCH — 1] 994 899 | 0.72 1440 | 0.00 0.00
Germany ATCH 1 239 144 1.27 816 | 0.00 0.00
ATCH o || 118 23 1.45 714 | 0.00 0.00
TCH — || 589 513 1.89 1807 | 0.00 0.00
Europe ATCH 1 207 131 2.47 1396 | 0.00 0.00
ATCH S 99 23 | 1543 221 | 0.00 0.00

29 G.V. Batz, R. Geisberger, S. Neubauer, and P. Sanders: Faculty of Informatics
Time-Dependent Contraction Hierarchies and Approximation Institute for Theoretical Informatics, Algorithmics Il



Profile Queries on ATCHs with KIT
Corridor Contraction

Performance
e || space [B/n] query error [%]
graph | method | [%] || ABS OVH [ms] | MAX  AVG
Earliest Arrival Query
TCH — || 994 899 | 1112.04 | 0.00 0.00

Germany ATCH 11 239 144 39.23 | 0.00 0.00
ATCH o || 118 23 81.07 | 0.00 0.00

TCH — || 589 513 | 4308.35 | 0.00 0.00
Europe ATCH 11 207 131 468.43 | 0.00 0.00
ATCH 0 99 23 - - -

33 G.V. Batz, R. Geisberger, S. Neubauer, and P. Sanders: Faculty of Informatics
Time-Dependent Contraction Hierarchies and Approximation Institute for Theoretical Informatics, Algorithmics Il
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Public Transportation and CHs
Problems:

] Less hierarchy
] Multicriteria a MUST
L] complex modelling (walking, changeover delays,. . .)

|| prices are not edge based

Approaches:
| | SHARC: Contraction + arc flags [Delling et al ]
| Transfer Patterns [Google Zurich]

~ transit node routing

] Station-Based CHs [R. Geisberger]

~~ more complex edge information
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Ride Sharing

Current approaches:

| match only ride offers with identical start/destination (perfect fit)
] sometimes radial search around start/destination

Our approach:

|| driver picks passenger up and gives him a ride to his destination
| find the driver with the minimal detour (reasonable fit)

Efficient algorithm:

| adaption of the many-to-many algorithm

—> matches a request to 100 000 offers in =~ 25ms
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“Ultimate” Routing in Road Networks?

Massive floating car data ~~ accurate current situation
Past data -+ traffic model + real time simulation

~~ Nash eugqilibrium predicting near future
time dependent routing in Nashequilibrium
~~ realistic traffic-adaptive routing

Yet another step further

traffic steering towards a social optimum
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Summary

static routing in road networks is easy

~~ applications that require massive amount or routing
~~ Instantaneous mobile routing

~ techniques for advanced models

time-dependent routing is fast

~~ bidirectional time-dependent search

~~ fast queries

~~ fast (parallel) precomputation
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More Future Work B

] Multiple objective functions and restrictions (bridge height,...)

| Other objectives for time-dependent travel



