

Lifetime Maximization of Monitoring Sensor Networks

<u>Dennis Schieferdecker</u> – schieferdecker@kit.edu Peter Sanders – sanders@kit.edu

Institute for Theoretical Informatics - Algorithms II

fixed area

Motivation

- stationary sensor nodes with
 - circular monitoring areas,
 - limited power supply
- → monitor entire region as long as possible
- → schedule node activation

Algorithms II

Karlsruhe Institute of Technolo

- fixed area
- stationary sensor nodes with
 - circular monitoring areas.
 - limited power supply
- → monitor entire region as long as possible
- → schedule node activation

Karlsruhe Institute of Technolo

- fixed area
- stationary sensor nodes with
 - circular monitoring areas
 - limited power supply
- → monitor entire region as long as possible
- → schedule node activation

Karlsruhe Institute of Technolo

- fixed area
- stationary sensor nodes with
 - circular monitoring areas,
 - limited power supply
- monitor entire region as long as possible
- → schedule node activation

Karlsruhe Institute of Technolo

- fixed area
- stationary sensor nodes with
 - circular monitoring areas,
 - limited power supply
- → monitor entire region as long as possible
- → schedule node activation

Karlsruhe Institute of Technolo

- fixed area
- stationary sensor nodes with
 - circular monitoring areas,
 - limited power supply
- → monitor entire region as long as possible
- → schedule node activation

Karlsruhe Institute of Technolo

- fixed area
- stationary sensor nodes with
 - circular monitoring areas,
 - limited power supply
- → monitor entire region as long as possible
- → schedule node activation

Karlsruhe Institute of Technolog

- fixed area
- stationary sensor nodes with
 - circular monitoring areas,
 - limited power supply
- → monitor entire region as long as possible
- \rightarrow schedule node activation

Extensive Previous Work

[Cardei, Wu 05] area monitoring equals target monitoring[Slijepcevic, P. 05] target monitoring, uniform energy, disjoint sets[Cardei, Wu 06] non-disjoint sets, superlinear approximation algorithm

[Berman et al. 06] general problem, log approximation in superlinear time

[Dhawan et al. 06] extension to variable sensing ranges

[Luo et al. 09] exact solver using column generation

- pseudo-linear time dual approximation scheme
- proof of NP-completeness (see paper)

Extensive Previous Work

[Cardei, Wu 05]	area monitoring equals target monitoring
[Slijepcevic, P. 05]	target monitoring, uniform energy, disjoint sets
[Cardei, Wu 06]	non-disjoint sets, superlinear approximation algorithm
[Berman et al. 06]	general problem, log approximation in superlinear time
[Dhawan et al. 06]	extension to variable sensing ranges
[Luo et al. 09]	exact solver using column generation

- pseudo-linear time dual approximation scheme
- proof of NP-completeness (see paper)

Extensive Previous Work

[Cardei, Wu 05] area monitoring equals target monitoring
[Slijepcevic, P. 05] target monitoring, uniform energy, disjoint sets
[Cardei, Wu 06] non-disjoint sets, superlinear approximation algorithm
[Berman et al. 06] general problem, log approximation in superlinear time
[Dhawan et al. 06] extension to variable sensing ranges

[Luo et al. 09] exact solver using column generation

- pseudo-linear time dual approximation scheme
- proof of NP-completeness (see paper)

Extensive Previous Work

[Cardei, Wu 05] area monitoring equals target monitoring
[Slijepcevic, P. 05] target monitoring, uniform energy, disjoint sets
[Cardei, Wu 06] non-disjoint sets, superlinear approximation algorithm
[Berman et al. 06] extension to variable sensing ranges
[Luo et al. 09] exact solver using column generation

- pseudo-linear time dual approximation scheme
- proof of NP-completeness (see paper)

Sensor Network Model

- sensor network $S = \{S_1, ..., S_n\}$ with $S_i = (x_i, y_i, b_i)$
 - (x_i, y_i) : coordinates
 - b_i: battery capacity
- lacksquare $C \subseteq S$ is a cover of area A
 - if the union of disks centered at each $S \in C$ contains area A
 - disk radii equal sensing range F
- $lue{\mathcal{C}}$ set of all possible covers of A

Sensor Network Model

- sensor network $S = \{S_1, \dots, S_n\}$ with $S_i = (x_i, y_i, b_i)$
 - (x_i, y_i) : coordinates
 - b_i: battery capacity
- $C \subseteq S$ is a cover of area A,
 - if the union of disks centered at each $S \in C$ contains area A
 - disk radii equal sensing range R
- lacktriangle C set of all possible covers of A

Sensor Network Model

- sensor network $S = \{S_1, ..., S_n\}$ with $S_i = (x_i, y_i, b_i)$
 - (x_i, y_i) : coordinates
 - b_i: battery capacity
- $C \subseteq S$ is a cover of area A,
 - if the union of disks centered at each $S \in C$ contains area A
 - disk radii equal sensing range R
- C set of all possible covers of A

Problem Definition

- find schedule $(\underline{C}, \underline{t})$,
 - covers $\underline{C} = \{C_1, \ldots, C_m\} \subseteq \mathcal{C}$
 - durations $\underline{t} = \{t_1, \dots, t_m\}$
- maximizing lifetime $T = \sum_{j=1}^{m} t_j$
 - s.t. $\sum_{i:S_i \in C_i} t_i \leq b_j \ \forall \ S_j \in S$ (1)
 - i.e. node S_j cannot consume more than b_j units of energy
- **problem instance** (S, A, R)
 - solution is any schedule $(\underline{C}, \underline{t})$
 - \blacksquare solution (C, t) feasible if (1) holds
 - lifetime of a solution T(S, A, R)

Problem Definition

- find schedule $(\underline{C}, \underline{t})$,
 - covers $\underline{C} = \{C_1, \ldots, C_m\} \subseteq \mathcal{C}$
 - durations $t = \{t_1, \dots, t_m\}$
- maximizing lifetime $T = \sum_{j=1}^{m} t_j$
 - s.t. $\sum_{i:S_i \in C_i} t_i \le b_j \ \forall \ S_j \in S$ (1)
 - i.e. node S_j cannot consume more than b_j units of energy
- **problem instance** (S, A, R)
 - **solution** is any schedule $(\underline{C}, \underline{t})$
 - solution $(\underline{C}, \underline{t})$ feasible if (1) holds
 - lifetime of a solution T(S, A, R)

Problem Definition

- find schedule $(\underline{C}, \underline{t})$,
 - covers $\underline{C} = \{C_1, \ldots, C_m\} \subseteq \mathcal{C}$
 - durations $\underline{t} = \{t_1, \dots, t_m\}$
- maximizing lifetime $T = \sum_{j=1}^{m} t_j$
 - s.t. $\sum_{i:S_i \in C_i} t_i \le b_j \ \forall \ S_j \in S$ (1)
 - i.e. node S_j cannot consume more than b_j units of energy
- **problem instance** (S, A, 1)
 - solution is any schedule $(\underline{C}, \underline{t})$
 - solution $(\underline{C}, \underline{t})$ feasible if (1) holds
 - lifetime of a solution T(S, A, 1)

Problem Definition

- find schedule $(\underline{C}, \underline{t})$,
 - covers $\underline{C} = \{C_1, \ldots, C_m\} \subseteq \mathcal{C}$
 - durations $t = \{t_1, \dots, t_m\}$
- maximizing lifetime $T = \sum_{j=1}^{m} t_j$

Sensor Network Lifetime Problem (SNLP)

- problem instance (S, A, 1)
 - **solution** is any schedule $(\underline{C}, \underline{t})$
 - solution $(\underline{C}, \underline{t})$ feasible if (1) holds
 - lifetime of a solution T(S, A, 1)

- problem reinterpretation
 - area monitoring with min. guaranteed resolution
 - resolution
 - max. distance of any point in the area to one sensor
- central algorithm sufficient
 - stationary problem
 - providing upper bounds for distributed algorithms

- problem reinterpretation
 - area monitoring with min. guaranteed resolution
 - resolution
 - max. distance of any point in the area to one sensor
- central algorithm sufficient
 - stationary problem
 - providing upper bounds for distributed algorithms

- problem reinterpretation
 - area monitoring with min. guaranteed resolution
 - resolution
 - in the area to one sensor

- problem reinterpretation
 - area monitoring with min. guaranteed resolution
 - resolution
 - max. distance of any point in the area to one sensor
- central algorithm sufficient
 - stationary problem
 - providing upper bounds for distributed algorithms

- problem reinterpretation
 - area monitoring with min. guaranteed resolution
 - resolution
 - max. distance of any point
 in the area to one sensor
- central algorithm sufficient
 - stationary problem
 - providing upper bounds for distributed algorithms

Algorithm Outline

- combination of two approximation techniques
 - consider simpler problem instances
 - \blacksquare assume *f*-approximate algorithm \mathcal{A} exists to solve these instances
 - lacktriangle transform problem instances so that ${\cal A}$ can solve them
 - solutions are feasible for the original instance and near-optimal
- discretizing positions
 - nodes restricted to points on a grid
- area partitioning
 - area is divided into squared areas
 - subproblems restrained to these squares are solved and combined

Algorithm Outline

- combination of two approximation techniques
 - consider simpler problem instances
 - \blacksquare assume *f*-approximate algorithm \mathcal{A} exists to solve these instances
 - lacktriangle transform problem instances so that ${\cal A}$ can solve them
 - solutions are feasible for the original instance and near-optimal
- discretizing positions
 - nodes restricted to points on a grid
- area partitioning
 - area is divided into squared areas
 - subproblems restrained to these squares are solved and combined

Algorithm Outline

- combination of two approximation techniques
 - consider simpler problem instances
 - **a** assume f-approximate algorithm A exists to solve these instances
 - lacktriangle transform problem instances so that ${\mathcal A}$ can solve them
 - solutions are feasible for the original instance and near-optimal
- discretizing positions
 - nodes restricted to points on a grid
- area partitioning
 - area is divided into squared areas
 - subproblems restrained to these squares are solved and combined

Procedure

Algorithm 1

in: instance (S, 1), algorithm A, parameter $\delta \in [0, 1]$ out: schedule (C, t)

- Define grid of width $\delta/2$.
- Move every node in S to the closest point on the grid $\to \tilde{S}$.
- Solve $(\tilde{S}, 1 + \delta/2) \rightarrow (\underline{C}, \underline{t})$. (using algorithm A)
- Return (<u>C</u>, <u>t</u>).

Procedure

Algorithm 1

in: instance (S, 1), algorithm A, parameter $\delta \in [0, 1]$

- Define grid of width $\delta/2$.
- Move every node in S to the closest point on the grid → S.
- Solve $(\tilde{\mathcal{S}}, 1 + \delta/2) \rightarrow (\underline{C}, \underline{t})$. (using algorithm \mathcal{A})
- Return (<u>C</u>, <u>t</u>).

Procedure

Algorithm 1

in: instance (S, 1), algorithm A, parameter $\delta \in [0, 1]$

- Define grid of width δ/2.
- Move every node in S to the closest point on the grid $\to \tilde{S}$.
- Solve $(\tilde{\mathcal{S}}, 1 + \delta/2) \rightarrow (\underline{C}, \underline{t})$. (using algorithm \mathcal{A})
- Return (<u>C</u>, <u>t</u>).

Procedure

Algorithm 1

in: instance (S, 1), algorithm A, parameter $\delta \in [0, 1]$

- Define grid of width δ/2.
- Move every node in S to the closest point on the grid $\to \tilde{S}$.
- Solve $(\tilde{S}, 1 + \delta/2) \rightarrow (\underline{C}, \underline{t})$. (using algorithm A)
- Return (<u>C</u>, <u>t</u>).

Procedure

Algorithm 1

in: instance (S, 1), algorithm A, parameter $\delta \in [0, 1]$

- Define grid of width δ/2.
- Move every node in S to the closest point on the grid $\to \tilde{S}$.
- Solve $(\tilde{S}, 1 + \delta/2) \rightarrow (\underline{C}, \underline{t})$. (using algorithm A)
- Return (<u>C</u>, <u>t</u>).

Procedure

Algorithm 1

in: instance (S, 1), algorithm A, parameter $\delta \in [0, 1]$ out: schedule (C, t)

- Define grid of width $\delta/2$.
- Move every node in S to the closest point on the grid $\to \tilde{S}$.
- Solve $(\tilde{S}, 1 + \delta/2) \rightarrow (\underline{C}, \underline{t})$. (using algorithm A)
- Return $(\underline{C}, \underline{t})$.

Proofs

Lemma 1

Let $\delta \in [0, 1]$. Algorithm 1 yields a feasible solution to $(S, 1 + \delta)$ with lifetime $T\langle S, 1 + \delta \rangle \geq f \cdot T_{\text{opt}} \langle S, 1 \rangle$.

Correctness

- solution to (S,1) is solution to $(\tilde{S},1+\frac{\delta}{2})$ $\to T_{\mathrm{opt}}\langle \tilde{S},1+\frac{\delta}{2}\rangle \geq T_{\mathrm{opt}}\langle S,1\rangle$
- solving $(\tilde{\mathcal{S}}, 1 + \frac{\delta}{2})$ yields $T\langle \tilde{\mathcal{S}}, 1 + \frac{\delta}{2} \rangle$ $\to T\langle \tilde{\mathcal{S}}, 1 + \frac{\delta}{2} \rangle \ge f \cdot T_{\mathrm{opt}} \langle \tilde{\mathcal{S}}, 1 + \frac{\delta}{2} \rangle \ge f \cdot T_{\mathrm{opt}} \langle \mathcal{S}, 1 \rangle$
- solution to $(\tilde{S}, 1 + \frac{\delta}{2})$ is solution to $(S, 1 + \delta)$ $\to T\langle S, 1 + \delta \rangle \ge T\langle \tilde{S}, 1 + \frac{\delta}{2} \rangle \ge f \cdot T_{\text{opt}}\langle S, 1 \rangle$

Proofs

Lemma 1

Let $\delta \in [0, 1]$. Algorithm 1 yields a feasible solution to $(S, 1 + \delta)$ with lifetime $T\langle S, 1 + \delta \rangle \geq f \cdot T_{\text{opt}} \langle S, 1 \rangle$.

Correctness

- solution to (S, 1) is solution to $(\tilde{S}, 1 + \frac{\delta}{2})$
 - $o T_{\mathrm{opt}}\langle \mathcal{S}, 1 + \frac{\delta}{2} \rangle \geq T_{\mathrm{opt}}\langle \mathcal{S}, 1 \rangle$
- solving $(\tilde{S}, 1 + \frac{\delta}{2})$ yields $T\langle \tilde{S}, 1 + \frac{\delta}{2} \rangle$

$$o T\langle \widetilde{\mathcal{S}}, 1+rac{\delta}{2}
angle \geq f\cdot T_{\mathrm{opt}}\langle \widetilde{\mathcal{S}}, 1+rac{\delta}{2}
angle \geq f\cdot T_{\mathrm{opt}}\langle \mathcal{S}, 1
angle$$

- solution to $(\tilde{S}, 1 + \frac{\delta}{2})$ is solution to $(S, 1 + \delta)$
 - $\rightarrow T\langle S, 1+\delta \rangle \geq T\langle \tilde{S}, 1+\frac{\delta}{2} \rangle \geq f \cdot T_{\text{opt}}\langle S, 1 \rangle$

Proofs

Lemma 1

Let $\delta \in [0, 1]$. Algorithm 1 yields a feasible lifetime $T\langle S, 1 + \delta \rangle \geq f \cdot T_{\text{opt}}\langle S, 1 \rangle$.

Correctness

• solution to (S, 1) is solution to $(\tilde{S}, 1 + \frac{\delta}{2})$

$$o T_{\mathrm{opt}}\langle \tilde{\mathcal{S}}, 1 + \frac{\delta}{2} \rangle \geq T_{\mathrm{opt}}\langle \mathcal{S}, 1 \rangle$$

solving $(\tilde{S}, 1 + \frac{\delta}{2})$ yields $T\langle \tilde{S}, 1 + \frac{\delta}{2} \rangle$

$$\to T\langle \tilde{\mathcal{S}}, 1 + \frac{\delta}{2} \rangle \ge f \cdot T_{\text{opt}} \langle \tilde{\mathcal{S}}, 1 + \frac{\delta}{2} \rangle \ge f \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$

• solution to $(\tilde{S}, 1 + \frac{\delta}{2})$ is solution to $(S, 1 + \delta)$

$$\rightarrow T\langle S, 1+\delta \rangle \geq T\langle \tilde{S}, 1+\frac{\delta}{2} \rangle \geq f \cdot T_{\text{opt}}\langle S, 1 \rangle$$

Proofs

Lemma 1

Let $\delta \in [0, 1]$. Algorithm 1 yields a feasible lifetime $T\langle S, 1 + \delta \rangle \geq f \cdot T_{\text{opt}}\langle S, 1 \rangle$.

Correctness

• solution to (S, 1) is solution to $(\tilde{S}, 1 + \frac{\delta}{2})$

$$o T_{\mathrm{opt}}\langle \tilde{\mathcal{S}}, 1 + \frac{\delta}{2} \rangle \geq T_{\mathrm{opt}}\langle \mathcal{S}, 1 \rangle$$

solving $(\tilde{S}, 1 + \frac{\delta}{2})$ yields $T\langle \tilde{S}, 1 + \frac{\delta}{2} \rangle$

$$\to T\langle \tilde{\mathcal{S}}, 1 + \frac{\delta}{2} \rangle \ge f \cdot T_{\text{opt}} \langle \tilde{\mathcal{S}}, 1 + \frac{\delta}{2} \rangle \ge f \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$

• solution to $(\tilde{S}, 1 + \frac{\delta}{2})$ is solution to $(S, 1 + \delta)$

$$\rightarrow T\langle S, 1+\delta \rangle \geq \overline{T\langle \tilde{S}, 1+\frac{\delta}{2} \rangle} \geq f \cdot T_{\text{opt}}\langle S, 1 \rangle$$

Proofs

Lemma 1

Let $\delta \in [0, 1]$. Algorithm 1 yields a feasible solution to $(S, 1 + \delta)$ with lifetime $T\langle S, 1 + \delta \rangle \geq f \cdot T_{\text{opt}} \langle S, 1 \rangle$.

Correctness

- solution to (S, 1) is solution to $(\tilde{S}, 1 + \frac{\delta}{2})$ $\rightarrow T_{\text{opt}}\langle \tilde{S}, 1 + \frac{\delta}{2} \rangle \geq T_{\text{opt}}\langle S, 1 \rangle$
- solving $(\tilde{\mathcal{S}}, 1 + \frac{\delta}{2})$ yields $T\langle \tilde{\mathcal{S}}, 1 + \frac{\delta}{2} \rangle$ $\to T\langle \tilde{\mathcal{S}}, 1 + \frac{\delta}{2} \rangle \ge f \cdot T_{\mathrm{opt}} \langle \tilde{\mathcal{S}}, 1 + \frac{\delta}{2} \rangle \ge f \cdot T_{\mathrm{opt}} \langle \mathcal{S}, 1 \rangle$
- solution to $(\tilde{S}, 1 + \frac{\delta}{2})$ is solution to $(S, 1 + \delta)$ $\to T\langle S, 1 + \delta \rangle \ge T\langle \tilde{S}, 1 + \frac{\delta}{2} \rangle \ge f \cdot T_{\text{opt}}\langle S, 1 \rangle$

Proofs

Lemma 1

Let $\delta \in [0, 1]$. Algorithm 1 yields a feasible solution to $(S, 1 + \delta)$ with lifetime $T\langle S, 1 + \delta \rangle \geq f \cdot T_{\text{opt}} \langle S, 1 \rangle$.

Correctness

- solution to (S,1) is solution to $(\tilde{S},1+\frac{\delta}{2})$ $\to T_{\mathrm{opt}}\langle \tilde{S},1+\frac{\delta}{2}\rangle \geq T_{\mathrm{opt}}\langle S,1\rangle$
- $\begin{array}{l} \bullet \quad \text{solving } (\tilde{\mathcal{S}}, \mathbf{1} + \frac{\delta}{2}) \text{ yields } T\langle \tilde{\mathcal{S}}, \mathbf{1} + \frac{\delta}{2} \rangle \\ & \rightarrow T\langle \tilde{\mathcal{S}}, \mathbf{1} + \frac{\delta}{2} \rangle \geq f \cdot T_{\mathrm{opt}} \langle \tilde{\mathcal{S}}, \mathbf{1} + \frac{\delta}{2} \rangle \geq f \cdot T_{\mathrm{opt}} \langle \mathcal{S}, \mathbf{1} \rangle \\ \end{array}$
- solution to $(\tilde{S}, 1 + \frac{\delta}{2})$ is solution to $(S, 1 + \delta)$ $\to T\langle S, 1 + \delta \rangle \ge T\langle \tilde{S}, 1 + \frac{\delta}{2} \rangle \ge f \cdot T_{\text{opt}}\langle S, 1 \rangle$

Proofs

Lemma 1

Let $\delta \in [0, 1]$. Algorithm 1 yields a feasible solution to $(\mathcal{S}, 1 + \delta)$ with lifetime $T\langle \mathcal{S}, 1 + \delta \rangle \geq f \cdot T_{\mathrm{opt}} \langle \mathcal{S}, 1 \rangle$.

Correctness

- solution to (S, 1) is solution to $(\tilde{S}, 1 + \frac{\delta}{2})$ $\to T_{\mathrm{opt}} \langle \tilde{S}, 1 + \frac{\delta}{2} \rangle \ge T_{\mathrm{opt}} \langle S, 1 \rangle$
- solving $(\tilde{\mathcal{S}}, 1 + \frac{\delta}{2})$ yields $T\langle \tilde{\mathcal{S}}, 1 + \frac{\delta}{2} \rangle$ $\to T\langle \tilde{\mathcal{S}}, 1 + \frac{\delta}{2} \rangle \ge f \cdot T_{\mathrm{opt}} \langle \tilde{\mathcal{S}}, 1 + \frac{\delta}{2} \rangle \ge f \cdot T_{\mathrm{opt}} \langle \mathcal{S}, 1 \rangle$
- solution to $(\tilde{S}, 1 + \frac{\delta}{2})$ is solution to $(S, 1 + \delta)$ $\to T\langle S, 1 + \delta \rangle \ge T\langle \tilde{S}, 1 + \frac{\delta}{2} \rangle \ge f \cdot T_{\text{opt}}\langle S, 1 \rangle$

Procedure

Algorithm 2

 $\begin{array}{ll} \textit{in:} & \text{instance } (\mathcal{S}, 1), \, \text{algorithm } \mathcal{A}, \\ & \text{parameter } \epsilon \in (0, 1] \end{array}$

- Define k partitions \mathcal{T}^i , $k = \lceil \frac{10}{\epsilon} \rceil$, $i \in \mathbb{Z}_k = \{1, ..., k\}$.
- For each partition \mathcal{T}^i ,
 - solve (S, 1) restricted to each square of Tⁱ, (with algorithm A)
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- Return

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$$

Procedure

Algorithm 2

in: instance (S, 1), algorithm A, parameter $\epsilon \in (0, 1]$

- Define k partitions \mathcal{T}^i , $k = \lceil \frac{10}{\epsilon} \rceil$, $i \in \mathbb{Z}_k = \{1, ..., k\}$.
- For each partition \mathcal{T}^i ,
 - solve (S, 1) restricted to each square of \mathcal{T}^i , (with algorithm \mathcal{A})
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- Return

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$$

Karlsruhe Institute of Technolog

Procedure

Algorithm 2

in: instance (S, 1), algorithm A, parameter $\epsilon \in (0, 1]$

- Define k partitions \mathcal{T}^i , $k = \lceil \frac{10}{\epsilon} \rceil$, $i \in \mathbb{Z}_k = \{1, ..., k\}$.
- For each partition \mathcal{T}^i ,
 - solve (S, 1) restricted to each square of T^i , (with algorithm A)
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- Return

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$$

Procedure

Algorithm 2

in: instance (S, 1), algorithm A, parameter $\epsilon \in (0, 1]$

- Define k partitions \mathcal{T}^{l} , $k = \left\lceil \frac{10}{\epsilon} \right\rceil$, $i \in \mathbb{Z}_{k} = \{1, ..., k\}$.
- For each partition \mathcal{T}^i ,
 - solve (S, 1) restricted to each square of \mathcal{T}^i , (with algorithm \mathcal{A})
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- Return

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$$

Procedure

Algorithm 2

in: instance (S, 1), algorithm A, parameter $\epsilon \in (0, 1]$

- Define k partitions \mathcal{T}^i , $k = \lceil \frac{10}{\epsilon} \rceil$, $i \in \mathbb{Z}_k = \{1, ..., k\}$.
- For each partition \mathcal{T}^i ,
 - solve (S, 1) restricted to each square of \mathcal{T}^i , (with algorithm \mathcal{A})
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- Return

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$$

Procedure

Algorithm 2

in: instance (S, 1), algorithm A, parameter $\epsilon \in (0, 1]$

- Define k partitions \mathcal{T}^i , $k = \lceil \frac{10}{\epsilon} \rceil$, $i \in \mathbb{Z}_k = \{1, ..., k\}$.
- For each partition \mathcal{T}^i ,
 - solve (S, 1) restricted to each square of \mathcal{T}^i , (with algorithm \mathcal{A})
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- Return

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$$

Procedure

Algorithm 2

in: instance (S, 1), algorithm A, parameter $\epsilon \in (0, 1]$

- Define k partitions \mathcal{T}^i , $k = \lceil \frac{10}{\varepsilon} \rceil, i \in \mathbb{Z}_k = \{1, ..., k\}.$
- For each partition \mathcal{T}^i ,
 - solve (S, 1) restricted to each square of \mathcal{T}^i , (with algorithm \mathcal{A})
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- Return

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$$

Procedure

Algorithm 2

in: instance (S, 1), algorithm A, parameter $\epsilon \in (0, 1]$

- Define k partitions \mathcal{T}^i , $k = \lceil \frac{10}{\varepsilon} \rceil, i \in \mathbb{Z}_k = \{1, ..., k\}.$
- For each partition \mathcal{T}^i ,
 - solve (S, 1) restricted to each square of \mathcal{T}^i , (with algorithm \mathcal{A})
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- Return

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$$

Procedure

Algorithm 2

in: instance (S, 1), algorithm A, parameter $\epsilon \in (0, 1]$

- Define k partitions \mathcal{T}^i , $k = \lceil \frac{10}{\epsilon} \rceil$, $i \in \mathbb{Z}_k = \{1, ..., k\}$.
- For each partition \mathcal{T}^i ,
 - solve (S, 1) restricted to each square of \mathcal{T}^i , (with algorithm \mathcal{A})
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- Return

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$$

Procedure

Algorithm 2

in: instance (S, 1), algorithm A, parameter $\epsilon \in (0, 1]$

- Define k partitions \mathcal{T}^i , $k = \lceil \frac{10}{\epsilon} \rceil$, $i \in \mathbb{Z}_k = \{1, ..., k\}$.
- For each partition \mathcal{T}^i ,
 - solve (S, 1) restricted to each square of \mathcal{T}^i , (with algorithm \mathcal{A})
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- Return

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$$

Procedure

Algorithm 2

in: instance (S, 1), algorithm A, parameter $\epsilon \in (0, 1]$

- Define k partitions \mathcal{T}^i , $k = \lceil \frac{10}{\epsilon} \rceil$, $i \in \mathbb{Z}_k = \{1, ..., k\}$.
- For each partition \mathcal{T}^i ,
 - solve (S, 1) restricted to each square of T^i , (with algorithm A)
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- Return

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$$

Procedure

Algorithm 2

in: instance (S, 1), algorithm A, parameter $\epsilon \in (0, 1]$

- Define k partitions \mathcal{T}^{l} , $k = \left\lceil \frac{10}{\epsilon} \right\rceil$, $i \in \mathbb{Z}_{k} = \{1, ..., k\}$.
- For each partition \mathcal{T}^i ,
 - solve (S, 1) restricted to each square of Tⁱ, (with algorithm A)
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- Return

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$$

Procedure

Algorithm 2

in: instance (S, 1), algorithm A, parameter $\epsilon \in (0, 1]$

- Define k partitions \mathcal{T}^{l} , $k = \left\lceil \frac{10}{\epsilon} \right\rceil$, $i \in \mathbb{Z}_{k} = \{1, ..., k\}$.
- For each partition \mathcal{T}^i ,
 - solve (S,1) restricted to each square of Tⁱ, (with algorithm A)
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- Return

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$$

Procedure

Algorithm 2

in: instance (S, 1), algorithm A, parameter $\epsilon \in (0, 1]$

- Define k partitions \mathcal{T}^i , $k = \lceil \frac{10}{\epsilon} \rceil$, $i \in \mathbb{Z}_k = \{1, ..., k\}$.
- For each partition \mathcal{T}^i ,
 - solve (S, 1) restricted to each square of T^i , (with algorithm A)
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- Return

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$$

Procedure

Algorithm 2

in: instance (S, 1), algorithm A, parameter $\epsilon \in (0, 1]$

- Define k partitions \mathcal{T}^i , $k = \lceil \frac{10}{\epsilon} \rceil$, $i \in \mathbb{Z}_k = \{1, ..., k\}$.
- For each partition \mathcal{T}^i ,
 - solve (S, 1) restricted to each square of \mathcal{T}^i , (with algorithm \mathcal{A})
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- Return

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$$

Procedure

Algorithm 2

in: instance (S, 1), algorithm A, parameter $\epsilon \in (0, 1]$

- Define k partitions \mathcal{T}^i , $k = \lceil \frac{10}{\epsilon} \rceil$, $i \in \mathbb{Z}_k = \{1, ..., k\}$.
- For each partition \mathcal{T}^i ,
 - solve (S, 1) restricted to each square of \mathcal{T}^i , (with algorithm \mathcal{A})
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- Return

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$$

Procedure

Algorithm 2

in: instance (S, 1), algorithm A, parameter $\epsilon \in (0, 1]$

- Define k partitions \mathcal{T}^i , $k = \lceil \frac{10}{\epsilon} \rceil$, $i \in \mathbb{Z}_k = \{1, ..., k\}$.
- For each partition \mathcal{T}^i ,
 - solve (S, 1) restricted to each square of \mathcal{T}^i , (with algorithm \mathcal{A})
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- Return

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$$

Procedure

Algorithm 2

in: instance (S, 1), algorithm A, parameter $\epsilon \in (0, 1]$

- Define k partitions \mathcal{T}^i , $k = \lceil \frac{10}{\epsilon} \rceil$, $i \in \mathbb{Z}_k = \{1, ..., k\}$.
- For each partition \mathcal{T}^i ,
 - solve (S, 1) restricted to each square of \mathcal{T}^i , (with algorithm \mathcal{A})
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- Return

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$$

Procedure

Algorithm 2

in: instance (S, 1), algorithm A, parameter $\epsilon \in (0, 1]$

- Define k partitions \mathcal{T}^i , $k = \lceil \frac{10}{\epsilon} \rceil$, $i \in \mathbb{Z}_k = \{1, ..., k\}$.
- For each partition \mathcal{T}^i ,
 - solve (S, 1) restricted to each square of \mathcal{T}^i , (with algorithm \mathcal{A})
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- Return

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$$

Procedure

Algorithm 2

in: instance (S, 1), algorithm A, parameter $\epsilon \in (0, 1]$

- Define k partitions \mathcal{T}^i , $k = \lceil \frac{10}{\varepsilon} \rceil, i \in \mathbb{Z}_k = \{1, ..., k\}.$
- For each partition \mathcal{T}^i ,
 - solve (S, 1) restricted to each square of \mathcal{T}^i , (with algorithm \mathcal{A})
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- Return

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$$

Procedure

Algorithm 2

in: instance (S, 1), algorithm A, parameter $\epsilon \in (0, 1]$

- Define k partitions \mathcal{T}^i , $k = \lceil \frac{10}{\varepsilon} \rceil, i \in \mathbb{Z}_k = \{1, ..., k\}.$
- For each partition \mathcal{T}^i ,
 - solve (S, 1) restricted to each square of \mathcal{T}^i , (with algorithm \mathcal{A})
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- Return

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$$

Procedure

Algorithm 2

in: instance (S, 1), algorithm A, parameter $\epsilon \in (0, 1]$

- Define k partitions \mathcal{T}^i , $k = \lceil \frac{10}{\epsilon} \rceil$, $i \in \mathbb{Z}_k = \{1, ..., k\}$.
- For each partition \mathcal{T}^i ,
 - solve (S, 1) restricted to each square of \mathcal{T}^i , (with algorithm \mathcal{A})
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- Return

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$$

Procedure

Algorithm 2

in: instance (S, 1), algorithm A, parameter $\epsilon \in (0, 1]$

- Define k partitions \mathcal{T}^i , $k = \lceil \frac{10}{\epsilon} \rceil$, $i \in \mathbb{Z}_k = \{1, ..., k\}$.
- For each partition \mathcal{T}^i ,
 - solve (S, 1) restricted to each square of \mathcal{T}^i , (with algorithm \mathcal{A})
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- Return

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$$

Procedure

Algorithm 2

in: instance (S, 1), algorithm A, parameter $\epsilon \in (0, 1]$

- Define k partitions \mathcal{T}^{i} , $k = \lceil \frac{10}{\epsilon} \rceil$, $i \in \mathbb{Z}_{k} = \{1, ..., k\}$.
- For each partition \mathcal{T}^i ,
 - solve (S,1) restricted to each square of Tⁱ, (with algorithm A)
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- Return

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$$

Procedure

Algorithm 2

in: instance (S, 1), algorithm A, parameter $\epsilon \in (0, 1]$

- Define k partitions \mathcal{T}^i , $k = \lceil \frac{10}{\epsilon} \rceil$, $i \in \mathbb{Z}_k = \{1, ..., k\}$.
- For each partition \mathcal{T}^i ,
 - solve (S, 1) restricted to each square of Tⁱ, (with algorithm A)
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- Return

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$$

Proofs

Lemma 2

Let $\epsilon \in (0, 1]$. Algorithm 2 yields a feasible solution to (S, 1) with lifetime $T(S, 1) \ge f \cdot (1 - \epsilon) \cdot T_{\text{opt}}(S, 1)$.

Lifetime

$$T\langle \mathcal{S}, 1 \rangle = \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} T\langle \mathcal{S}, 1 \rangle^i \ge \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} f \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$
$$= f \cdot (1 - \epsilon) \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$

Proofs

Lemma 2

Let $\epsilon \in (0, 1]$. Algorithm 2 yields a feasible solution to $(\mathcal{S}, 1)$ with lifetime $T(\mathcal{S}, 1) \geq f \cdot (1 - \epsilon) \cdot T_{\text{opt}}(\mathcal{S}, 1)$.

Lifetime

$$T\langle \mathcal{S}, 1 \rangle = \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} T\langle \mathcal{S}, 1 \rangle^i \ge \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} f \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$
$$= f \cdot (1 - \epsilon) \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$

Proofs

Lemma 2

Let $\epsilon \in (0, 1]$. Algorithm 2 yields a feasible solution to $(\mathcal{S}, 1)$ with lifetime $T(\mathcal{S}, 1) \geq f \cdot (1 - \epsilon) \cdot T_{\text{opt}}(\mathcal{S}, 1)$.

Lifetime

$$T\langle \mathcal{S}, 1 \rangle = \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} T\langle \mathcal{S}, 1 \rangle^i \ge \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} f \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$

$$= f \cdot (1 - \epsilon) \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i)$$

Proofs

Lemma 2

Let $\epsilon \in (0, 1]$. Algorithm 2 yields a feasible solution to $(\mathcal{S}, 1)$ with lifetime $T(\mathcal{S}, 1) \geq f \cdot (1 - \epsilon) \cdot T_{\text{opt}}(\mathcal{S}, 1)$.

Lifetime

$$T\langle \mathcal{S}, 1 \rangle = \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} T\langle \mathcal{S}, 1 \rangle^i \ge \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} f \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$

$$= f \cdot (1 - \epsilon) \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$

$$T\langle \mathcal{S} \rangle$$

$$T\langle \mathcal{S}, 1 \rangle^i \triangleq \sum_{j=1}^{|C^i|} t_j^i$$

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}} \underline{t}^i)$$

Proofs

Lemma 2

Let $\epsilon \in (0, 1]$. Algorithm 2 yields a feasible solution to $(\mathcal{S}, 1)$ with lifetime $T(\mathcal{S}, 1) \geq f \cdot (1 - \epsilon) \cdot T_{\text{opt}}(\mathcal{S}, 1)$.

Lifetime

$$T\langle \mathcal{S}, 1 \rangle = \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} T\langle \mathcal{S}, 1 \rangle^i \ge \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} f \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$

$$= f \cdot (1 - \epsilon) \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$

$$T\langle \mathcal{S}, 1 \rangle^i \ge f \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i)$$

Proofs

Lemma 2

Let $\epsilon \in (0, 1]$. Algorithm 2 yields a feasible solution to (S, 1) with lifetime $T(S, 1) \ge f \cdot (1 - \epsilon) \cdot T_{\text{opt}}(S, 1)$.

Lifetime

$$T\langle \mathcal{S}, 1 \rangle = \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} T\langle \mathcal{S}, 1 \rangle^i \ge \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} f \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$

$$= f \cdot (1 - \epsilon) \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_+} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_+} \underline{t}^i)$$

Proofs

Lemma 2

Let $\epsilon \in (0, 1]$. Algorithm 2 yields a feasible solume $T(S, 1) \ge f \cdot (1 - \epsilon) \cdot T_{\text{opt}}(S, 1)$.

Lifetime

$$T\langle \mathcal{S}, 1 \rangle = \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} T\langle \mathcal{S}, 1 \rangle^i \ge \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} f \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$
$$= f \cdot (1 - \epsilon) \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i)$$

Proofs

Lemma 2

Let $\epsilon \in (0, 1]$. Algorithm 2 yields a feasible solume $T\langle S, 1 \rangle \geq f \cdot (1 - \epsilon) \cdot T_{\text{opt}}\langle S, 1 \rangle$.

Lifetime

$$T\langle \mathcal{S}, 1 \rangle = \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} T\langle \mathcal{S}, 1 \rangle^i \ge \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} f \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$

$$= f \cdot (1 - \epsilon) \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i)$$

Proofs

Lemma 2

Let $\epsilon \in (0,1]$. Algorithm 2 yields a feasible solume $T(S,1) \ge f \cdot (1-\epsilon) \cdot T_{\text{opt}}(S,1)$.

Lifetime

$$T\langle \mathcal{S}, 1 \rangle = \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} T\langle \mathcal{S}, 1 \rangle^i \ge \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} f \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$
$$= f \cdot (1 - \epsilon) \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i)$$

Proofs

Lemma 2

Let $\epsilon \in (0,1]$. Algorithm 2 yields a feasible solu

me $T(S, 1) \geq f \cdot (1 - \epsilon) \cdot T_{\text{opt}}(S, 1)$.

Lifetime

$$T\langle \mathcal{S}, 1 \rangle = \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} T\langle \mathcal{S}, 1 \rangle^i \ge \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} f \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$
$$= f \cdot (1 - \epsilon) \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_t} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_t} \underline{t}^i)$$

Proofs

Lemma 2

Let $\epsilon \in (0,1]$. Algorithm 2 yields a feasible solu me $T(S, 1) \geq f \cdot (1 - \epsilon) \cdot T_{\text{opt}}(S, 1)$.

Lifetime

$$T\langle \mathcal{S}, 1 \rangle = \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} T\langle \mathcal{S}, 1 \rangle^i \ge \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} f \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$
$$= f \cdot (1 - \epsilon) \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i)$$

Proofs

Lemma 2

Let $\epsilon \in (0,1]$. Algorithm 2 yields a feasible solume $T(\mathcal{S},1) \geq f \cdot (1-\epsilon) \cdot T_{\mathrm{opt}}(\mathcal{S},1)$.

Lifetime

$$T\langle \mathcal{S}, 1 \rangle = \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} T\langle \mathcal{S}, 1 \rangle^i \ge \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} f \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$
$$= f \cdot (1 - \epsilon) \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i)$$

Proofs

Lemma 2

Let $\epsilon \in (0,1]$. Algorithm 2 yields a feasible solume $T(S,1) \ge f \cdot (1-\epsilon) \cdot T_{\text{opt}}(S,1)$.

Lifetime

$$T\langle \mathcal{S}, 1 \rangle = \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} T\langle \mathcal{S}, 1 \rangle^i \ge \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} f \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$
$$= f \cdot (1 - \epsilon) \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\varepsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i)$$

Proofs

Lemma 2

Let $\epsilon \in (0,1]$. Algorithm 2 yields a feasible solume $T\langle S,1\rangle \geq f\cdot (1-\epsilon)\cdot T_{\mathrm{opt}}\langle S,1\rangle$.

Lifetime

$$T\langle \mathcal{S}, 1 \rangle = \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} T\langle \mathcal{S}, 1 \rangle^i \ge \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} f \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$

$$= f \cdot (1 - \epsilon) \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_{t}} \underline{C}^{i}, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_{t}} \underline{t}^{i})$$

SKIT

Proofs

Lemma 2

Let $\epsilon \in (0, 1]$. Algorithm 2 yields a feasible solume $T(S, 1) \ge f \cdot (1 - \epsilon) \cdot T_{\text{opt}}(S, 1)$.

Lifetime

$$T\langle \mathcal{S}, 1 \rangle = \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} T\langle \mathcal{S}, 1 \rangle^i \ge \frac{1 - \epsilon}{k} \sum_{i \in \mathbb{Z}_k} f \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$

$$= f \cdot (1 - \epsilon) \cdot T_{\text{opt}} \langle \mathcal{S}, 1 \rangle$$

$$(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i)$$

Procedure

Complete Algorithm:

input: instance (S, 1), algorithm A, parameters $\delta \in [0, 1]$, $\epsilon \in (0, 1]$ output: schedule $(\underline{C}, \underline{t})$

- Define grid of width $\delta/2$.
- Move every node in S to the closest point on the grid $\to \tilde{S}$.
- Define k partitions \mathcal{T}^i , $k = \lceil \frac{10}{\epsilon} \rceil$, $i \in \mathbb{Z}_k = \{1, ..., k\}$.
- For each partition \mathcal{T}^i ,
 - solve $(\tilde{S}, 1 + \frac{\delta}{2})$ for each square of T^i , (using algorithm A)
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- $\blacksquare \ \, \mathsf{Return} \ (\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$

Procedure

Complete Algorithm:

input: instance (S, 1), algorithm A, parameters $\delta \in [0, 1]$, $\epsilon \in (0, 1]$ output: schedule $(\underline{C}, \underline{t})$

- Define grid of width δ/2.
- Move every node in S to the closest point on the grid $\to \tilde{S}$.
- Define k partitions \mathcal{T}^i , $k = \lceil \frac{10}{\varepsilon} \rceil, i \in \mathbb{Z}_k = \{1, ..., k\}.$
- For each partition \mathcal{T}^i ,
 - **solve** (\mathcal{S} , 1) for each square of \mathcal{T}^i , (using algorithm \mathcal{A})
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- Return $(\underline{C},\underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$

Algorithm 2

Procedure

Complete Algorithm:

input: instance (S, 1), algorithm A, parameters $\delta \in [0, 1]$, $\epsilon \in (0, 1]$ output: schedule (C, t)

- Define grid of width $\delta/2$.
- Move every node in S to the closest point on the grid $\to \tilde{S}$.
- Define k partitions \mathcal{T}^i , $k = \lceil \frac{10}{\epsilon} \rceil$, $i \in \mathbb{Z}_k = \{1, ..., k\}$.
- For each partition \mathcal{T}^i ,
 - solve $(\tilde{S} \ 1 + \frac{\delta}{2})$ for each square of \mathcal{T}^i , (using algorithm \mathcal{A})
 - combine solutions $\rightarrow (\underline{C}^i, \underline{t}^i)$.
- Return $(\underline{C}, \underline{t}) = (\bigcup_{i \in \mathbb{Z}_k} \underline{C}^i, \frac{(1-\epsilon)}{k} \cdot \bigcup_{i \in \mathbb{Z}_k} \underline{t}^i).$

Algorithm 1

Theorem

Theorem 1

Let $\delta \in [0,1]$ and $k = \lceil 10/\epsilon \rceil$ with $\epsilon \in (0,1]$. Complete Algorithm yields a feasible solution $(\underline{C},\underline{t})$ to $(\mathcal{S},1+\delta)$ with lifetime

$$T\langle S, 1+\delta \rangle \geq (1-\epsilon) \cdot f \cdot T_{\text{opt}}\langle S, 1 \rangle.$$

Its runtime complexity is bounded by

$$O(|\mathcal{S}| + \epsilon |\mathcal{S}| \cdot g_{\mathcal{A}}(O(1/\delta^2 \epsilon^2))) = O(|\mathcal{S}|)$$

with $g_A(|S|)$ the runtime of algorithm A.

Algorithms II

Theorem 1 - (part a)

Let $\delta \in [0,1]$ and $k = \lceil 10/\epsilon \rceil$ with $\epsilon \in (0,1]$. Complete Algorithm yields a feasible solution $(\underline{C},\underline{t})$ to $(\mathcal{S},1+\delta)$ with lifetime

$$T\langle S, 1+\delta \rangle \geq (1-\epsilon) \cdot f \cdot T_{\text{opt}}\langle S, 1 \rangle.$$

Feasibility

Proofs - 1

follows directly from Lemma 1 & 2

Approximation Guarantee

- node discretization $\to T\langle S, 1+\delta \rangle \ge f \cdot T_{\text{opt}}\langle S, 1 \rangle$ for all squares
- $lue{}$ combining solutions to all tiles o additional factor $(1-\epsilon)$

Theorem 1 - (part a)

Let $\delta \in [0,1]$ and $k = \lceil 10/\epsilon \rceil$ with $\epsilon \in (0,1]$. Complete Algorithm yields a feasible solution $(\underline{C},\underline{t})$ to $(\mathcal{S},1+\delta)$ with lifetime

$$T\langle S, 1+\delta \rangle \geq (1-\epsilon) \cdot f \cdot T_{\text{opt}}\langle S, 1 \rangle.$$

Feasibility

Proofs - 1

follows directly from Lemma 1 & 2

Approximation Guarantee

- node discretization $\to T\langle S, 1+\delta \rangle \ge f \cdot T_{\text{opt}}\langle S, 1 \rangle$ for all squares
- combining solutions to all tiles \rightarrow additional factor (1ϵ)

Theorem 1 - (part b)

The runtime complexity of Complete Algorithm is bounded by

$$\mathcal{O}\Big(|\mathcal{S}| + 1/\epsilon|\mathcal{S}| \cdot g_{\mathcal{A}}(\mathcal{O}(1/\delta^2\epsilon^2))\Big) = \mathcal{O}(|\mathcal{S}|)$$

with $g_{\mathcal{A}}(|\mathcal{S}|)$ runtime of algorithm \mathcal{A} with respect to number of nodes.

Runtime

Proofs - 2

- lacksquare $|\mathcal{S}|$: discretizing nodes
- $\mathcal{O}(1/\epsilon|\mathcal{S}|)$: squares to be computed
- $g_{\mathcal{A}}(\mathcal{O}(1/\delta^2\epsilon^2))$: runtime of algorithm \mathcal{A} for each square

Theorem 1 - (part b)

The runtime complexity of Complete Algorithm is bounded by

$$\mathcal{O}\Big(|\mathcal{S}| + 1/\epsilon|\mathcal{S}| \cdot g_{\mathcal{A}}(\mathcal{O}(1/\delta^2\epsilon^2))\Big) = \mathcal{O}(|\mathcal{S}|)$$

with $g_{\mathcal{A}}(|\mathcal{S}|)$ runtime of algorithm \mathcal{A} with respect to number of nodes.

Runtime

Proofs - 2

- lacksquare $|\mathcal{S}|$: discretizing nodes
- $\mathcal{O}(1/\epsilon|\mathcal{S}|)$: squares to be computed
- $g_{\mathcal{A}}(\mathcal{O}(1/\delta^2\epsilon^2))$: runtime of algorithm \mathcal{A} for each square

Theorem 1 - (part b)

The runtime complexity of Complete Algorithm is bounded by

$$\mathcal{O}\Big(|\mathcal{S}| + 1/\epsilon|\mathcal{S}| \cdot g_{\mathcal{A}}(\mathcal{O}(1/\delta^2\epsilon^2))\Big) = \mathcal{O}(|\mathcal{S}|)$$

with $g_{\mathcal{A}}(|\mathcal{S}|)$ runtime of algorithm \mathcal{A} with respect to number of nodes.

Runtime

Proofs - 2

- lacksquare $|\mathcal{S}|$: discretizing nodes
- $\mathcal{O}(1/\epsilon|\mathcal{S}|)$: squares to be computed
- $g_{\mathcal{A}}(\mathcal{O}(1/\delta^2\epsilon^2))$: runtime of algorithm \mathcal{A} for each square

Theorem 1 - (part b)

The runtime complexity of Complete Algorithm is bounded by

$$\mathcal{O}\Big(|\mathcal{S}| + 1/\epsilon|\mathcal{S}| \cdot g_{\mathcal{A}}(\mathcal{O}(1/\delta^2\epsilon^2))\Big) = \mathcal{O}(|\mathcal{S}|)$$

with $g_{\mathcal{A}}(|\mathcal{S}|)$ runtime of algorithm \mathcal{A} with respect to number of nodes.

Runtime

Proofs - 2

lacksquare $|\mathcal{S}|$: discretizing nodes

 $\mathcal{O}(1/\epsilon|\mathcal{S}|)$: squares to be computed

 $\mathbf{g}_{A}(\mathcal{O}(1/\delta^{2}\epsilon^{2}))$: runtime of algorithm \mathcal{A} for each square

Proofs - 2

Theorem 1 - (part b)

The runtime complexity of Complete Algorit

$$\mathcal{O}\Big(|\mathcal{S}| + 1/\epsilon|\mathcal{S}| \cdot g_{\mathcal{A}}(\mathcal{O}(1/\delta^2\epsilon^2))\Big)$$

with $g_{\mathcal{A}}(|\mathcal{S}|)$ runtime of algorithm \mathcal{A} with res

Runtime

- lacksquare $|\mathcal{S}|$: discretizing nodes
- $\mathcal{O}(1/\epsilon|\mathcal{S}|)$: squares to be computed
- $g_{\mathcal{A}}(\mathcal{O}(1/\delta^2\epsilon^2))$: runtime of algorithm \mathcal{A} for each square

Proofs - 2

Theorem 1 - (part b)

The runtime complexity of Complete Algorit

$$\mathcal{O}\Big(|\mathcal{S}| + 1/\epsilon|\mathcal{S}| \cdot g_{\mathcal{A}}(\mathcal{O}(1/\delta^2\epsilon^2))\Big)$$

with $g_{\mathcal{A}}(|\mathcal{S}|)$ runtime of algorithm \mathcal{A} with res

Runtime

lacksquare $|\mathcal{S}|$: discretizing nodes

 $\mathcal{O}(1/\epsilon|\mathcal{S}|)$: squares to be computed

 $\mathbf{g}_{A}(\mathcal{O}(1/\delta^{2}\epsilon^{2}))$: runtime of algorithm \mathcal{A} for each square

Proofs - 2

Theorem 1 - (part b)

The runtime complexity of Complete Algorit

$$\mathcal{O}(|\mathcal{S}| + 1/\epsilon |\mathcal{S}| \cdot g_{\mathcal{A}}(\mathcal{O}(1/\delta^2\epsilon^2))^{\bullet})$$

with $g_{\mathcal{A}}(|\mathcal{S}|)$ runtime of algorithm \mathcal{A} with res

Runtime

- lacksquare $|\mathcal{S}|$: discretizing nodes
- $\mathcal{O}(1/\epsilon|\mathcal{S}|)$: squares to be computed
- $g_A(\mathcal{O}(1/\delta^2\epsilon^2))$: runtime of algorithm \mathcal{A} for each square

Proofs - 2

Theorem 1 - (part b)

The runtime complexity of Complete Algorit

$$\mathcal{O}\Big(|\mathcal{S}| + 1/\epsilon|\mathcal{S}| \cdot g_{\mathcal{A}}(\mathcal{O}(1/\delta^2\epsilon^2))\Big)$$

with $g_{\mathcal{A}}(|\mathcal{S}|)$ runtime of algorithm \mathcal{A} with res

Runtime

: discretizing nodes

 $\mathcal{O}(1/\epsilon|\mathcal{S}|)$: squares to be computed

 $g_A(\mathcal{O}(1/\delta^2\epsilon^2))$: runtime of algorithm \mathcal{A} for each square

Proofs - 2

Theorem 1 - (part b)

The runtime complexity of Complete Algorit

$$\mathcal{O}\Big(|\mathcal{S}| + 1/\epsilon|\mathcal{S}| \cdot g_{\mathcal{A}}(\mathcal{O}(1/\delta^2\epsilon^2))\Big)$$

with $g_{\mathcal{A}}(|\mathcal{S}|)$ runtime of algorithm \mathcal{A} with res

Runtime

: discretizing nodes

 $\mathcal{O}(1/\epsilon|\mathcal{S}|)$: squares to be computed

 $\mathbf{g}_{A}(\mathcal{O}(1/\delta^{2}\epsilon^{2}))$: runtime of algorithm \mathcal{A} for each square

Conclusion

Contribution

- pseudo-linear time dual approximation scheme
 - $\,\blacksquare\,\, (1-\epsilon)$ approximation, if sensing ranges are allowed to grow by δ
 - lacktriangle runtime dependent on δ , ϵ , number of nodes
- proof of NP-completeness
 - respecting the geometric structure of the problem

Future Work

- enhance model (non-uniform sensing ranges, obstacles, ...)
 - ightarrow extension to low-dimensional metric
- lacktriangle implementation using an exact solver as algorithm ${\cal A}$
- distributed algorithm

Thanks go to David Steurer

Conclusion

Contribution

- pseudo-linear time dual approximation scheme
 - $\,\blacksquare\,\, (1-\epsilon)$ approximation, if sensing ranges are allowed to grow by δ
 - \blacksquare runtime dependent on δ , ϵ , number of nodes
- proof of NP-completeness
 - respecting the geometric structure of the problem

Future Work

- enhance model (non-uniform sensing ranges, obstacles, ...)
 - → extension to low-dimensional metrics
- lacksquare implementation using an exact solver as algorithm ${\cal A}$
- distributed algorithm

Thanks go to David Steurer

Conclusion

Contribution

- pseudo-linear time dual approximation scheme
 - $lackbox{ } (1-\epsilon)$ approximation, if sensing ranges are allowed to grow by δ
 - lacktriangle runtime dependent on δ , ϵ , number of nodes
- proof of NP-completeness
 - respecting the geometric structure of the problem

Future Work

- enhance model (non-uniform sensing ranges, obstacles, ...)
 - ightarrow extension to low-dimensional metrics
- lacksquare implementation using an exact solver as algorithm ${\cal A}$
- distributed algorithm

Thanks go to David Steurer

Thank you for your attention!

time for questions