
Engineering Time-Dependent Many-to-Many
Shortest Paths Computation ∗

Robert Geisberger and Peter Sanders

Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
{geisberger,sanders}@kit.edu

Abstract
Computing distance tables is important for many logistics problems like the vehicle routing
problem (VRP). While shortest distances from all source nodes in S to all target nodes in T

are time-independent, travel times are not. We present the first efficient algorithms to compute
time-dependent travel time tables in large time-dependent road networks. Our algorithms are
based on time-dependent contraction hierarchies (TCH), currently the fastest time-dependent
speed-up technique. The computation of a table is inherently in Θ(|S| · |T |), and therefore
inefficient for large tables. We provide one particular algorithm using only Θ(|S|+ |T |) time
and space, being able to answer queries two orders of magnitude faster than the basic TCH
implementation. If small errors are acceptable, approximate versions of our algorithms are further
orders of magnitude faster.

1998 ACM Subject Classification G.2.2, J.1

Keywords and phrases time-dependent, travel time table, algorithm engineering, vrp

Digital Object Identifier 10.4230/OASIcs.xxx.yyy.p

1 Introduction

Computing travel times between all locations in a predefined set is a known problem arising
in many operations research problems, e.g. vehicle routing. More formally, given a graph
G = (V,E), and a set of source nodes S ⊆ V and target nodes T ⊆ V , we want to know the
travel time between each source and target node (many-to-many shortest paths problem).
The common approach is to compute a travel time table of size |S| · |T |, reducing subsequent
travel time computations to a simple table look-up. Due to the knowledge of historical traffic
data and traffic prediction models, it is possible to forecast travel times in dependence to the
departure time. These time-dependent travel times allow to compute more realistic routes,
especially important for routing within cities with time windows. In this time-dependent
scenario, each cell in the travel time table corresponds to a travel time function over the
departure time.

In contrast to the static scenario without time-dependency, such a time-dependent table
takes a lot longer to compute and occupies a lot more space. We refine the problem of
computing a table to the problem of implementing a query interface: Given s ∈ S and t ∈ T ,
we want to know the earliest arrival time when we depart at time τ (or the travel time profile
for all τ). So any algorithm that previously used a table now just needs to replace its table
lookups with calls to this interface. An algorithm behind this interface uses a precomputed
data structure with the knowledge of G, S and T to answer these queries fast. Especially
in the common case where |S| , |T | � |V |, such an algorithm is able to answer a query

∗ Partially supported by DFG grant SA 933/5-1.

© Robert Geisberger and Peter Sanders;
licensed under Creative Commons License NC-ND

Conference/workshop/symposium title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:geisberger@kit.edu
mailto:sanders@kit.edu
http://dx.doi.org/10.4230/OASIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/en/about-dagstuhl/

2 Engineering Time-Dependent Many-to-Many Shortest Paths Computation

several orders of magnitude faster than a common fast time-dependent query algorithm. We
contribute five such algorithms that allow different tradeoffs between precomputation time,
space and query time. Furthermore, we provide heuristic versions of these algorithms that
are substantially faster and more space-efficient. For these, we are able to guarantee quite
tight error bounds for queries.

1.1 Related Work

To the best of our knowledge, there is currently no work on the time-dependent many-to-
many shortest paths problem. The related work can be divided into work on the static
(time-independent) many-to-many shortest paths problem and work on the time-dependent
point-to-point shortest path problem. To compute an |S|× |T | table on a static road network,
the most simple method is to perform |S| single source shortest path computations using
Dijkstra’s algorithm. But this is more than three orders of magnitude slower than [12]. This
algorithm [12] can be adapted to any speed-up technique for shortest paths that is bidirected,
i.e. using a small forward search from the source node and a small backward search from
the target node to find the shortest path, and non-goaldirected, i.e. the small forward search
does not depend on the target node and vice versa. [12] gains its speedup by computing
each forward/backward search space only once and combining them. This combination
amounts to cheap operations (add, min on integers) in the static scenario. However, in the
time-dependent scenario, they map to expensive operations on travel time functions. Our
contributions are more sophisticated algorithms to perform the combination, being several
times faster than [12].

We are not able to use the previous simple approach of |S| single source computations in
the time-dependent scenario, as even one such computation requires too much main memory.
However, many new algorithms for the time-dependent point-to-point shortest path problem
have been developed recently. We refer to [5] for an overview. Similar to [12], our algorithms
require a time-dependent speed-up technique that is bidirected and non-goaldirected. These
requirements stem from from the similar problem of many-to-many shortest paths but our
algorithms are significantly more advanced than [12]. We use time-dependent contraction
hierarchies (TCH) [3, 4] for our algorithms since it is currently the only one that provides
small enough forward and backward search spaces.

The time-dependent vehicle routing problem (TDVRP) is a known problem in operations
research and there exist many algorithms to solve it [13, 11, 9, 6, 8]. The goal is to find
routes for a fleet of vehicles such that all customers (locations) are satisfied and the total
(time-dependent) cost is minimized. Solving this problem is important for logistics, supply
chain management and similar industries. Our algorithms provide currently the most efficient
way to compute the time-dependent travel times between the distinct locations of the TDVRP.
Industrial applications often compute travel times for a discrete set of departure times, e.g.
every hour. This approach is very problematic as it is expensive to compute, requires a lot
of space (a table for every hour), and provides absolutely no approximation guarantee. Our
heuristic variants do not have these disadvantages. We require less precomputation time
and space, a very important aspect for companies as they can run the algorithm on smaller
and cheaper machines. And, even more important, we provide approximation guarantees
potentially resulting in better routes in practice that further reduce the operational costs of
their transportation business.

Robert Geisberger and Peter Sanders 3

2 Preliminaries

2.1 Time-Dependent Road Networks
Let G = (V,E) be a directed graph representing a road network.1 Each edge (u, v) ∈ E has
a function f : R → R≥0 assigned as edge weight. This function f specifies the time f(τ)
needed to reach v from u via edge (u, v) when starting at departure time τ . So the edge
weights are called travel time functions (TTFs).

In road networks we usually do not arrive earlier when we start later. So all TTFs f fulfill
the FIFO-property: ∀τ ′ > τ : τ ′ + f(τ ′) ≥ τ + f(τ). In this work all TTFs are sequences of
points representing piecewise linear functions.2 With |f | we denote the complexity (i.e., the
number of points) of f . We define f ∼ g :⇔ ∀τ : f(τ) ∼ g(τ) for ∼∈ {<,>,≤,≥}.

For TTFs we need the following three operations:
Evaluation. Given a TTF f and a departure time τ we want to compute f(τ). Using a
bucket structure this runs in constant average time.
Linking. Given two adjacent edges (u, v), (v, w) with TTFs f, g we want to compute the
TTF of the whole path 〈u→f v →g w〉. This is the TTF g ∗ f : τ 7→ g(f(τ) + τ) + f(τ)
(meaning g “after” f). It can be computed in O(|f |+ |g|) time and |g ∗ f | ∈ O(|f |+ |g|)
holds. Linking is an associative operation, i.e., f ∗ (g ∗ h) = (f ∗ g) ∗ h for TTFs f, g, h.
Minimum. Given two parallel edges e, e′ from u to v with TTFs f, f ′, we want to merge
these edges into one while preserving all shortest paths. The resulting single edge e′′ from
u to v gets the TTF min(f, f ′) defined by τ 7→ min{f(τ), f ′(τ)}. It can be computed in
O(|f |+ |f ′|) time and |min(f, f ′)| ∈ O(|f |+ |f ′|) holds.

In a time-dependent road network, shortest paths depend on the departure time. For
given start node s and destination node t there might be different shortest paths for different
departure times. The minimal travel times from s to t for all departure times τ are called
the travel time profile from s to t and are represented by a TTF.

2.2 Algorithmic Ingredients

Profile Search. To compute the travel time profile from a source node s to all other nodes,
we use a label correcting modification of Dijkstra’s algorithm [14]. The modifications are as
follows:

Node labels. Each node v has a tentative TTF from s to v.
Priority queue (PQ). The keys used are the global minima of the labels. Reinserts into
the PQ are possible and happen (label correcting).
Edge Relaxation. Consider the relaxation of an edge (u, v) with TTF fuv. Let the label of
node u be the TTF fu. The label fv of the node v is updated by computing the minimum
TTF of fv and fuv ∗ fu.

Min-Max Search. Profile search is a very expensive algorithm. Min-max search [3] is a
roughly approximating modification of profile search and runs much faster. Essentially it is
two searches based on Dijkstra’s algorithm, one based on the global minima and one on the

1 Nodes represent junctions and edges represent road segments.
2 Here, all TTFs have period Π = 24h. However, using non-periodic TTFs makes no real difference. Of

course, covering more than 24h will increase the memory usage.

4 Engineering Time-Dependent Many-to-Many Shortest Paths Computation

maxima of the edge TTFs. The results are a lower and an upper bound on the travel time
profile.

Approximations. Give a TTF f . A lower bound is a TTF f↓ with f↓ ≤ f and a lower
ε-bound if further (1− ε)f ≤ f↓. An upper bound is a TTF f↑ with f ≤ f↑ and an upper ε-
bound if further f↑ ≤ (1+ε)f . An ε-approximation is a TTF fl with (1−ε)f ≤ fl ≤ (1+ε)f .
Approximate TTFs usually have fewer points and are therefore faster to process and require
less memory. To compute ε-bounds and ε-approximations from an exact TTF f we use the
efficient geometric algorithm described by Imai and Iri [10]. It yields a TTF with minimal
number of points for ε in time O(|f |).

2.3 Time-Dependent Contraction Hierarchies

Hierarchies. In a time-dependent contraction hierarchy [3] all nodes of G are ordered by
increasing ‘importance’ [7]. In order to simplify matters, we identify each node with its
importance level, i.e. V = 1..n.

Now, the TCH is constructed by contracting the nodes in the above order. Contracting a
node v means removing v from the graph without changing shortest path distances between
the remaining (more important) nodes. This way we construct the next higher level of the
hierarchy from the current one. A trivial way to contract a node v is to introduce a shortcut
edge (u,w) with TTF g ∗ f for every path u →f v →g w with v < u,w. But in order to
keep the graph sparse, we can try to avoid a shortcut (u,w) by finding a witness – a travel
time profile W from u to v fulfilling W ≤ g ∗ f . Such a witness proves that the shortcut is
never needed. The node ordering and the construction of the TCH are performed offline in a
precomputation and are only required once per graph independent of S and T .

Queries. In the point-to-point scenario, we compute the travel time profile between source
s and target t by performing a two-phase bidirectional time-dependent profile search in the
TCH. The special restriction on a TCH search is that it only goes upward, i.e. we only relax
edges where the other node is more important. We first perform a bidirectional min-max
search. Both search scopes meet at candidate nodes u giving lower/upper bounds on the
travel time between source and target, allowing us to prune the following profile search. The
bidirectional profile search computes forward TTF fu and backward TTF gu representing a
TTF gu ∗ fu from source to target (though not necessarily an optimal one). The travel time
profile is min {gu ∗ fu | u candidate}.

During the min-max search search we perform stall-on-demand (see [7, 3]): A node u is
stalled when we find that a maximum to u coming from a higher level is better than the
minimum. The edges of stalled nodes are not relaxed.

3 Five Algorithms

We engineer five algorithms with different precomputation time, space and query time. They
support two types of queries: time and profile queries. A time query computes the earliest
arrival time at a node t when departing from node s at time τ resulting in a query interface
(s, t, τ), and a profile query computes the travel time profile between s and t resulting in a
query interface (s, t).

Our algorithms have in common that they need to precompute ∀s ∈ S the target-
independent forward search spaces

Fs := {(u, fu) | fu is TTF from s to u in forward upward search}

Robert Geisberger and Peter Sanders 5

and ∀t ∈ T the symmetric source-independent backward search spaces

Bt := {(u, gu) | gu is TTF from u to t in backward upward search} .

We compute these search spaces using unidirectional upward profile searches. To reduce
the computational effort, we initially perform a min-max search using the stall-on-demand
technique and use it to prune the following profile search. This technique stalls nodes that
are reached suboptimally. Note that a node can be reached suboptimally, as our upward
search does not relax downward edges of a settled node. These stalled nodes will never be a
candidate to a shortest path, as they are reached suboptimally. Therefore, we do not store
them in the search spaces Fs, Bt. Naturally, we cannot use further pruning techniques from
[4] that are applied after an upper bound on the shortest paths distance is obtained.

Algorithm Intersect computes and stores Fs and Bt. The other four algorithms are based
on it, we ordered them by decreasing query time. Algorithm 1 shows the implementation of
the time query. The main part is to evaluate all paths via the candidate nodes. We order
the search space entries by node-ids, so that a single scan of both search spaces finds all
candidates. At most 2·#candidates TTF evaluations are required for a query. However, the
TTF evaluations are the most expensive part, so we prune them using the (precomputed)
minima of fu, gu.
Algorithm 1: IntersectTimeQuery(s,t,τ)
1 δ :=∞; // tentative arrival time
2 foreach (u, fu) ∈ Fs, (u, gu) ∈ Bt do // loop over all candidate nodes
3 if τ + min fu + min gu < δ then // prune using minima
4 δ′ := fu(τ) + τ ; // evaluate TTFs
5 δ′ := gu(δ′) + δ′;
6 δ := min(δ, δ′); // update tentative arrival time

7 return δ

Algorithm 2: IntersectProfileQuery(s,t)
1 δ := minu candidate {max fu + max gu}; // upper bound based on maxima
2 v := argminu candidate {min fu + min gu}; // minimum candidate
3 δ↑ := g↑v ∗ f↑v ; // upper bound based on approximate TTFs
4 δ := min(δ,max δ↑); // tighten upper bound
5 foreach (u, ·) ∈ Fs, (u, ·) ∈ Bt do // loop over all candidate nodes
6 if min fu + min gu ≤ δ then // prune using minima
7 δ↑ := min

(
δ↑, g↑u ∗ f↑u

)
; // update upper bound

8 δ := gv ∗ fv; // tentative travel time profile
9 foreach (u, fu) ∈ Fs, (u, gu) ∈ Bt do // loop over all candidate nodes

10 if ¬(g↓u ∗ f↓u > δ↑) then // prune using lower bounds
11 δ := min (δ, gu ∗ fu); // update travel time profile

12 return δ

The profile query is similar to the time query, but links the two TTFs at the candidate
instead of evaluating them. But as the link operation is even more expensive than the
evaluation operation, we implement more sophisticated pruning steps, see Algorithm 2.
For each (u, fu) ∈ Fs we compute and store lower/upper ε-bounds f↓u / f↑u and for each
(u, gu) ∈ Bt we compute and store lower/upper ε-bounds g↓u / g↑u. Then we pass three times

6 Engineering Time-Dependent Many-to-Many Shortest Paths Computation

through the search spaces Fs, Bt:
1. In Line 1 we compute an upper bound δ based on the maxima of the search space TTFs.

Also, in Line 2 we compute a candidate with minimum sum of the minima of the search
space TTFs. This candidate is usually very important and a good starting point to obtain
an tight lower bound.

2. In Lines 3–7 we compute an upper bound δ↑ based on the upper ε-bounds. This bound
is tighter than the one based on the maxima.

3. In Lines 8–11 we compute the travel time profile and use the upper bound δ↑ for pruning.
So we only execute the very expensive link and minimum operations on fu and gu at
Line 11.

The profile query is arguably the more important of both query types, as it allows to
precompute all earliest arrival times independent of a specific departure time. Also, on the
profile query we see the difference to the previous time-independent algorithm [12] that only
required one pass. Here, we intentionally perform three passes as this allows to save some
expensive TTF operations. Therefore, we store a TTF not at the candidate node u (as [12]
did), but at the source or target node. This is necessary to perform the intersection, which
allows us to keep only one set of upper bounds (δ, δ↑) in main memory at the same time,
and not one set for each pair in S × T .

An important observation is that the computation time and space of a single search
space depend only on the graph and the edge weights, and are independent of |S| and |T |.
Intersect requires therefore Θ(|S|+ |T |) preprocessing time and space, and Θ(1) query
time, if only |S| and |T | are considered as changing variables.

Algorithm MinCandidate additionally precomputes and stores the minimum candidate
(Algorithm 2, Line 2) in a table cmin(s, t).

cmin(s, t) := argmin
u candidate

{min fu + min gu}

By that, we can use it to obtain a good initial upper bound for a time query, by initializing
δ in Line 1 of Algorithm 1 with the travel time via cmin(s, t). This allows to prune more
candidates and results in faster query times. However, preprocessing time and space are now
in Θ(|S| · |T |), but with a very small constant factor.

Algorithm RelevantCandidates precomputes a set of candidate nodes crel(s, t) for each
s-t-pair by using lower and upper bounds on the TTFs in Fs and Bt.

crel(s, t) :=
{
u
∣∣∣ ¬(g↓u ∗ f↓u > min

v candidate

{
g↑v ∗ f↑v

})}
This is exactly the set of nodes that are evaluated in Line 11 of Algorithm 2. So it is sufficient
to evaluate the candidates in crel(s, t) to answer a query correctly. In practice, crel(s, t) is
stored as an array with cmin(s, t) on the first position. Additionally, we can save space by not
storing (u, fu) in Fs if ∀t ∈ T : u 6∈ crel(s, t), and symmetrically for Ft. The precomputation
time depends on the used lower and upper bounds: Using only min-max-values is fast but
results in larger sets, using ε-bounds is slower but reduces the size of the sets.

Algorithm OptCandidate precomputes for every departure time τ an optimal candidate
copt(s, t, τ), so a time query only needs to evaluate one candidate.

copt(s, t, τ) := argmin
u candidate

{(gu ∗ fu)(τ)}

Robert Geisberger and Peter Sanders 7

A candidate is usually optimal for a whole period of time, we store these periods as consecutive,
non-overlapping, intervals [τ1, τ2). In practice, there are only very few intervals per pair (s, t)
so that we can find the optimal candidate very fast. The downside of this algorithm is its
very high precomputation time since it requires the computation of the travel time profile
for any pair (s, t) ∈ S × T with the Intersect algorithm. Still, storing only the optimal
candidates requires usually less space than the travel time profile.

Algorithm Table computes and stores all travel time profiles in a table.

table(s, t) := min
u candidate

{gu ∗ fu}

It provides the fastest query times, but the space requirements in Θ(|S| · |T |) have a large
constant factor. The table cells are computed with the Intersect algorithm.

4 Approximate Travel Time Functions

Approximate TTFs reduce preprocessing time, space and query time of the algorithms in
the previous section by several orders of magnitude by sacrificing exactness. While used
before for point-to-point queries [4], we are the first to present approximation guarantees for
queries.

There are three places to approximate TTFs: on the edges of the TCH, the node label
TTFs after the forward/backward searches and finally the Table entries. Approximating
the latter two can be applied straightforwardly. But performing a TCH profile query on
approximate edge TTFs requires a change of the stall-on-demand technique since we must
not stall an optimal path. We ensure this by performing the initial min-max query on exact
values with stall-on-demand, the latter profile query without.

The query algorithms stay the same, except that Intersect profile queries no longer use
ε-bounds for pruning, as the overhead does no longer pay off.

Lemmas 1–3 enable us to compute theoretical error bounds. With Lemma 3 we have an
error bound when we approximate the edge TTFs with εe:

ε1 := εe(1 + α)/(1− αεe)

The error bound for approximating the search space TTFs with εs follows directly from the
definition of an εs-approximation:

ε2 := (1 + εs)(1 + ε1)− 1

Lemma 1 gives an error bound when we link the forward and backward search TTF on a
candidate node:

ε3 := ε2(1 + (1 + ε2)α)

With Lemma 2 we know that ε3 is an error bound on the approximate travel time profile,
the minimum over all candidate TTFs. When we additionally approximate the resulting
profile TTF for the table with εt, the error bound follows directly from the definition of an
εt-approximation:

ε4 := (1 + εt)(1 + ε3)− 1

In Table 6 we compute the resulting error bounds for our test instance.

I Lemma 1. Let fl be an εf -approximation of TTF f and gl be an εg-approximation of
TTF g. Let α be the maximum slope of g, i.e. ∀τ ′ > τ : g(τ ′) − g(τ) ≤ α |τ ′ − τ |. Then
gl ∗ fl is a max {εg, εf (1 + (1 + εg)α)}-approximation of g ∗ f .

8 Engineering Time-Dependent Many-to-Many Shortest Paths Computation

Proof. Let τ be a time.
(gl ∗ fl)(τ) = gl(fl(τ) + τ) + fl(τ)

≤ (1 + εg)(g(fl(τ) + τ)) + (1 + εf)f(τ)
≤ (1 + εg)(g(f(τ) + τ) + α

∣∣(fl(τ) + τ)− (f(τ) + τ)
∣∣) + (1 + εf)f(τ)

≤ (1 + εg)(g(f(τ) + τ) + αεff(τ)) + (1 + εf)f(τ)
= (1 + εg)g(f(τ) + τ) + (1 + εf (1 + (1 + εg)α))f(τ)

By applying the symmetric transformations, we also obtain (gl ∗fl)(τ) ≥ (1−εg)g(f(τ)+
τ) + (1− εf (1 + (1− εg)α))f(τ). J

I Lemma 2. Let fl be an εf -approximation of TTF f and gl be an εg-approximation of
TTF g. Then min

{
fl, gl

}
is a max {εf , εg}-approximation of min {f, g}.

Proof. Let τ be a time, WLOG we assume that min
{
fl, gl

}
(τ) = fl(τ) and min {f, g} (τ) =

g(τ). Then min
{
fl, gl

}
(τ) = fl(τ) ≤ gl(τ) ≤ (1 + εg)g(τ) and min

{
fl, gl

}
(τ) = fl(τ) ≥

(1− εf)f(τ) ≥ (1− εf)g(τ). J

I Lemma 3. Let Fs and Bt be the forward/backward search spaces computed on a TCH
and F ls and Blt on the same TCH with ε-approximated edge TTFs. In both cases, stall-
on-demand was only used with exact min-max values. Let α be the maximum slope of all
TTFs in Fs, Bt, and αε < 1. Then {u | (u, fu) ∈ Fs} = {u | (u, flu) ∈ F ls } and flu is an
ε(1 + α)/(1− αε)-approximation of fu, and the same holds for the backward search spaces.

Proof. {u | (u, fu) ∈ Fs} = {u | (u, flu) ∈ F ls } holds trivially since exact and approximate
search both use the same min-max values, the same for the backward search spaces. For the
forward search, we will prove via induction over s (starting with the most important node
n) that for each flu in Fs there exists a k ∈ N so that fu is a ((1 + ε)

(∑k−1
i=0 (αε)i

)
− 1)-

approximation of fu.
The base case holds trivially since for s = n, Fn = {(n, 0)} = F

l
n .

Inductive step: Let (u, fu) ∈ Fs, (u, flu) ∈ F
l
s . Let N = {v | (s, v) ∈ E, s < v}, hsv

be the exact TTF on the edge (s, v) and h
l
sv its ε-approximation. By definition of N ,

fu = min
{
f̃u ∗ hsv | v ∈ N, (u, f̃u) ∈ Fv

}
and f

l
u = min{f̃lu ∗ hlsv | v ∈ N, (u, f̃lu) ∈ F

l
v }.

By induction hypothesis there exists k ∈ N so that f̃lu is an ((1 + ε)
(∑k−1

i=0 (αε)i
)
−

1)-approximation of f̃u. Also f̃u has maximum slope α and the edge TTF h
l
sv is an ε-

approximation of hsv. So by Lemma 1, f̃lu ∗hlsv is a ((1+ε)
(∑k

i=0 (αε)i
)
−1)-approximation

of f̃u ∗ hsv (k k + 1). Lemma 2 finally shows that the induction hypothesis holds for flu .
So for any TTF in any F ls there exists this k ∈ N, and with αε < 1 we follow limk→∞((1 +
ε)
(∑k−1

i=0 (αε)i
)
−1) = ε(1+α)/(1−αε). This concludes the proof for the forward case. The

backward case is similar to the forward case except that we use N = {v | (u, v) ∈ E, v < u},
gu = min {gv ∗ huv | v ∈ N, (v, gv) ∈ Bt} and glu = min{glv ∗ hluv | v ∈ N, (v, glv) ∈ Blt }. J

5 On Demand Precomputation

We discussed five algorithms with different precomputation times in Section 3. Only the
first algorithm Intersect provides precomputation in Θ(|S|+ |T |). All further algorithms
are in Θ(|S| · |T |) as they precompute some data for each pair in S × T . To provide a
linear algorithm that benefits from the ideas of the further algorithms, we can compute the
additional data (cmin(s, t), crel(s, t), copt(s, t) or table(s, t)) on demand only for those pairs
(s, t) that occur in queries. By that, our algorithm is in Θ(|S|+ |T |+ #queries).

Robert Geisberger and Peter Sanders 9

While it takes negligible time for an on demand profile query to compute the additional
data at the first occurrence of (s, t), the situation is different for a time query. Depending on
the additional precomputation time, we should only compute it after a certain number of
queries for that pair occurred. This way, we improve the competitive ratio. This ratio is the
largest possible ratio between the runtime of an algorithm that knows all queries in advance
and our algorithm that does not (online algorithm). For just two different algorithms, e.g.
Intersect and Table, this problem is similar to the ski-rental problem. For example, let it
‘cost’ ti to answer a query using Intersect and tt using Table, and tc to compute the table
cell. Then computing the table cell on the query number b = btc/(ti − tt)c to this cell has a
competitive ratio < 2. In practice, we can predict the cost of ti and tt from the number of
necessary TTF evaluations, and the cost tc from the sum of the points of the TTFs fu and
gu of all (relevant) candidates u. When we want to use more than two of the five algorithms
online, Azar et al. [1] propose an algorithm with competitive ratio 6.83.

6 Experiments

Input. We use a real-world time-dependent road network of Germany with 4.7 million
nodes and 10.8 million edges, provided by PTV AG for scientific use. It reflects the midweek
(Tuesday till Thursday) traffic collected from historical data, i.e., a high traffic scenario with
about 8 % time dependent edges.

Hardware/Software. The experiments were done on a machine with two Intel Xeon X5550
processors (Quad-Core) clocked at 2.67 GHz with 48 GiB of RAM and 2x8 MiB of Cache
running SUSE Linux 11.1. We used the GCC 4.3.2 compiler with optimization level 3.

Basic setup. We use a preprocessed TCH as input file [3]. However, we do not account for
its preprocessing time (37 min [3]), as it is independent of S and T . We choose S, T ⊆ V

uniformly at random for a size |S| = |T |. We approximated the TTFs in the graph with
εe, the TTFs of the search spaces with εs and the TTFs in the table with εt. We use lower
and upper εp-bounds for pruning profile queries, or just min-max-values if no εp is specified.
The precomputation uses all 8 cores of our machine since it can be trivially parallelized and
multi-core CPUs are standard these days. We report the preprocessing time to compute the
forward and backward search spaces as search and the time to compute additional data (cmin,
crel, copt or table) as link. We also give the used RAM reported by the Linux kernel. The
time (profile) query performances are averages over 100 000 (1 000) queries selected uniformly
at random and performed on a single core. Depending on the algorithm, we also report some
more detailed time query statistics. Scan is the number of nodes in the search spaces we
scanned during a time query. Meet is the number of candidate nodes where forward and
backward search space met. Eval is the number of TTF evaluations. Succ is the number of
successful reductions of the tentative earliest arrival time due to another evaluated candidate.

Preprocessing time and search space size of the Intersect algorithm are in Θ(|S|+ |T |)
as expected, see Table 1. Note that the RAM requirements include the input TCH:

εe [%] - 0.1 1.0 10.0
graph [MiB] 4 497 1 324 1 002 551

The exact time query is two orders of magnitude faster than a standard TCH3 time query
(720µs [3]). However, the TCH profile query (32.75ms [3]) is just 22 times slower since most

3 We compare ourselves to TCH as it is currently the fastest exact speed-up technique.

10 Engineering Time-Dependent Many-to-Many Shortest Paths Computation

Table 1 Performance of the Intersect algorithm.

preprocessing search spaces query
size εe εs εp search RAM [MiB] TTF point time scan meet eval succ profile

[%] [%] [%] [s] [MiB] # # [µs] # # # # [µs]
100 - - 0.1 7.5 6 506 1 639 172 2 757 5.17 310 19.6 9.97 3.92 1 329
500 - - 0.1 33.8 13 115 8 228 172 2 768 7.43 312 20.0 10.38 4.08 1 494

1 000 - - 0.1 68.0 21 358 16 454 173 2 754 7.97 313 19.9 10.28 4.04 1 412
1 000 - - - 53.1 20 830 15 897 173 2 754 7.99 313 19.9 10.28 4.04 7 633
1 000 1.0 - - 1.5 1 579 349 173 54.4 6.13 313 19.9 10.27 4.05 108.2
1 000 - 1.0 - 64.9 5 302 72 173 6.3 6.46 313 19.9 10.60 4.05 18.4
1 000 0.1 0.1 - 4.7 1 749 189 173 26.7 6.29 313 19.9 10.32 4.04 52.8
1 000 1.0 1.0 - 1.8 1 303 65 173 5.1 5.48 313 19.9 10.36 4.05 15.1
1 000 10.0 10.0 - 0.7 854 47 173 1.9 6.34 313 19.9 15.79 4.05 22.0
10 000 1.0 1.0 - 18.2 2 015 650 174 5.1 6.80 315 19.9 10.34 4.01 16.3

Table 2 Performance of the MinCandidate algorithm.

preprocessing search query
size εe εs search link RAM cmin space time scan meet eval succ profile

[%] [%] [s] [s] [MiB] [MiB] [MiB] [µs] # # # # [µs]
100 - - 6.0 0.0 6 481 1 1 583 3.11 310 19.6 3.65 1.04 6 941

1 000 - - 53.1 0.4 20 849 7 15 897 4.97 313 19.9 3.72 1.05 7 087
1 000 1.0 1.0 1.8 0.4 1 310 7 65 4.09 313 19.9 3.77 1.07 13.8

10 000 1.0 1.0 18.2 49.0 2 777 649 650 4.94 315 19.9 3.81 1.07 14.4

time is spent on computing the large resulting TTFs. Approximating the edge TTFs (εe > 0)
reduces preprocessing time and RAM, approximating search spaces (εs > 0) reduces search
space sizes. When we combine both to εe = εs = 1%, we reduce preprocessing time by a
factor of 30 and search space size by 240. We can only compare with TCH for approximated
edge TTFs, as TCH computes the search spaces at query time and does not approximate
any intermediate result. For εe = 1%, we are 27 times faster than TCH (2.94ms [3]). But it
pays off to approximate the search space TTFs, for εe = εs = 0.1%, we are 56 times faster
than TCH and even have smaller error (Table 6). Usually we would expect that the query
time is independent of the table size, however, due to cache effects, we see an increase with
increasing table size and a decrease with increasing ε’s. Still the number of TTF evaluations
is around 10 and thus 5 times large than the optimal (just 2).

By storing the minimal candidate (MinCandidate, Table 2), we can reduce the number
of evaluations to 3.7, which also reduces the query time. Although the precomputation is in
Θ(|S| · |T |), this only becomes significant for size 10 000 (or larger). The time query is only
about one third faster, as we still scan on average about 310 nodes in the forward/backward
search spaces. For exact profile queries, there is no advantage to Intersect as we can afford
εp-bound pruning at query time there.

Algorithm RelevantCandidate (Table 3) makes scanning obsolete. It stores 1.2–3.4
candidates per source/target-pair, depending on used approximations. This is significantly
smaller than the 20 meeting nodes we had before, accelerating the time query by a factor of
2–4. But being in Θ(|S| · |T |) becomes already noticeable for size 1 000. Again, the exact
profile query does not benefit. Due to the knowledge of all relevant candidates, we only

Robert Geisberger and Peter Sanders 11

Table 3 Performance of the RelevantCandidate algorithm.

preprocessing search spaces query
size εe εs εp search link RAM crel [MiB] TTF point time eval profile

[%] [%] [%] [s] [s] [MiB] [MiB] # # [%] # [µs] # [µs]
100 - - 0.1 7.5 0.3 6 517 1 1.2 246 21 12 3 453 0.72 2.26 1 202

1 000 - - 0.1 68.0 59.7 35 550 32 1.2 3 565 40 23 2 690 1.29 2.27 1 412
1 000 - - 1.0 67.4 14.2 23 931 34 1.4 4 195 46 27 2 737 1.36 2.55 2 032
1 000 - - 10.0 65.9 8.8 22 369 49 3.3 8 965 82 47 3 277 2.00 3.71 7 484
1 000 - - - 53.1 6.1 20 879 49 3.4 9 343 86 50 3 264 2.00 3.72 7 651
1 000 1.0 1.0 - 1.8 5.0 1 400 46 3.0 31 82 47 5.5 1.02 3.76 10.5
10 000 1.0 1.0 - 18.2 651.3 9 310 4 605 3.0 415 110 63 5.6 1.71 3.80 11.7

Table 4 Performance of the OptCandidate algorithm.

preprocessing search spaces query
size εe εs εp search link RAM copt [MiB] TTF point time profile

[%] [%] [%] [s] [s] [MiB] [MiB] # # [%] # [µs] [µs]
100 - - 0.1 7.5 2.1 6 494 1 1.5 241 21 12 3 456 0.49 1 168
500 - - 0.1 33.8 53.7 13 101 10 1.5 1 608 33 19 2 946 0.73 1 391

1 000 - - 0.1 68.0 213.8 21 443 39 1.5 3 489 39 22 2 704 0.81 1 332
1 000 - - - 53.1 1 032.2 20 908 39 1.5 3 489 39 22 2 704 0.84 1 339
1 000 1.0 - - 1.5 19.4 1 666 37 1.4 72 39 23 49.5 0.56 21.6
1 000 - 1.0 - 64.9 7.1 5 318 39 1.5 17 41 23 6.0 0.51 3.5
1 000 0.1 0.1 - 4.7 11.5 1 822 39 1.5 42 39 22 25.9 0.54 9.8
1 000 1.0 1.0 - 1.8 6.3 1 385 38 1.5 15 41 24 4.9 0.48 3.0
1 000 10.0 10.0 - 0.7 7.6 963 62 3.1 19 68 39 2.0 0.49 5.7

10 000 1.0 1.0 - 18.2 788.3 7 741 3 775 1.5 226 63 36 5.0 0.90 3.5

need to store 12% of all computed search space TTFs for size 100. This percentage increases
naturally when the table size increases, or when we use worse bounds for pruning (larger εp),
allowing a flexible tradeoff between preprocessing time and space. Note that this algorithm
can be used to make the Intersect algorithm more space-efficient by storing only the
required TTFs and dropping crel.

We reduce the time query below 1µs for any tested configuration with the OptCandidate
algorithm (Table 4),4 as we always just need two TTF evaluations. Exact precomputation
time becomes very expensive due to the high number of TTF points, pruning with εp-bounds
has a big impact by almost a factor 4. However, in the heuristic scenario, precomputation is
just around 25% slower than RelevantCandidate (εp-pruning brings no speed-up), but
provides more than 80% smaller search spaces and 3 times faster profile queries.

Naturally the best query times are achieved with the Table algorithm (Table 5). They
are around a factor two smaller than OptCandidate, and up to 3 000 times faster than
a TCH time query, and 4 000 000 times faster than a time-dependent Dijkstra [3]. Note
that we do not report profile query timings as they are a simple table look-up. The larger
precomputation time compared to OptCandidate comes from the additional overhead to
store the table. We cannot compute exact tables larger than size 500. But practical cases of

4 #copt > #crel is possible when candidates are optimal for several periods of time.

12 Engineering Time-Dependent Many-to-Many Shortest Paths Computation

Table 5 Performance of the Table algorithm.

preprocessing table query
size εe εs εp εt search link RAM [MiB] points time

[%] [%] [%] [%] [s] [s] [MiB] # [µs]
100 - - 0.1 - 7.5 1.9 7 638 1 086 7 672 0.25
500 - - 0.1 - 33.8 58.5 45 659 27 697 7 829 0.42
500 - - - - 26.6 266.7 45 532 27 697 7 829 0.42
500 1.0 - - - 0.8 4.8 1 924 427 117.6 0.26

1 000 1.0 - - - 1.5 19.0 3 625 1 689 116.3 0.32
1 000 1.0 1.0 - - 1.8 6.3 1 577 180 9.6 0.25
1 000 - - 0.1 1.0 68.0 298.2 21 489 110 4.6 0.25
1 000 0.1 0.1 - 0.1 4.7 12.3 2 112 270 16.0 0.26
1 000 1.0 1.0 - 1.0 1.8 6.7 1 484 94 3.4 0.23
1 000 10.0 10.0 - 10.0 0.7 7.1 1 017 76 2.1 0.22

10 000 1.0 1.0 - - 18.2 772.1 27 118 18 109 9.7 0.39
10 000 1.0 1.0 - 1.0 18.2 815.2 17 788 9 342 3.4 0.38

Table 6 Observed errors from 100 000 queries together with the theoretical error bounds.

graph εe [%] 1.0 - 0.1 1.0 10 - 0.1 1.0 10
search space εs [%] - 1.0 0.1 1.0 10 - 0.1 1.0 10

table εt [%] - - - - - 1.0 0.1 1.0 10
avg. error [%] 0.08 0.12 0.014 0.18 2.1 0.17 0.023 0.30 3.1
max. error [%] 0.89 0.98 0.169 1.75 16.9 1.00 0.266 2.66 24.9

theo. bound [%] 2.07 1.44 0.350 3.55 41.0 1.00 0.450 4.58 55.1

size 1 000 can be computed with less than 2GiB of RAM when we use approximations (table
TTFs are εt-approximations).

Compared to |S| · |T | = 500 · 500 exact TCH profile queries, taking 1023 s on 8 threads,
our algorithm achieves a speed-up of 11. This speed-up increases for εe = 1% to 16 since
there the duplicate work of the TCH queries has a larger share. And it increases further for
table size 1 000, our speed-up is then 18, as our search increases linearly and only linking is
quadratic in size. We were not able to compare ourselves to a plain single source Dijkstra
profile query, as our implementation of it runs out of RAM (48 GiB) after around 30 minutes.

A visual comparison of all five algorithms is Figure 1. We see that the decrease for time
and profile query are almost independent of the size. However, the quadratic part (upper
part of bar) for preprocessing time and space is very dominant for size = 10 000. Also, the
OptCandidate algorithm requires less space than the RelevantCandidate algorithm, as
we need to store less candidates and can drop more entries from the stored search spaces.

We analyze the observed errors and theoretical error bounds5 for size 1 000 in Table 6.
Note that these error bounds are independent of the used algorithm. The maximum slope6
is α = 0.433872. The average observed error is always below the used ε’s, however, we
still see the stacking effect. Our bound is about a factor of two larger than the maximum

5 Note that εp > 0 used for pruning does not cause errors.
6 To compute the maximum slope, we compute the forward and backward search space for every node in
the graph. But this is only required for the theoretical error bounds, and not used in our algorithms.

Robert Geisberger and Peter Sanders 13

0
m

ax

preproc. time preproc. space time query profile query

size 1000

I M R O T I M R O T I M R O T I M R O T

0
m

ax

size 10000

Figure 1 Comparison of the Intersect, MinCandiate, RelevantCandidate, OptCandidate
and Table algorithm with εe = εs = 1%, εp = εt = 0%. Preprocessing time is split into search
(lower) and link (upper) and space is split into TTFs (lower) and additional data (upper). The
vertical axis is relative to the maximum compared value in each group. Exact values are in Tables 1–5.

observed error for the edge approximations (εe). This is because our bound assumes that
any error stacks during the linking of the TTFs, however, in practice TTFs do not often
significantly change. The same explanation holds for the search space approximations (εs),
although our bound is better since we only need to link two TTFs. When we combine edge
and search space approximations, the errors roughly add up, this is because approximating
an already approximated TTF introduces new errors. Approximating the TTFs in the table
(εt) gives the straight εt-approximation unless it is based on already approximated TTFs.
The provided theoretical bounds are pretty tight for the tested TCH instance, just around a
factor of two larger than the maximum observed bounds.

7 Conclusions and Future Work

The computation of forward and backward search spaces in the TCH only once for each
source and target node speeds up travel time table computations and subsequent queries
by intersecting these search spaces. For exact profile queries, only a table can significantly
improve the runtime. For exact time queries, and all approximate queries, further algorithms
precompute additional data to speed up the queries with different tradeoffs in precomputation
time and space. A large impact on the precomputation time and space has the use of
approximate TTFs. We are able to reduce time by more than one and space by more than
two orders of magnitude with an average error of less than 1%.

14 Engineering Time-Dependent Many-to-Many Shortest Paths Computation

Our algorithms are also an important step to a time-dependent transit node routing
algorithm [2]. Transit node routing is currently the fastest speedup technique for time-
independent road networks and essentially reduces the shortest path search to a few table
lookups. Our algorithms can either compute or completely replace such tables.

Acknowledgments. We thank G. Veit Batz for his great implementation of TCH that
made developing our extensions very comfortable.

References
1 Yossi Azar, Y. Bartal, E. Feuerstein, Amos Fiat, Stefano Leonardi, and A. Rosen. On

Capital Investment. Algorithmica, 25(1):22–36, 1999.
2 Holger Bast, Stefan Funke, Peter Sanders, and Dominik Schultes. Fast Routing in Road

Networks with Transit Nodes. Science, 316(5824):566, 2007.
3 Gernot Veit Batz, Daniel Delling, Peter Sanders, and Christian Vetter. Time-Dependent

Contraction Hierarchies. In Proceedings of the 11th Workshop on Algorithm Engineering
and Experiments (ALENEX’09), pages 97–105. SIAM, April 2009.

4 Gernot Veit Batz, Robert Geisberger, Sabine Neubauer, and Peter Sanders. Time-
Dependent Contraction Hierarchies and Approximation. In Paola Festa, editor, Proceedings
of the 9th International Symposium on Experimental Algorithms (SEA’10), volume 6049 of
Lecture Notes in Computer Science. Springer, May 2010.

5 Daniel Delling and Dorothea Wagner. Time-Dependent Route Planning. In Ravindra K.
Ahuja, Rolf H. Möhring, and Christos Zaroliagis, editors, Robust and Online Large-Scale
Optimization, volume 5868 of Lecture Notes in Computer Science, pages 207–230. Springer,
2009.

6 Alberto V. Donati, Roberto Montemanni, Norman Casagrande, Andrea E. Rizzoli, and
Luca M. Gambardella. Time dependent vehicle routing problem with a multi ant colony
system. European Journal of Operational Research, 185:1174–1191, 2008.

7 Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Contraction
Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks. In Catherine C.
McGeoch, editor, Proceedings of the 7th Workshop on Experimental Algorithms (WEA’08),
volume 5038 of Lecture Notes in Computer Science, pages 319–333. Springer, June 2008.

8 Hideki Hashimoto, Mutsunori Yagiura, and Toshihide Ibaraki. An Iterated Local Search
Algorithm for the Time-Dependent Vehicle Routing Problem with Time Windows. Discrete
Optimization, 5:434–456, 2008.

9 Soumia Ichoua, Michel Gendreau, and Jean-Yves Potvin. Vehicle Dispatching with Time-
Dependent Travel Times. European Journal of Operational Research, 144:379–396, 2003.

10 H. Imai and Masao Iri. An optimal algorithm for approximating a piecewise linear function.
Journal of Information Processing, 9(3):159–162, 1987.

11 Soojung Jung and Ali Haghani. Genetic Algorithm for the Time-Dependent Vehicle Routing
Problem . Journal of the Transportation Research Board, 1771:164–171, 2001.

12 Sebastian Knopp, Peter Sanders, Dominik Schultes, Frank Schulz, and Dorothea Wagner.
Computing Many-to-Many Shortest Paths Using Highway Hierarchies. In Proceedings of
the 9th Workshop on Algorithm Engineering and Experiments (ALENEX’07), pages 36–45.
SIAM, 2007.

13 Chryssi Malandraki and Mark S. Daskin. Time Dependent Vehicle Routing Problems:
Formulations, Properties and Heuristic Algorithms. Transportation Science, 26(3):185–200,
1992.

14 Ariel Orda and Raphael Rom. Shortest-Path and Minimum Delay Algorithms in Networks
with Time-Dependent Edge-Length. Journal of the ACM, 37(3):607–625, 1990.

	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Time-Dependent Road Networks
	2.2 Algorithmic Ingredients
	2.3 Time-Dependent Contraction Hierarchies

	3 Five Algorithms
	4 Approximate Travel Time Functions
	5 On Demand Precomputation
	6 Experiments
	7 Conclusions and Future Work

