
SPACE-EFFICIENT PREPROCESSING SCHEMES FOR
RANGE MINIMUM QUERIES ON STATIC ARRAYS∗

JOHANNES FISCHER† AND VOLKER HEUN‡

Abstract. Given a static array of n totally ordered objects, the range minimum query problem
is to build a data structure that allows to answer subsequent on-line queries of the form “what is the
position of a minimum element in the sub-array ranging from i to j?” efficiently. We focus on two
settings, where (1) the input array is available at query time, and (2) the input array is only available

at construction time. In setting (1), we show new data structures (a) of size 2n
c(n)
−Θ

(n lg lgn
c(n) lgn

)
bits

and query time O(c(n)) for any positive integer function c(n) ∈ O
(
nε

)
for an arbitrary constant

0 < ε < 1, or (b) with O(nHk) + o(n) bits and O(1) query time, where Hk denotes the empirical
entropy of k’th order of the input array. In setting (2), we give a data structure of size 2n + o(n)
bits and query time O(1). All data structures can be constructed in linear time and almost in-place.

Key words. range queries, lowest common ancestors, arrays, trees

AMS subject classifications. 05C05, 68R05, 68P05, 68W32

1. Introduction. For an array A[1, n] of n objects from a totally ordered uni-
verse and two indices i and j with 1 ≤ i ≤ j ≤ n, a Range Minimum Query1

rmqA(i, j) returns the position of a minimum element in the sub-array A[i, j]; in
symbols: rmqA(i, j) = argmini≤k≤j

{
A[k]

}
. Given the ubiquity of arrays and the

fundamental nature of this question, it is not surprising that RMQs have a wide
range of applications in various fields of computing: text indexing [23, 52], pat-
tern matching [2, 12], string mining [21, 34], text compression [9, 45], document re-
trieval [42, 53, 59], trees [4, 6, 38], graphs [28, 49], bioinformatics [58], and in other
types of range queries [10,56], to mention just a few.

In almost all applications, the array A on which the RMQs are performed is static
and known in advance, and there are several queries to be answered on-line (meaning
that the queries are not available from the start). This is also the scenario considered
in this article, and in such a case it makes sense to preprocess A into a (preprocessing-)
scheme such that future RMQs can be answered quickly. We can hence formulate the
following problem.

Definition 1.1 (RMQ-Problem).

Given: a static array A[1, n] of n totally ordered objects.
Compute: an (ideally small) data structure, called scheme, that allows to compute

subsequent RMQs on A (in ideally constant time).

The most naive preprocessing would be to store the answers to all
(
n
2

)
proper

RMQs in a table, and then simply look up the answers in (optimal) constant time.
On the opposite side of the extremes, we could do no preprocessing at all, and scan the

∗Parts of this work have already been presented at the 17th Annual Symposium on Combinatorial
Pattern Matching [19], at the 1st International Symposium on Combinatorics, Algorithms, Proba-
bilistic and Experimental Methodologies [20], at the 2008 Data Compression Conference [22], and
at the 9th Latin American Theoretical Informatics Symposium [17]. This work has been partially
supported by the German Research Foundation (DFG).
†Institut für Theoretische Informatik, Karlsruher Institut für Technologie, Am Fasanengarten 5,

76131 Karlsruhe, Germany (johannes.fischer@kit.edu).
‡Institut für Informatik, Ludwig-Maximilians-Universität München, Amalienstr. 17, 80333

München (volker.heun@bio.ifi.lmu.de).
1Sometimes also called Discrete Range Searching [1] or, depending on the context, Range Max-

imum Query.

1

2 J. FISCHER AND V. HEUN

query interval A[i, j] each time a new query rmqA(i, j) arrives, resulting in O(n) query
time in the worst case. Both of these solutions are clearly far from being optimal, and
indeed, it was noted already a quarter of a century ago [25] that a scheme of size O(n)
words suffices to answer RMQs in optimal constant time. This scheme is based on the
idea that an RMQ-instance can be transformed into an instance of lowest common
ancestors (LCAs) in the Cartesian Tree [60] of A (see § 2.2 for a formal definition of
this tree). For constant-time LCA-queries, linear preprocessing schemes had already
been discovered earlier [33].

The problem of Gabow et al.’s solution [25], and also that of subsequent simpli-
fications [1, 4, 6, 61], is their space consumption of O(n lg n) bits, as they store O(n)
words occupying dlg ne bits each.2 A recent trend in the theory of data structures
is that of succinct and compressed data structures. A succinct data structure uses
space that is close to the information-theoretic lower bound, in the sense that ob-
jects from a universe of cardinality L are stored in (1 + o(1)) lgL bits. An even
stronger concept is that of compressed data structures, where it is tried to surpass the
information-theoretic lower bound for instances that are in some sense compressible.
Research on succinct and compressed data structures is very active, and we just men-
tion some examples from the realm of trees [5, 13, 27, 36, 41, 55], dictionaries [46, 50],
and strings [14, 15, 31, 32, 43, 51, 54], being well aware of the fact that this list is far
from complete.

Our results for RMQs lie in the field of succinct and compressed data structures.
We work with the standard word-RAM model of computation (which is also the
model used in all LCA- and RMQ-schemes cited in this article), where it is assumed
that we can do arithmetic and logical operations on w-bit wide words in O(1) time,
and w = Ω(lg n). Before detailing our contributions, we first classify and summarize
existing schemes for RMQs in constant time (called O(1)-RMQs henceforth).

1.1. Previous Solutions for RMQ. In accordance with common nomencla-
ture [26], preprocessing schemes for O(1)-RMQs can be classified into two differ-
ent types: systematic and non-systematic (also called indexing and encoding data
structures, respectively). Systematic schemes must store the input array A verbatim
along with the additional information for answering the queries. Systematic schemes
are perhaps more natural than non-systematic ones, and not surprisingly, all early
schemes [1, 4, 6, 25] are systematic. They are appropriate in the following situations:

1. If |A|, the number of bits to store A, is small enough to be dominated by the
space for the RMQ-scheme (e.g., |A| = O(n)).

2. If ω(1) query time suffices, and whole blocks of the input array are to be
scanned when answering the queries.

3. Perhaps most importantly, when the actual values of the minima matter, or
if A is needed for different purposes.

In any of the situations mentioned above, some space for the scheme can in
principle be saved, as the query algorithm can substitute “missing information” by
consulting A when answering the queries; this is indeed what all systematic schemes
make heavy use of.

On the contrary, non-systematic schemes must be able to obtain their final answer
without consulting the array. This second type is also important, for at least the
following two reasons:

2Throughout this article, space is measured in bits, lg denotes the binary logarithm, and lgx n
is short for (lgn)x.

SPACE EFFICIENT PREPROCESSING SCHEMES FOR RANGE MINIMUM QUERIES 3

Table 1.1
Preprocessing schemes for O(1)-RMQs, where |A| denotes the space of the (read-only) input

array A. (Set c(n) = O(1) to obtain O(1) query time in Thm. 3.7.) Space is measured in bits, and
construction space is in addition to the final space. In Thm. 4.1, σ denotes the number of different
objects in A, and Hk the empirical entropy of A. Schemes marked (∗) are only for a restricted class
of arrays, where subsequent elements differ by exactly 1. Schemes marked (∗∗) are non-systematic,
meaning that they do not have to access A for answering the queries. All schemes can be constructed
in O(n) time.

references final space construction space

[25] + [33], [4, 6, 61] |A| + O(n lgn) O(n lgn)

[1] |A| + O(n lgn) O(polylgn)

Thm. 3.7 |A|+ 2n
c(n)
−Θ

(
n lg lgn
c(n) lgn

)
O
(
lg3 n

)
Thm. 4.1 |A|+ nHk + O

(n(k lg σ+lg lgn)
lgn

)
O
(√

n/ lg n
)

[52](∗) n + O(n lg2 lgn/ lgn) O(1)

[55](∗) n + O(n/ polylgn) O(n)

Thm. 5.7(∗) n + O(n lg lg n/ lg n) O
(
lg3 n

)
[53](∗∗) 4n + O(n lg2 lgn/ lgn) |A| + O(n lgn)

Thm. 5.8(∗∗) 2n + O(n lg lg n/ lg n) |A|+ n + O
(
n lg lgn

lgn

)
Cor. 5.9(∗∗) 2n + O(n/ polylg n) |A|+ O(n)

1. In some applications, e.g., in algorithms for document retrieval [42, 53] or
position restricted substring matching [12], only the position of the minimum matters,
but not the value of this minimum. In such cases it would be a waste of space to keep
the input array in memory.

2. If the time to access the elements in A is ω(1), this slowed-down access time
propagates to the time for answering RMQs if the query algorithm consults the input
array, which may be undesirable. As a prominent example, in string processing RMQ
is often used on the array of longest common prefixes of lexicographically consecutive
suffixes, the so-called LCP-array [39]. However, storing the LCP-array efficiently in
2n+ o(n) bits [52] or even less [18,23] increases the access-time to the time needed to
retrieve an entry from the corresponding suffix array [39], which is Ω

(
lgε n

)
(constant

ε > 0) at the very best if the suffix array is also stored in compressed form [31, 51].
Hence, with a systematic scheme the time needed for answering RMQs on LCP could
never be O(1) in this case. But exactly this would be needed for constant-time
navigation in RMQ-based compressed suffix trees [23, 44], where for the occasional
retrieval of the string-depth of nodes the LCP-array is still needed (so this is not the
same as the above point).

In the following, we briefly sketch previous solutions for RMQ schemes. For
a summary, see Tbl. 1.1, where, besides the final space consumption, in the third
column we list the additional space needed for constructing the scheme.

1.1.1. Systematic Schemes. Most systematic schemes are based on the Carte-
sian Tree [60], the only exception being the schemes due to Alstrup et al. [1] and Yuan
and Atallah [61]. All schemes are based on the idea of splitting the query range into
several sub-queries, all of which have been precomputed, and then returning the over-
all minimum as the final result. The schemes from the first four rows of Tbl. 1.1
have the same final space guarantees (namely O(n lg n) bits), with Bender et al.’s
scheme [4] being less complex than the previous ones, and Alstrup et al.’s [1] being
even simpler (and most practical due to its small construction space). Yuan and Atal-
lah’s scheme is noteworthy because it does not involve overlapping queries, a fact that

4 J. FISCHER AND V. HEUN

may be useful for related kinds of range queries. Recently, Brodal et al. [8] proved a
lower bound for systematic schemes: any scheme that uses O(n/C) bits in addition
to A must have Ω(C) query time.3

An important special case are schemes for ±1rmq [52, 55], where it is assumed
that subsequent array-elements differ by exactly 1; we will describe them in greater
detail in § 2.5.

1.1.2. Non-Systematic Schemes. The only existing scheme is due to Sada-
kane [53] and uses 4n + o(n) bits. It is based on the balanced parentheses sequence
(BPS) [41] of the Cartesian Tree of the input array A, and a o(n)-bit scheme for
O(1)-LCA computation therein [52]. The difficulty that Sadakane overcomes is that
in the “original” Cartesian Tree, there is no natural mapping between array-indices
in A and positions of parentheses (because there is no way to distinguish between
left and right nodes in the BPS of a tree); this is why building the BPS directly on
the Cartesian Tree does not achieve O(1)-RMQs. Therefore, Sadakane introduces n
“fake” leaves to get such a mapping. There are two main drawbacks of this solution.

1. Due to the introduction of the “fake” leaves, it does not achieve the infor-
mation-theoretic lower bound (for non-systematic schemes) of 2n−Θ(lg n) bits. This
lower bound is easy to see because any scheme for RMQs allows to reconstruct the
Cartesian Tree by iteratively querying the scheme for the minimum (in analogy to the
definition of the Cartesian Tree; see § 2.2). And because the Cartesian Tree is binary
and each binary tree is a Cartesian Tree for some input array, any scheme must use
at least lg

((
2n
n

)
/(n+ 1)

)
= 2n−Θ(lg n) bits [35].

2. For getting an O(n)-time construction algorithm, the (modified) Cartesian
Tree needs to be first constructed in a pointer-based implementation, and then con-
verted to the space-saving BPS. This leads to a construction space requirement of
O(n lg n) bits, as each node occupies O(lg n) bits in memory. The problem why the
BPS cannot be constructed directly in O(n) time (at least we are not aware of such an
algorithm) is that a “local” change in A (be it only appending a new element at the
end) does not necessarily lead to a “local” change in the tree; this is also the intuitive
reason why maintaining dynamic Cartesian Trees is difficult [7].

1.2. Our Contributions.

1.2.1. Our Results. We present preprocessing schemes for range minimum
queries of yet unseen small size (in fact optimal for their respective model); see again
Tbl. 1.1 for a summary and comparison.

In the systematic setting, we first give a simple scheme that uses only 2n
c(n) −

Θ
(
n lg lgn
c(n) lgn

)
bits on top of A and has O(c(n)) query time, assuming that the elements

in A can be read in constant time (Thm. 3.7). Here, c(n) can be any positive integer
function bounded by O

(
nε
)

for an arbitrary constant 0 < ε < 1. If c(n) = O(1),
then Thm. 3.7 gives optimal constant query time with O(n) space, where the big-Oh
constant can be made arbitrarily small. This is the first systematic scheme with linear
bit-complexity. Moreover, this space-time tradeoff is optimal [8].

We then show in Thm. 4.1 how to compress the scheme from Thm. 3.7 into a
data structure of size nHk +O

(
n

lgn (k lg σ+ lg lg n)
)

+ |A| bits, simultaneously over all

k. Here, Hk denotes the empirical entropy of order k [40] of the input array A, and σ

3The claimed lower bound of 2n+ o(n) + |A| bits under the “min-probe-model” [20] turned out
to be wrong, as was kindly pointed out to the authors by S. Srinivasa Rao (personal communication,
November 2007).

SPACE EFFICIENT PREPROCESSING SCHEMES FOR RANGE MINIMUM QUERIES 5

denotes the number of distinct elements in A. The value nHk is a common measure
for the compressibility of data structures [43], as it provides a lower bound on the
size of the output of any compressor that encodes a symbol based on the k preceding
characters.

We also give a scheme for ±1rmq that needs only O
(
n lg lgn

lgn

)
bits on top of the n

bits for storing the input array (Thm. 5.7), as opposed to O
(
n lg2 lgn

lgn

)
bits needed by

Sadakane’s solution [52]. Although this result has already been superseded [55] after
the initial submission of the present material, we chose to include it in this article
due to its low construction space, as as opposed to O(n) construction space (with a
possibly large big-Oh constant) for Sadakane and Navarro [55].

In fact, we put a particular emphasis on construction space, as it is an important
issue and often limits the practicality of a data structure, especially for large inputs
(as they arise nowadays in web-page-analysis or computational biology). The schemes
from Thm. 3.7, 4.1, and 5.7 can be constructed in-place (apart from negligibly small
terms).

We finally focus on the non-systematic setting, where we show a preprocessing
scheme of asymptotically optimal size 2n + O

(
n lg lgn

lgn

)
bits and O(1) query time

(Thm. 5.8). To construct this scheme, we need only one additional bit-vector of length
n, plus some sub-linear structures. This should be directly compared to the only

existing non-systematic solution [53] with 4n+O
(
n lg2 lgn

lgn

)
bits, which needs O(n lg n)

bits of construction space. Hence, Thm. 5.8 not only lowers the final space to optimal,
but also the construction space to O(n). This is a significant improvement over the
O(n lg n)-bit construction algorithm for Sadakane’s non-systematic scheme [53]. Note
again that the space for storing A is not necessarily Θ(n lg n); for example, if the

numbers in A are integers in the range
[
1, lgO(1) n

]
, A can be stored as an array of

packed words using only O(n lg lg n) bits of space. In such a case, a construction space
of O(n lg n) bits would dominate the space for the input array A and thus constitute
a severe memory bottleneck — a situation that is avoided only with our new O(n)-bit
construction algorithm.

If construction space is not an issue, we can state an improved version of Thm. 5.8
by using recent results on succinct data structures out of the box and achieve 2n +
O(n/ polylg n) bits (Cor. 5.9).

Construction time is linear for all our methods.

1.2.2. Technical Contributions. Our schemes from Thm. 3.7 and Thm. 4.1
are based on a novel variant of the Four-Russians-Trick [3]. At a high level, this trick
decomposes a problem into smaller sub-problems, precomputes in a table all possi-
ble answers to these sub-problems, and then solves the larger problem by looking up
(possibly many) answers to its sub-problems. This table lookup is usually done with
a small portion of the input, where it is assumed that this portion fits into a computer
word and can hence be treated as an integer. This makes implicit assumptions on
the representation of the input data (among others, they need to be stored contigu-
ously, for otherwise they cannot be read in constant time). We, on the other hand,
proceed by attaching new information to the input, regardless of how it is stored.
This new information is constructed from Cartesian Trees of small blocks of the input
array, but unlike in previous schemes we do not use these Cartesian Trees directly for
computing RMQs, but only implicitly when doing table lookups. In fact, we do not
store the Cartesian Trees themselves, but only their indices in an enumeration of all
Cartesian Trees. Most of the work in § 3 will therefore be devoted to develop such a

6 J. FISCHER AND V. HEUN

fast and space-efficient enumeration. We remark here that only the analysis of that
enumeration is complex, while the resulting algorithm is notably simple!

For Thm. 5.8 and Cor. 5.9, we introduce our second technical novelty, the 2-
dimensional Min-Heap. This is a tree which is, like the Cartesian Tree, inherently
connected to RMQs. While it can be viewed as a “twisted” variant of the Cartesian
Tree, we prove that it has better properties than the latter in many regards, e.g., a
better mapping of array indices to nodes, more space-efficient constructability, etc.
We mention at this point that the 2-dimensional Min-Heap has also applications in
Sadakane and Navarro’s succinct tree representation [55], who call it lrm-tree (for
left-to-right minima).

2. Preliminaries.

2.1. Basic Conventions. We use the notation A[1, n] to indicate that A is an
array of n objects, indexed from 1 through n. A[i, j] denotes A’s sub-array ranging
from i to j for 1 ≤ i ≤ j ≤ n. For integers ` ≤ r, [` : r] denotes the set {`, `+1, . . . , r}.

Following Bender et al.’s notation [4], we say that a scheme with preprocessing
time p(n) and query time q(n) has time-complexity 〈p(n), q(n)〉. We extend this
notation to cover space by writing Js(n), t(n)K if t(n) is the final space of the data
structure, and s(n) is the additional space at construction time.

When analyzing space, for the sake of clarity we write O(m · lg(g(m))) for the
number of bits needed to store a table of m positive integers from a range of size
(g(m))O(1).

2.2. Cartesian Trees. The following definition [60] is central for all RMQ-
algorithms (here and in the following, “binary” refers to trees with nodes having at
most two children, and not exactly two).

Definition 2.1. A Cartesian Tree of an array A[`, r] is a rooted binary tree
C(A[`, r]), consisting of a root v that is labeled with the position i of a minimum in
A[`, r], and at most two subtrees connected to v. The left child of v is the root of the
Cartesian Tree of A[`, i− 1] if i > `, otherwise v has no left child. The right child of
v is defined analogously for A[i+ 1, r].

The tree C(A) is not necessarily unique if A contains equal elements. To overcome
this problem, we impose a strong total order “≺” on A by defining A[i] ≺ A[j] iff
A[i] < A[j], or A[i] = A[j] and i < j. The effect of this definition is just to consider
the “first” occurrence of equal elements in A as being the “smallest.” Defining a
Cartesian Tree over A using the ≺-order gives a unique tree that we call the Canonical
Cartesian Tree. It is denoted by Ccan(A). Note also that this order results in unique
answers to RMQs, because the minimum is unique.

Gabow et al. [25] give an algorithm for constructing Ccan(A) incrementally, which
we summarize as follows. Let Ccani (A) be the Canonical Cartesian Tree for A[1, i].
Then Ccani+1(A) is obtained by climbing up from the rightmost node of Ccani (A) to the
root, thereby finding the position where A[i+ 1] belongs. To be precise, let v1, . . . , vk
be the nodes on the rightmost path in Ccani (A) with labels λ1, . . . , λk, respectively,
where v1 is the root, and vk is the rightmost node. Let m be defined such that
A[λm] ≤ A[i+1] and A[λm+1] > A[i+1] (hence A[λm′] > A[i+1] for all m < m′ ≤ k).
To build Ccani+1(A), create a new node w with label i+1 that becomes the right child of
vm, and the subtree rooted at vm+1 becomes the left child of w. This process inserts
each element to the rightmost path exactly once, and each comparison removes one
element from the rightmost path, resulting in an amortized O(n) construction time
to build Ccan(A).

SPACE EFFICIENT PREPROCESSING SCHEMES FOR RANGE MINIMUM QUERIES 7

The labels in a Cartesian Tree are often omitted, as they correspond to the
inorder-numbers of the nodes and can hence be deduced from the tree topology.

2.3. Rank and Select on Binary Strings. Consider a bit-string S[1, n] of
length n. We define the fundamental rank - and select-operations on S as follows:
rank1(S, i) gives the number of 1’s in the prefix S[1, i], and select1(S, i) gives the posi-
tion of the i’th 1 in S, reading S from left to right (1 ≤ i ≤ n). Operations rank0(S, i)
and select0(S, i) are defined analogously for 0-bits. There are data structures of size
O
(
n lg lgn

lgn

)
bits in addition to S that support rank- and select-operations in O(1)

time [29]. These data structures can be constructed in-place and in linear time.

There are also smaller data structures for rank- and select: Pǎtraşcu [48] showed
that O(n/ lgγ n) bits on top of S suffice to achieve O(γ) query time, for an arbitrary
γ > 0. However, this comes at the price of an increased construction space of O(n)
bits [55].

2.4. Sequences of Balanced Parentheses. A string B[1, 2n] of n opening
parentheses ‘(’ and n closing parentheses ‘)’ is called balanced if in each prefix B[1, i],
1 ≤ i ≤ 2n, the number of ‘)’s is no more than the number of ‘(’s. Operation
findopen(B, i) returns the position j of the “matching” opening parenthesis for the
closing parenthesis at position i in B. This position j is defined as the largest j < i for
which rank((B, i)− rank)(B, i) = rank((B, j)− rank)(B, j). The findopen-operation
can be computed in constant time [41]; the most space-efficient data structure for this
needs O

(
n lg lgn

lgn

)
bits on top of B [27] and can be constructed in linear time, using

O
(
n lg lgn

lgn

)
bits of working space [27, Remark 9].

Very recently, Sadakane and Navarro [55] showed that the findopen-operation can
be implemented to run in O(γ) time, by building a range min-max tree on top of B,
using O(n/ lgγ n) bits. The disadvantage is again an increased construction space of
O(n) bits.

2.5. Data Structures for ±1RMQ. Consider an array E[1, n] of natural num-
bers, where the difference between consecutive elements in E is either +1 or −1 (i.e.,
E[i]−E[i−1] = ±1 for all 1 < i ≤ n). Such an array E can be encoded as a bit-vector
S[1, n], where S[1] = 0, and for i > 1, S[i] = 1 iff E[i]−E[i− 1] = +1. Then E[i] can
be obtained by E[1] + rank1(S, i)− rank0(S, i) + 1 = E[1] + i−2rank0(S, i) + 1. Under
this setting, Sadakane [52] shows how to support RMQs on E in O(1) time, using S

and additional structures of size O
(
n lg2 lgn

lgn

)
bits. We denote this restricted version

of RMQ by ±1rmq.

The range min-max tree from § 2.4, using O(n/ lgγ n) bits of final space and O(n)
bits of construction space, can also answer ±1-RMQs in O(γ) time.

2.6. Depth-First Unary Degree Encoding of Ordered Trees. The Depth-
First Unary Degree Sequence (DFUDS) U of an ordered tree T is defined as follows [5].
If T is a leaf, U is given by ‘()’. Otherwise, if the root of T has w subtrees T1, . . . , Tw
in this order, U is given by the juxtaposition of w + 1 ‘(’s, a ‘)’, and the DFUDS’s of
T1, . . . , Tw in this order, with the first ‘(’ of each Ti being omitted. It is easy to see that
the resulting sequence is balanced, and that it can be interpreted as a preorder-listing
of T ’s nodes, where, ignoring the very first ‘(’, a node with w children is encoded in
unary as ‘(w)’ (hence the name DFUDS). Most navigational operations on trees can
be simulated by rank, select,findopen and ±1rmq-operations, in particular moving to
the parent node [5], and finding the lowest common ancestor lca(u, v) of two nodes

8 J. FISCHER AND V. HEUN

u and v [36], which is defined as the deepest node in T that is an ancestor of both u
and v.

3. Preprocessing in the Systematic Setting. We now come to the descrip-
tion of the first contribution of this article: a direct and practicable representation of
RMQ-information in the systematic setting.

3.1. Overview. The array A[1, n] to be preprocessed is (conceptually) divided
into blocks B1, . . . , Bdn/se of size s =

⌈
lgn
4

⌉
, where Bi = A

[
(i − 1)s + 1, is

]
.4 The

idea is that a general query from ` to r can be divided into at most three sub-queries:
one out-of-block-query that spans several blocks, and two in-block-queries (queries
completely contained within a block) to the left and right of the out-of-block-query.
The overall answer to the range minimum query is obtained by taking the minimum
of these three sub-queries. See also the top half of Fig. 3.4 on p. 14, where the in-
block-queries are labeled by 1© and 3©, and the out-of-block-query by 2©. Note that
if ` and r are in the same block, then there is only one in-block-query to be answered.

The overall appearance of our solution is similar to previous systematic schemes
(dividing the array into several blocks); the main novelty lies in answering the in-
block-queries, which we handle in § 3.2 with a novel variant of the Four-Russians-
Trick [3] (precomputation of all answers for sufficiently small instances). However,
also our solution to the long queries (§ 3.3) differs from earlier approaches, resulting
in a smaller lower order term.

3.2. Preprocessing for In-Block-Queries. We first show how to store all
necessary information for answering in-block-queries. The key to our solution is the
following lemma, which has implicitly been used already in all previous schemes.

Lemma 3.1. Let Bx and By be two blocks of size s. Then rmqBx(i, j) =
rmqBy (i, j) for all 1 ≤ i ≤ j ≤ s if and only if Ccan(Bx) = Ccan(By).

Proof. It is easy to see that rmqBx(i, j) = rmqBy (i, j) for all 1 ≤ i ≤ j ≤ s if
and only if the following three conditions are satisfied:

1. The minimum under “≺” occurs at the same position m in both arrays, i.e.,
argminBx = argminBy = m.

2. For all i′, j′ with 1 ≤ i′ ≤ j′ < m: rmqBx[1,m−1](i
′, j′) = rmqBy [1,m−1](i

′, j′).
3. For all i′, j′ with m < i′ ≤ j′ ≤ s: rmqBx[m+1,s](i

′, j′) = rmqBy [m+1,s](i
′, j′).

Due to the definition of the Canonical Cartesian Tree, points (1)–(3) are true if and
only if the root of Ccan(Bx) equals the root of Ccan(By), and Ccan

(
Bx[1,m − 1]

)
=

Ccan
(
By[1,m − 1]

)
, and Ccan

(
Bx[m + 1, s]

)
= Ccan

(
By[m + 1, s]

)
. As this is the

definition of Cartesian Trees, this is true iff Ccan(Bx) = Ccan(By).
The advantage of this is that we do not have to store the answers to in-block-

queries for all dn/se occurring blocks, but only for Cs possible blocks, where Cs =
1
s+1

(
2s
s

)
is the s’th Catalan Number (number of rooted trees on s nodes). So if we have

a table P [1, Cs][1, s][1, s] that stores the answers to all RMQs inside of all Cs possible
size-s blocks, knowing the type t(Bx) of block Bx will allow us to look-up the answer
to rmqBx(i, j) as P

[
t(Bx)

]
[i][j]. Here, by the type of Bx we mean a description of

Bx’s Canonical Cartesian Tree Ccan(Bx) that identifies it among all Cartesian Trees
on s elements.

It thus remains to show how to compute the types of the dn/se blocks in A in
linear time; i.e., how to fill an array T

[
1, dn/se

]
such that T [x] = t(Bx) is the type of

4In fact, any block size s =
⌈ lgn
2+δ

⌉
for an arbitrary constant δ > 0 would suffice, but we use δ = 2

for simplicity.

SPACE EFFICIENT PREPROCESSING SCHEMES FOR RANGE MINIMUM QUERIES 9

Algorithm 1: An algorithm to compute the type of a block Bx
Input: a block Bx of size s
Output: the type of Bx, as defined by Eq. (3.1)

Let R be an array of size s+ 1 {R stores elements on the rightmost path}1

R[1]← −∞2

q ← s,N ← 03

for i← 1, . . . , s do4

while R[q + i− s] > Bx[i] do5

N ← N + C(s−i)q {add number of skipped paths}6

q ← q − 1 {remove node from rightmost path}7

end8

R[q + i+ 1− s]← Bx[i] {Bx[i] is new rightmost node}9

end10

return N11

block Bx. Lemma 3.1 implies that there are only Cs different types of blocks, so we
are looking for a surjection

t : As → [0 : Cs − 1] , and t(Bx) = t(By) iff Ccan(Bx) = Ccan(By) , (3.1)

where As is the set of arrays of size s.5 We claim that Alg. 1 computes a function
satisfying (3.1) in O(s) time. It makes use of the so-called Ballot Numbers Cpq [37],
defined by

C00 = 1, Cpq = Cp(q−1) + C(p−1)q, if 0 ≤ p ≤ q 6= 0, and Cpq = 0 otherwise. (3.2)

(Refer to the second paragraph of § 3.2.1 for a graph-theoretic interpretation of Cpq.)
It can be proved that a closed formula for Cpq is given by q−p+1

q+1

(
p+q
p

)
[37], which

immediately implies that Css equals the s’th Catalan number Cs.
Lemma 3.2. Algorithm 1 correctly computes the type of a block of size s in O(s)

time, i.e., it computes a function satisfying the conditions given in (3.1).
Proof. Intuitively, Alg. 1 simulates the algorithm for constructing Ccan(Bx) given

in § 2.2. Array R[1, s+1] simulates the stack containing the labels of the nodes on the
rightmost path of the partial Canonical Cartesian Tree Ccani (Bx), with q+i−s pointing
to the top of the stack (i.e., the rightmost node), and R[1] acting as a “stopper.” If
`i denotes the number of times the while-loop (lines 5–8) is executed during the ith
iteration of the outer for-loop, then `i equals the number of elements that are removed
from the rightmost path when going from Ccani−1(Bx) to Ccani (Bx). Because one cannot
remove more elements from this rightmost path than one has inserted before, the
sequence `1`2 . . . `s satisfies

0 ≤
i∑

k=1

`k < i for all 1 ≤ i ≤ s . (3.3)

5Note that if we did not require the function be surjective then a simple 2s-bit encoding of
Ccan(Bx) would suffice as the type of Bx (e.g., list the tree nodes level by level, writing ij for a node
with i (or j) left (or right) children for i, j ∈ {0, 1}); surjectivity, however, ensures the best possible
space for array T .

10 J. FISCHER AND V. HEUN

0 0

0 2

0 3 3 3

4 4

5 54 53 5

3 4

2 50 5

0 1

0 4

1 1

1 2

1 3

1 4

1 5

2 2

2 3

2 4

Fig. 3.1. The infinite graph arising from the definition of the Ballot Numbers. Its vertices are�� ��p q for all 0 ≤ p ≤ q. There is an edge from
�� ��p q to

�� ��(p− 1) q if p > 0 and to
�� ��p (q − 1) if

q > p.

Let Ls denote the set of sequences of positive integers `1, . . . , `s satisfying (3.3).
Because for every l ∈ Ls there is an array B ∈ As such that Alg. 1, run on B,
produces l, we established a surjection from As to Ls. It thus remains to prove that
the additions performed in line 6 of Alg. 1 yield a unique index in an enumeration of
Ls. These additions are captured by function f

f : Ls → [0 : Cs − 1] : `1`2 . . . `s 7→
s∑
i=1

∑
0≤j<`i

C(s−i)(s−j−
∑
k<i `k)

, (3.4)

and we shall prove in the following section that f is bijective. Hence f , the function
computed by Alg. 1, satisfies Eq. (3.1). Because all numbers arising in Alg. 1 are at
most n for s =

⌈
lgn
4

⌉
, they can be added in O(1) time; the claim on linear running

time follows.

3.2.1. Bijectivity of f . Throughout this section, the reader is encouraged to
peek at Tbl. 3.1, where most of the concepts are illustrated. Remember that Ls
denotes the set of sequences `1`2 . . . `s satisfying (3.3).

Recall the definition of the Ballot Numbers (3.2) and look at the infinite directed

graph shown in Fig. 3.1: Cpq equals the number of paths from
�� ��p q to

�� ��0 0 , because

of (3.2): if the current vertex is
�� ��p q , one can either first go “up” and then take any

of the Cp(q−1) paths from
�� ��p (q − 1) to

�� ��0 0 ; or one first goes “left” to
�� ��(p− 1) q

and afterwards takes any of the C(p−1)q paths to
�� ��0 0 .

Any sequence `1 . . . `s corresponds to a path from
�� ��s s to

�� ��0 0 in Fig. 3.1 (and

vice versa). This is because the graph is constructed in a way such that one cannot

move more cells upwards than one has already gone to the left if one starts at
�� ��s s .

So the path corresponding to `1 . . . `s is obtained as follows: in step i, go `i steps

upwards and one step to the left, and after step s go upwards until reaching
�� ��0 0 .

From the discussion above we already know how we can bijectively map the

sequences in Ls to paths from
�� ��s s to

�� ��0 0 in the graph in Fig. 3.1. Calling the set

of such paths Ps, we thus have to show that f is a bijection from Ps to
[
0 : Cs − 1

]
,

SPACE EFFICIENT PREPROCESSING SCHEMES FOR RANGE MINIMUM QUERIES 11

Table 3.1
Example-arrays of length 3, their Cartesian Trees, and their corresponding paths in the graph

in Fig. 3.1. The last column shows how to calculate the index of Ccan(A) in an enumeration of all
Cartesian Trees.

array A Ccan(A) path `1`2`3 number in enumeration

123 000 0

132 001 C03 = 1

231 002 C03 + C02 = 2

213 010 C13 = 3

321 011 C13 + C02 = 4

with the intended meaning that the paths in Ps should actually be first mapped
bijectively to a sequence in Ls.

We need the following identities on the Ballot Numbers:

Cpq =
∑

p≤q′≤q

C(p−1)q′ for 1 ≤ p ≤ q (3.5)

C(p−1)p = 1 +
∑

0≤i<p−1

C(p−i−2)(p−i) for p > 0 (3.6)

Eq. (3.5) follows easily by “unfolding” the definition of the Ballot Numbers, but
before proving it formally, let us first see how this formula can be interpreted in terms

of paths. It actually says that the number of paths from
�� ��p q to

�� ��0 0 can be obtained

by summing over the number of paths to
�� ��0 0 from

�� ��(p− 1) q ,
�� ��(p− 1) (q − 1) ,

. . . ,
�� ��(p− 1) p , as all paths starting at

�� ��p q can be expressed as the disjoint union

over those paths. The formal proof of (3.5) is by induction on q: for q = 1, C11 =
C10 + C01 = 0 + 1 = 1 by (3.2), and (3.5) gives C11 =

∑
1≤q′≤1 C0q′ = C01 = 1. For

the induction step, let the inductive hypothesis (IH) be Cp(q−1) =
∑
p≤q′≤q−1 C(p−1)q′

for all 1 ≤ p ≤ q − 1. Then

Cpq
(3.2)
= Cp(q−1) + C(p−1)q

(IH)
=

∑
p≤q′≤q−1

C(p−1)q′ + C(p−1)q =
∑

p≤q′≤q

C(p−1)q′ .

Eq. (3.6) is only slightly more complicated and can be proved by induction on
p: for p = 1, C01 = C00 + C(−1)1 = 1 + 0 by (3.2), and (3.6) yields C01 = 1 +∑

0≤i<0 C(−i−2)(−i) = 1, as the sum is empty. For the induction step, let the inductive
hypothesis be C(p−2)(p−1) = 1 +

∑
0≤i<p−2 C(p−1−i−2)(p−1−i). Then

12 J. FISCHER AND V. HEUN

2

p1

p

q

0

0
s

p

s

Fig. 3.2. Smallest (p1) and largest (p2)
paths (under f) among the paths that are equal

up to
�� ��p q .

3

p4

p

qq

0

0
s

p

s

Fig. 3.3. p3 is the next-largest path (under
f) after p4 among those paths that are equal up

to
�� ��p q .

C(p−1)p = C(p−1)(p−1) + C(p−2)p (by (3.2))

= C(p−1)(p−2) + C(p−2)(p−1) + C(p−2)p (again by (3.2))

= C(p−2)(p−1) + C(p−2)p (because C(p−1)(p−2) = 0)

= 1 +
∑

0≤i<p−2

C(p−1−i−2)(p−1−i) + C(p−2)p (inductive hypothesis)

= 1 +
∑

1≤i<p−1

C(p−i−2)(p−i) + C(p−2)p (shifting indices)

= 1 +
∑

0≤i<p−1

C(p−i−2)(p−i) − C(p−2)p + C(p−2)p

= 1 +
∑

0≤i<p−1

C(p−i−2)(p−i) .

We also need the following two lemmas for proving our claim.

Lemma 3.3. For 0 ≤ p ≤ q ≤ s and an arbitrary (but fixed) path pq from
�� ��s s

to
�� ��p q , let Ppqs ⊆ Ps be the set of paths from

�� ��s s to
�� ��0 0 that move along pq

up to
�� ��p q . Then f assigns the smallest number to the path p1 ∈ Ppqs that first goes

horizontally from
�� ��p q to

�� ��0 q and then vertically to
�� ��0 0 , and the largest value

to the path p2 ∈ Ppqs that first goes vertically from
�� ��p q to

�� ��p p , and then “crawls”

along the main diagonal to
�� ��0 0 (see also Fig. 3.2).

Proof. The claim for p1 is true because there are no more values added to sum
when going only leftwards to the first column. The claim for p2 follows from the
“left-to-right” monotonicity of the Ballot Numbers: Cij < C(i+1)j for all 0 ≤ i+ 1 ≤
j − 1 (this follows directly from C(i+1)j = Cij + C(i+1)(j−1) and the fact that for
0 ≤ i + 1 ≤ j − 1, C(i+1)(j−1) > 0). So taking the rightmost (i.e. highest) possible
value from each row q′ ≤ q must yield the highest sum (note that f can add at most
one Ballot Number from each row q′ ≤ q).

Lemma 3.4. Let p, q, and Ppqs be as in Lemma 3.3. Let p3 ∈ Ppqs be the path

that first moves one step upwards to
�� ��p (q − 1) , then horizontally until reaching�� ��0 (q − 1) , and then vertically to

�� ��0 0 . Let p4 ∈ Ppqs be the path that first moves

SPACE EFFICIENT PREPROCESSING SCHEMES FOR RANGE MINIMUM QUERIES 13

one step leftwards to
�� ��(p− 1) q , then vertically until reaching

�� ��(p− 1) (p− 1) , and

then “crawls” along the main diagonal to
�� ��0 0 (see also Fig. 3.3). Then f(p3) =

f(p4) + 1.

Proof. Let S be the sum of the Ballot Numbers that have already been added to

the sum of both p3 and p4 when reaching
�� ��p q . Then f(p3) = S + C(p−1)q, and

f(p4) = S +
∑

p≤q′≤q

C(p−2)q′ +
∑

0≤i<p−2

C(p−i−3)(p−i−1) ,

by simply summing over the Ballot Numbers that are added to S when making up-
wards moves.

Then

f(p3) = S + C(p−1)q

= S +
∑

p−1≤q′≤q

C(p−2)q′ (by (3.5))

= S +
∑

p≤q′≤q

C(p−2)q′ + C(p−2)(p−1)

= S +
∑

p≤q′≤q

C(p−2)q′ + 1 +
∑

0≤i<p−2

C(p−i−3)(p−i−1) (by (3.6))

= f(p4) + 1 ,

which proves the claim.

This gives us all the tools for

Lemma 3.5. Function f defined by (3.4) is a bijective mapping from Ls to the
interval

[
0 : Cs − 1

]
.

Proof. The smallest path (under f) receives number 0, and the largest path (crawl-
ing along the main diagonal) receives number

∑
0≤i<s−1 C(s−i−2)(s−i) = C(s−1)s−1 =

Cs − 1 (by (3.6)). So f(p) ∈
[
0 : Cs − 1

]
for all paths p ∈ Ps.

Injectivity can be seen as follows: different paths p5 and p6 must have one point�� ��p q where they diverge; w.l.o.g. assume that p5 continues with an upwards step to�� ��p (q − 1) , and p6 with a leftwards step to
�� ��(p− 1) q . Let p′5 be the path that

equals p5 up to
�� ��p (q − 1) , then goes horizontally to

�� ��0 (q − 1) , and finally moves

vertically to
�� ��0 0 . Also, let p′6 be the path that equals p6 up to

�� ��(p− 1) q , then

goes vertically to
�� ��(p− 1) (p− 1) , and finally crawls along the main diagonal to�� ��0 0 . Hence,

f(p6) ≤ f(p′6) (by Lemma 3.3)

= f(p′5)− 1 (by Lemma 3.4)

< f(p′5)

≤ f(p5) (again by Lemma 3.3) .

The claim on surjectivity follows directly from the fact that
∣∣Ls∣∣ =

∣∣Ps∣∣ = Cs.

14 J. FISCHER AND V. HEUN

etc.
block minima

1

B’1 B’2
s

...
n1

1 n’

l rRMQ

s
s’

2 3

A’=

A=

Bn’

1

)(l,r
B2B

Fig. 3.4. The input array A is divided into blocks B1, . . . , Bn′ of size s, and a query rmqA(i, j)
is divided into three sub-queries 1©– 3©. Array A′ stores the block-minima, and is again divided into
blocks B′1, . . . , B

′
dn′/se of size s. Further, s of these blocks are grouped into super-blocks of size s′.

3.3. Preprocessing for Out-of-Block-Queries. It remains to show how the
out-of-block-queries (those perfectly aligned with block boundaries at both ends) are
answered. Proceeding as in previous schemes [1, 4] would result in a super-linear bit
space O(n lg n), so we need a different approach. In principle, we could directly adapt
the solution of the non-systematic scheme due to Sadakane [53] to our setting, which

would result in O
(
n lg2 lgn

lgn

)
bits of space. A further blocking level, however, can reduce

this to O
(
n lg lgn

lgn

)
bits, as explained next. See also Fig. 3.4 for what follows.

For each of the n′ =
⌈
n
s

⌉
blocks Bi, we store the minimum of Bi in a new

array A′[1, n′] at A′[i], such that answering out-of-block-queries now corresponds to
answering RMQs on A′. To this end, array A′ is again divided into blocks of size s, say
B′1, . . . , B

′
dn′/se. A query rmqA′(i, j) is again decomposed into three non-overlapping

sub-queries: one out-of-block query, and two in-block-queries. The in-block-queries
are handled with the same mechanism as in § 3.2, i.e., by calculating a type for each
block in A′, storing these types in an array T ′, and using a lookup-table to answer
the queries. In fact, since the block size remains untouched, we can use the same
universal lookup-table P as in § 3.2; only the type-array T ′ needs to be stored.

For answering the out-of-block-queries on A′, we could keep recursing in the same
manner, but this would not result in constant query time. So we need a different
strategy, as explained next. In essence, we do this with a two-level storage scheme
due to Sadakane [52,53]. We group s contiguous blocks B′is+1, . . . , B

′
(i+1)s into super-

blocks consisting of s′ = s2 elements. Call the resulting super-blocks B′′1 , . . . , B
′′
dn′/s′e.

We first wish to precompute the answers to all RMQs in A′ that span over at least
one such super-block. To do so, define a table M ′′

[
1, dn′/s′e

][
0,
⌊
lg
(
dn′/s′e

)⌋]
, where

M ′′[i][j] stores the position of the minimum of super-blocks B′′i . . . , B
′′
i+2j−1 (minimum

in A′[(i − 1)s′ + 1, (i + 2j − 1)s′]). The first row M ′′[i][0] can be filled by a linear
pass over A′, and for j > 0 we use a dynamic programming approach by setting
M ′′[i][j] = argmink∈{M ′′[i][j−1],M ′′[i+2j−1][j−1]}

{
A′[k]

}
.

To find the minimum in super-blocks B′′i , . . . , B
′′
j , we decompose the range [i, j]

into two (possibly overlapping) sub-ranges whose length is a power of two: letting p =⌊
lg(j−i+1)

⌋
, the corresponding sub-ranges are

[
i, i+2p−1

]
and

[
j−2p+1, j

]
. Hence,

the minimum of B′′i , . . . , B
′′
j can be found by argmink∈{M ′′[i][p],M ′′[j−i+1][p]}

{
A′[k]

}
.

In a similar manner we precompute the answers to all RMQs in A′ that span over
at least one block, but not over a super-block. These answers are stored in a table

SPACE EFFICIENT PREPROCESSING SCHEMES FOR RANGE MINIMUM QUERIES 15

M ′
[
1, dn′/se

][
0,
⌊
lg
(
ds′/se

)⌋]
, where M ′[i][j] stores the position of the minimum of

blocks B′i . . . , B
′
i+2j−1 (minimum in A′

[
(i − 1)s + 1, (i + 2j − 1)s

]
). Again, dynamic

programming can be used to fill table M ′ in optimal time.

Summarizing this section, an out-of-block-query in A is decomposed into at most
two in-block-queries in A′ (answered with T ′ and P), two out-of-block-queries in A′

(answered by consulting M ′), and one out-of-super-block-query in A′ (answered with
M ′′).

3.4. Space Analysis. Let us now analyze the space occupied by the scheme
given in § 3.2–3.3. We start with the structures from § 3.2. Recall that the block
size is s =

⌈
lgn
4

⌉
. To store the type of each block, array T has length dn/se, and

because of Lemma 3.1, the numbers are in the range
[
0 : Cs − 1

]
. Note Cs =

4s/
(√
πs3/2

)(
1 + O(s−1)

)
by Stirling, in particular Cs ≤ 4s

s3/2
. This implies that the

number of bits to encode T is

|T | =
⌈n
s

⌉
· dlgCse

≤ n

s
· lgCs +

n

s
+ lgCs + 1

≤ n

s
· lg 4s

s3/2
+
n

s
+ lg

4s

s3/2
+ 1

=
n

s
·
(

2s− 3

2
(lg lg n− 2)

)
+
n

s
+O (lg n)

= 2n− 6
n lg lg n

lg n
+O

(
n

lg n

)
.

To analyze the space of the lookup-table P , by Lemma 3.1 we know that P has
only Cs ≤ 4s

s3/2
rows, one for each possible block-type. For each type t and a block

B of type t we need to precompute P [t][i][j] = rmqB(i, j) for all 1 ≤ i ≤ j ≤ s; this
would take O

(
4s

s3/2
s2 · lg s

)
bits of space. Some further space can be saved if we use

the method described by Alstrup et al. [1], which uses a single bit vector of length
s to represent the answers to all RMQs that start at a given point inside the block.
The total space is thus

|P | = O

(
4s

s3/2
s · s

)
= O

(
n1/2

√
lg n
)

= o(n/ lg n)

bits.

We come to the structures from § 3.3. First note that array A′ need not be stored
at all, as

A′[i] = A [(i− 1)s+ P [T [i]][1][s]] .

Array T ′ is of length dn′/se and stores values of the same range as T ; the space

16 J. FISCHER AND V. HEUN

is thus

|T ′| =
⌈
n′

s

⌉
· dlgCse

= O
(n
s2
· 2s
)

= O

(
n

lg n

)
.

Table M ′′ has dimensions dn′/s′e ×
⌊
lgdn′/s′e

⌋
and stores values up to n′ ≤ n;

the total number of bits needed is therefore

|M ′′| = O

(
n′

s′
lg

(
n′

s′

)
· lg n

)
= O

(
n

lg3 n
lg n · lg n

)
= O

(
n

lg n

)
.

Table M ′ has dimensions dn′/se ×
⌊
lgds′/se

⌋
. If we just store the offsets of the

minima then the values do not become greater than s′; the total number of bits needed
for M is therefore

|M ′| = O

(
n′

s
lg

(
s′

s

)
· lg s′

)
= O

(
n lg2 lg n

lg2 n

)
= o(n/ lg n) .

For constructing the scheme, we first note that tables P , M ′, and M ′′ can be
filled directly with no extra space. When filling T and T ′ with Alg. 1, we need
O(lg n lg lg n) bits for array R (R stores s = O(lg n) integers in the range [1 : s]),
plus O

(
lg3 n

)
bits for the Ballot Numbers Cpq (an array of ≤ s2 integers in the range[

1 : Cs
]

=
[
1 : O(lg n)

]
for s = O(lg n)).

Because the query algorithm needs to compare several values in A for obtaining
the final answer, this scheme is systematic. Letting tA denote the time to access an
element from the input array A (tA = O(1) for “normal,” uncompressed arrays), we
can thus state:

Lemma 3.6. For a static array A with n elements from a totally ordered set and
access time tA, there exists a preprocessing scheme for RMQs with time complexity

〈O(n · tA), O(tA)〉 and bit-space complexity
r
O
(
lg3 n

)
, |A|+ 2n− 6n lg lgn

lgn +O
(
n

lgn

)z
.

Note that for sufficiently large n the negative n lg lgn
lgn -term becomes larger than

the O
(
n

lgn

)
-term. Hence, the final space on top of A is asymptotically less than 2n

bits.

3.5. The Final Result. Finally, we show how to lower the 2n-bit term from
Lemma 3.6 to 2n/c(n) for an arbitrary integer function c(n) ∈ O

(
nε
)

for a constant
0 < ε < 1. The idea is to build groups of c(n) consecutive elements from the input ar-
ray A, construct a (conceptual) new array B consisting of the minima in these groups,

SPACE EFFICIENT PREPROCESSING SCHEMES FOR RANGE MINIMUM QUERIES 17

and construct the scheme from Lemma 3.6 on B. A query in A is then translated
into a query in B, consisting of exactly the groups that are strictly contained in the
query in A. Because objects in B correspond to groups of c(n) consecutive objects in
A, every access to B now results in a scan of c(n) entries in A, as B is not actually
present. Further, we also scan at most c(n) entries in A at both ends of the query,
and compare these values to the minimum obtained by querying B. Note that we do
not even have to store B at construction time, as every of the O

(
n/c(n)

)
accesses to

B can be simulated by O
(
c(n)

)
accesses to A, resulting in O(n) preprocessing time

in total.

This leads us to the following theorem (the restriction on c(n) is only there to
keep the second-order term simple).

Theorem 3.7. For a static array A with n elements from a totally ordered
set and access time tA, there is a preprocessing scheme for RMQs with time complex-

ity 〈O(n · tA), O(c(n) · tA)〉 and space complexity
r
O
(
lg3 n

)
, |A|+ 2n

c(n) −Θ
(
n lg lgn
c(n) lgn

)z
,

for an arbitrary positive integer function c(n) ∈ O(nε) (constant 0 < ε < 1).

Function c(n) can be constant, in which case Thm. 3.7 gives optimal O(1) query
time (assuming constant access time tA). Notwithstanding, there are also applications
where ω(1) query time suffices [23]. In this case, Thm. 3.7 is stronger than the
currently best solution for RMQs with sublinear space [23, Lemma 2]. For example,
we can achieve O(lg lg n) query time with O

(
n

lg lgn

)
space on top of A (setting c(n) =

dlg lg ne in Thm. 3.7), whereas [23] would give O
(
lg lg n · lg2 lg lg n

)
query time within

that space.

We finally stress that our algorithm is easy to implement on PRAMs (or real-
world shared-memory machines), where with n/t processors the preprocessing runs in
time Θ(t) if t = Ω(lg n), which is work-optimal. This is simply because the minimum-
operation is associative and can hence be parallelized after a Θ(t) sequential initial-
ization [57].

4. Compressed Preprocessing Scheme. Let us now consider input arrays
A of length n that are compressible. As already mentioned in the introduction,
compressibility is usually measured by the order-k entropy Hk(A), as nHk(A) provides
a lower bound on the number of bits needed to encode A by any compressor that
considers a context of length k when it encodes a symbol in A. We now show that
the simple text-encoding by Ferragina and Venturini [16] is also effective for our type-
array T . In this section, σ denotes the size of the “alphabet” Σ, i.e., the number of
different objects in A.

4.1. Adapting the Ferragina-Venturini-Scheme to RMQs. We explain
how to adapt the encoding due to Ferragina and Venturini [16] to yield the first
entropy-bounded preprocessing scheme for RMQs. The basis is the RMQ-algorithm
from Lemma 3.6, and the block size is set again to s =

⌈
lgn
4

⌉
. Again, Bj denotes the

j’th block in A. The idea for compression is to reduce the size of the type-array T
(see the first two paragraphs after the proof of Lemma 3.1 for the meaning of T), as
all other structures are already of size o(n). Compressing T works as follows.

• Let T be the set of occurring block types in A: T =
{
T [i] | i ∈ [1 : dn/se]

}
.

• For T ∈ T let n(T) be the number of occurrences of block type T in T ,
n(T) =

∣∣{i ∈ [1 : dn/se
]
| T [i] = T

}∣∣. Sort the elements of T by n(T) in

decreasing order, and let r
(
Bj
)

the rank of Bj ’s Cartesian Tree in this sorted

list, r
(
Bj
)

=
∣∣{T ∈ T | n(T) ≤ n

(
T [j]

)}∣∣.

18 J. FISCHER AND V. HEUN

V’’

A=

V=

=V’

2 1 11 0 1 1 0 2 1 1 2 1 1 1 1 0 2 0 2 3

0 0ε ε 01 ε 0

ε 0 ε 0 0 ε 0

ε ε ε ε000

=

Fig. 4.1. Illustration to the compressed representation of RMQ-information. On top of each
block of size s = 3 we display its Canonical Cartesian Tree. The final encoding can be found in the
row labeled V ; the rows labeled V ′ and V ′′ are solely for the proof of Thm. 4.1.

• Assign to each block Bj a codeword c
(
Bj
)

that is the binary string of rank

r
(
Bj
)

in B, the canonical enumeration of all binary strings: B = {ε, 0, 1, 00,

01, 10, 11, 000, . . . }. The codeword c
(
Bj
)

will be used as the type of block
Bj ; there is no need to recover the original block types.

• Build a sequence V = c
(
B1

)
c
(
B2

)
. . . c

(
Bdn/se

)
. In other words, V is obtained

by concatenating the codewords for each block. See Fig. 4.1 for an example
(ignore for now the rows labeled V ′ and V ′′).
• In order to find the beginning and ending of Bj ’s codeword in V , we use again

a two-level scheme for storing the starting position of Bj ’s encoding in V : we
group every s contiguous blocks in A into a super-block. Table D′ stores the
beginning (in V) of the encodings of these super-blocks. Table D does the
same for the blocks, but storing the positions only relative to the beginning
of the super-block encoding. These tables can be filled “on the fly” when
writing the compressed string V .

D and D′ can be used to reconstruct the codeword (and hence the type) of block
Bj : simply extract the beginning of block j and that of j + 1 (if existent); thus, the
above structures substitute the type-array T . The result of this section can now be
stated as follows:

Theorem 4.1. For a static array A with n elements from a totally ordered set
of size σ and access time tA, there exists a preprocessing scheme for RMQs with time
complexity 〈O(n · tA), O(tA)〉 and bit-space complexity

s
O(
√
n/ lg n),min

{
nHk(A) +O

(n(k lg σ + lg lg n)

lg n

)
, 2n
}

+ |A|
{
,

simultaneously over all k.
Proof. We start by bounding the size of V . Assume first that instead of compress-

ing the block types (i.e., array T), we run the above compression algorithm directly
on the contents of A, with the same block size. In other words, we assign the same
codeword c′ to two size-s-blocks iff their contents is equal, and these codewords are
derived from the frequencies of the blocks in A. See also Fig. 4.1, where the sequence
thus obtained is called V ′, and c′(102) = ε, c′(111) = 0, c′(112) = 1, and c′(023) = 00.
It can be shown [16, Thm. 1] that the resulting codeword c′(Bj) produced for block
Bj is always smaller than if one were to compress the contents of that block with a
k-th order Arithmetic Encoder. In turn, González and Navarro [30] proved that the
total output of such an Arithmetic Encoder is bounded by nHk(A)+O

(
nk lg σ
b

)
, where

b is the block-size (in our case b = O(lg n)). Here, the O
(
nk lg σ
b

)
-term accounts for

SPACE EFFICIENT PREPROCESSING SCHEMES FOR RANGE MINIMUM QUERIES 19

encoding the first k symbols of each of the n/b blocks with lg σ bits; hence, for this
we need to assume that the elements in Σ are integers in a range of size σO(1).

Now, observe that if two blocks in the original array A are equal, then they also
have the same Cartesian Tree and thus the same block type; so if we encode each
block-type with the shortest codeword c′(Bj) among all the codewords for blocks
that have the same Cartesian Tree, the resulting sequence V ′′ will always be shorter
than V ′. See Fig. 4.1 for an example. Now our encoding V cannot be longer than
V ′′, as it assigns codewords optimally (shorter codewords to more frequent types).
Finally, by noting that the compressed V is never larger than the uncompressed T ,
we can conclude that |V | = min

{
nHk(A) +O

(
nk lg σ
lgn

)
, 2n
}

. Further, we can drop the

assumption that the values are in a range of size σO(1), as we can think of having scaled
down the alphabet down to [1, σ], and then running the algorithm on the transformed
array (which has the same answers to all RMQs).

We continue with tables D and D′. Because the block types are in the range[
0 : Cs − 1

]
, a super-block spans at most s′ = s lgCs = O

(
lg2 n

)
bits in V . Conse-

quently, the size of table D is |D| = O(n/s · lg s′) = O
(
n lg lgn

lgn

)
bits. The size of table

D′ is simply |D′| = O
(
n/s′ · lg |V |

)
= O

(
n

lgn

)
.

Arrays P , T ′, M ′ and M ′′ of the RMQ-scheme from § 3 are still needed for
answering the out-of-block-queries. Their space can be bounded by o

(
n lg lgn

lgn

)
(see

§ 3.4). The claim on the final space follows.
We finally show that the scheme can be constructed in O(n · tA) time with little

extra space. In a first scan of A, we only count the number of occurrences of each
block type without actually storing the types; this needs an array of size O(Cs · lg n) =
O
(√

n/ lg n
)

bits. We then sort this array in-place [24] and assign the codes according

to the frequency, needing at most additional O
(√

n/ lg n
)

bits. A second scan over
A constructs the block types again, and directly writes the output stream V , along
with D and D′.

Thm. 4.1 is independent of the representation and the size of the keys in A; we
only require O(tA)-read-only-access to the elements from A. For example, A could
contain large uncompressed values and reside on disk (but still have a small alphabet
size and a small entropy), or A could be compressed to something even smaller than
nHk(A). However, if the elements in A have size O(lg σ), then A itself could be
compressed to nHk(A) + O

(
nk lg σ
lgn

)
bits with Ferragina and Venturini’s scheme [16].

Then Thm. 4.1 would give 2nHk(A) + o(n) total space. In this case we can do better
by incorporating the RMQ-information directly into the compression of A:

Corollary 4.2. For a static array A[1, n] consisting of O(lg σ)-bit numbers,
there exists a preprocessing scheme for RMQs with time complexity 〈O(n), O(1)〉 and
bit-space complexity

s
|A|+O

(√
n lg n

)
, nHk(A) +O

(
n(k lg σ + lg lg n)

lgσ n

){
,

simultaneously over all k.
Proof. We use Ferragina and Venturini’s scheme [16, Thm. 1] to compress A,

which divides A into blocks of size b =
⌊
1
2 lgσ n

⌋
. To their table r−1, which gives the

contents of a block with a given rank, we attach the type (a.k.a. Cartesian Tree) of
the corresponding block, needing additional O

(
σb · lgCb

)
= O

(√
n · lgσ n

)
bits. This

gives O(1)-access to both the contents of the block and its Cartesian Tree, so we can
proceed as in the scheme from Lemma 3.6, without having to store T . If the resulting

20 J. FISCHER AND V. HEUN

array A′ is divided into blocks/super-blocks with the original block size s instead of
b, then this increases the space of for T ′, M ′, and M ′′ only by a factor of lg σ, but
the resulting terms are all within the space for compressing A. The scheme can be
constructed in linear time using additional tables of size O

(
σb · lg n

)
= O

(√
n lg n

)
bits, using the ideas from the last paragraph in the proof of Thm. 4.1. The claim
follows.

5. Optimal Preprocessing in the Non-Systematic Setting. We now turn
our attention to the non-systematic setting. In this section, we show a preprocessing
scheme of asymptotically optimal final size. For ease of presentation, our new scheme
always returns the rightmost minimum in case of draws — though it can be easily
arranged to return the usual leftmost minimum if this is desired (e.g., by conceptually
reversing both the input array and the queries).

5.1. 2-dimensional Min-Heaps. Recall that A[1, n] is the array to be prepro-
cessed for RMQs. For technical reasons, we define A[0] = −∞ as the “artificial”
overall minimum. We first need an auxiliary definition:

Definition 5.1. For 1 ≤ i ≤ n, let psvA(i) = max
{
j < i | A[j] < A[i]

}
denote

the previous smaller value of position i.
The previous smaller value has a “crossing-free” property, stated formally in the

following
Lemma 5.2. For 1 ≤ i < j ≤ n, psvA(j) 6∈

[
psvA(i) + 1 : i− 1

]
.

Proof. Assume psvA(j) = k ∈
[
psvA(i) + 1 : i − 1

]
. Then A[k] < A[j] and

A[m] ≥ A[j] for all m ∈ [k + 1 : j], in particular A[i] ≥ A[j] because k < i < j. So
A[i] > A[k], a contradiction to the fact that psvA(i) < k.

The basis for our non-systematic scheme will be a new tree, the 2d-Min-Heap,
defined as follows.

Definition 5.3. The 2d-Min-Heap MA of A is an ordered labeled tree with
vertices v0, . . . , vn, where vi is labeled with i for all 0 ≤ i ≤ n. For 1 ≤ i ≤ n, the
parent node of vi is the node labeled psvA(i). The order of the children is chosen such
that their labels are increasing from left to right.

By Lemma 5.2 MA is a well-defined tree with the root being always labeled 0.
Observe that a node vi can be uniquely identified by its label i, which we will do
henceforth. See Fig. 5.1 for an example.

We note the following useful properties of MA.
Lemma 5.4. Let MA be the 2d-Min-Heap of A.

(i) Let i be a node in MA with children x1, . . . , xk. Then A[i] < A
[
xj
]

for all
1 ≤ j ≤ k.

(ii) Let i be a node in MA. Then MA
i , the subtree of MA rooted at i, consists

of nodes [i : h− 1] for some i < h ≤ n+ 1.
(iii) The node labels correspond to the preorder-numbers of MA (counting starts

at 0).
(iv) Again, let i be a node in MA with children x1, . . . , xk. Then A

[
xj
]
≤

A
[
xj−1

]
for all 1 < j ≤ k.

Proof. We prove each property in turn.
(i) Follows immediately from Def. 5.3.

(ii) Let h > i be the smallest index with psvA(h) < i, or h = n + 1 if no such
value exists. Because i ≤ psvA(k) < h for all k ∈ [i+ 1 : h− 1] and the transitivity of
“≤”, k ∈ MA

i for all such k. It follows immediately from Lemma 5.2 that these are
the only values in MA

i apart from i itself.

SPACE EFFICIENT PREPROCESSING SCHEMES FOR RANGE MINIMUM QUERIES 21

16

1312

11

10

9

7

8

4

5

6

1 2

3

0

00−
(

32343234 2

)
1 3

(
1 2

)
1

()
23

)(
3 2

)
2

)(
4 3

)
3

1 3 2 4 2 5 3 5 5 4543435
4 6 70 1 2 3 5 8 9 10 11 12 13 14 16

A
U
E

=
=
= 2 2

))))))
01

((() ((()

15

i

x y

ji

x y

()
32

(
j

(((()
454321

14 15

Fig. 5.1. Top: The 2d-Min-HeapMA of the input array A. Bottom: MA’s DFUDS U and U ’s
excess sequence E. Two example queries rmqA(i, j) are underlined, including their corresponding
queries ±1rmqE(x, y).

(iii) Let π(i) denote the preorder-number of i in MA. We proceed by induction
on i. The claim is obviously true for the root 0. Now let i ≥ 1, and assume the claim
is true for all i′ < i. To prove the claim for i, let j = psvA(i) < i be the parent of
i, and i1, . . . , ik be j’s children with ix = i for some 1 ≤ x ≤ k. By the definition of
preorder,

π(i) =

{
π(j) + 1 if x = 1 ,

π(ix−1) +
∣∣∣MA

ix−1

∣∣∣ otherwise.

In the first case, by the inductive hypothesis we know π(i) = j + 1, so it remains to
prove i = j+1. For the sake of contradiction, assume i > j+1 and let m = rmqA(j+
1, i− 1). Then psvA(m) = j, as from Lemma 5.2 we cannot have psvA(m) < j, and
A[m′] ≥ A[m] for all m′ ∈ [j + 1 : m] because m is a range minimum. Hence m < i
is a child iy of j. Due to the order of the children in MA we must have y < x = 1,
contradicting the fact that i = ix is the first child of j.
In the second case, by the inductive hypothesis we know π(i) = ix−1 +

∣∣MA
ix−1

∣∣.
From property (ii), we have MA

ix−1
=
[
ix−1 : h − 1

]
for some h > ix−1, hence

|MA
ix−1
| = h − ix−1. This implies π(i) = h, so it remains to show that h = i. For

the sake of contradiction assume h 6= i, implying h < i because MA
ix−1

is consecutive

(note i 6∈ MA
ix−1

). Let m = rmqA(h, i − 1). We now proceed as in the first case.

From Lemma 5.2, psvA(m) ≥ j and psvA(m) 6∈
[
j+ 1 : ix−1− 1

]
. From the fact that

m is a range minimum, psvA(m) < h. But we cannot have psvA(m) ∈
[
ix−1 : h− 1

]
,

for otherwise m ∈MA
ix−1

, contradicting the size of MA
ix−1

. In total, psvA(m) = j, so

ix−1 < m < ix is a child of j. This contradicts again the order of the children ofMA,
which requires that m should appear between ix−1 and ix.

(iv) Assume for the sake of contradiction that A
[
xj
]
> A[xj−1] for two chil-

dren xj and xj−1 of i. From property (iii), we know that i < xj−1 < xj , implying
psvA(xj) ≥ xj−1 > i, in contradiction to psvA(xj) = i by Def. 5.3.

Properties (i) and (iv) of the above lemma explain the choice of the name “2d-

22 J. FISCHER AND V. HEUN

Min-Heap,” becauseMA exhibits a minimum-property on both the parent-child- and
the sibling-sibling-relationship, i.e., in two dimensions.

The following lemma will be central for our scheme, as it establishes the desired
connection of 2d-Min-Heaps and RMQs.

Lemma 5.5. Let MA be the 2d-Min-Heap of A. For arbitrary nodes i and j,
1 ≤ i < j ≤ n, let ` denote the LCA of i and j in MA (recall that we identify nodes
with their labels). Then if ` = i, rmqA(i, j) is given by i, and otherwise, rmqA(i, j)
is given by the child of ` that is on the path from ` to j.

Proof. Recall thatMA
x denotes the subtree ofMA that is rooted at x. There are

two cases to prove.
1. If ` = i, this means that j is a descendant of i. Property (ii) of Lemma 5.4

implies that all nodes [i : j] are in MA
i , and the recursive application of property (i)

implies that A[i] is the minimum in A[i, j].
2. Now assume ` 6= i. Let x1, . . . , xk be the children of `. Further, let α and β

(1 ≤ α ≤ β ≤ k) be defined such that MA
xα contains i, and MA

xβ
contains j. Because

` 6= i and property (iii) of Lemma 5.4, we must have ` < i; in other words, the LCA
is not in the query range. But also due to property (iii), every node in [i : j] is in
MA

xγ for some α ≤ γ ≤ β, and xγ ∈ [i : j] for all α < γ ≤ β. Taking this together
with property (i), we see that {xγ | α < γ ≤ β} are the only candidate positions for
the minimum in A[i, j]. Due to property (iv), we see that xβ (the child of ` on the
path to j) is the position where the overall minimum in A[i, j] occurs.

To achieve the optimal 2n + o(n) bits for our scheme, we represent the 2d-Min-
Heap MA by its DFUDS U (occupying 2n bits), plus o(n)-bit structures for rank)-,
select)-, and findopen-operations on U (see § 2). We further need structures for ±1rmq
on the excess-sequence E[1, 2n] of U , defined as

E[i] = rank((U, i)− rank)(U, i) . (5.1)

This sequence clearly satisfies the property that subsequent elements differ by exactly
1, and is already encoded in the right form (by means of the DFUDS U) for applying
the ±1rmq-scheme from § 2.5.

The reasons for preferring the DFUDS over the BPS-representation [41] of MA

are (1) the operations needed to perform on MA are particularly easy on DFUDS
(see the next corollary), and (2) we have found a fast and space-efficient algorithm
for constructing the DFUDS directly (see the next section).

Corollary 5.6. Given the DFUDS U of MA, rmqA(i, j) can be answered in
O(1) time by the following sequence of operations (1 ≤ i < j ≤ n).

1. x← select)(U, i+ 1)
2. y ← select)(U, j)
3. w ← ±1rmqE(x, y)
4. if rank)

(
U,findopen(U,w)

)
= i then return i

5. else return rank)(U,w)
Proof. Let ` be the true LCA of i and j in MA. Inspecting the details of how

LCA-computation in DFUDS is done [36, Lemma 3.2], we see that after the ±1rmq-
call in line 3 of the above algorithm, w + 1 contains the starting position in U of the
encoding of `’s child that is on the path to j.6 Line 4 checks if ` = i by comparing
their preorder-numbers and returns i in that case (case 1 of Lemma 5.5) — it follows

6In line 1, we correct a minor error in the original article [36] by computing the starting position
x slightly differently, which is necessary in the case that i = lca(i, j) (confirmed by K. Sadakane,
personal communication, May 2008).

SPACE EFFICIENT PREPROCESSING SCHEMES FOR RANGE MINIMUM QUERIES 23

from the description of the parent-operation in the original article on DFUDS [5] that
this is correct. Finally, in line 5, the preorder-number of `’s child that is on the path
to j is computed correctly (case 2 of Lemma 5.5).

We have shown these operations so explicitly in order to emphasize the simplicity
of our approach. Note in particular that not all operations on DFUDS have to be
“implemented” for our RMQ-scheme, and that we find the correct child of the LCA `
directly, without finding ` explicitly. We encourage the reader to work on the examples
in Fig. 5.1, where the respective RMQs in both A and E are underlined and labeled
with the variables from Cor. 5.6.

5.2. Construction of 2d-Min-Heaps. We show how to construct the DFUDS
U of MA in linear time and n + o(n) bits of extra space. We first give a general
O(n)-time algorithm that uses O(n lg n) bits (§ 5.2.1), and then show how to reduce
its space to n+ o(n) bits, while still having linear running time (§ 5.2.2).

5.2.1. The General Linear-Time Algorithm. We show how to construct U
(the DFUDS of MA) in linear time. The idea is to scan A from right to left and
build U from right to left, too. Suppose we are currently in step i (n ≥ i ≥ 0), and
A[i+ 1, n] have already been scanned. We keep a stack S[1, h] (where S[h] is the top)
with the properties that A

[
S[h]

]
≥ · · · ≥ A

[
S[1]

]
, and i < S[h] < · · · < S[1] ≤ n. S

contains exactly those indices j ∈ [i + 1, n] for which A[k] ≥ A[j] for all i < k < j.
Initially, both S and U are empty. When in step i, we first write a ‘)’ to the current
beginning of U , and then pop all w indices from S for which the corresponding entry
in A is strictly greater than A[i]. To reflect this change in U , we write w opening
parentheses ‘(’ to the current beginning of U . Finally, we push i on S and move to
the next (i.e. preceding) position i − 1. It is easy to see that these changes on S
maintain the properties of the stack. If i = 0, we write an initial ‘(’ to U and stop
the algorithm.

The correctness of this algorithm follows from the fact that due to the definition
of MA, the degree of node i is given by the number w of array-indices to the right
of i that have A[i] as their previous smaller value (Def. 5.3). Thus, in U node i is
encoded as ‘(w)’, which is exactly what we do. Because each index is pushed and
popped exactly once on/from S, the linear running time follows.

5.2.2. O(n)-bit Solution. The only drawback of the above algorithm is that
stack S requires O(n lg n) bits in the worst case. We solve this problem by repre-
senting S as a bit-vector S′[1, n]. S′[i] is 1 if i is on S, and 0 otherwise. In order to
maintain constant time access to S, we use a standard blocking-technique as follows.
We logically group s =

⌈
lgn
2

⌉
consecutive elements of S′ into blocks B0, . . . , Bbn−1

s c
.

Further, s′ = s2 elements are grouped into super-blocks B′0, . . . , B
′
bn−1
s′ c

.

For each super-block B′z that contains at least one 1, in a new table M ′ at position
z we store the number of the leftmost block to the right of B′z that contains a 1:
M ′[z] = min

{
y ≥ (z+1)s | By contains a 1

}
if B′z contains a 1, and M ′[z] is undefined

otherwise. Here and in the following, the minimum of the empty set is defined as
+∞. Likewise, in a new table M at position x we store the number of the leftmost
block to the right of Bx that contains a 1, this time only within x’s super-block
B′z (z =

⌊
x
s

⌋
) and relative to the beginning of Bx in B′z: M [x] = min

{
x < y <

(z + 1)s | By contains a 1
}
− zs if Bx contains a 1, and M [x] is undefined otherwise.

Note that some values in M and M ′ are undefined, but they will never be accessed
by the algorithm. These tables need |M | = O

(
n
s · lg

s′

s

)
= O

(
n lg lgn

lgn

)
and |M ′| =

24 J. FISCHER AND V. HEUN

O
(
n
s′ · lg

n
s

)
= O

(
n

lgn

)
bits of space. Further, for all possible bit-vectors of length s

we maintain a table P that stores the position of the leftmost 1 in that vector. This
table needs |P | = O

(
2s · lg s

)
= O

(√
n lg lg n

)
bits. Next, we show how to use these

tables for constant-time access to S, and how to keep M and M ′ up-to-date.

When entering step i of the algorithm, we know that S′[i+1] = 1, because position
i+1 has been pushed on S as the last operation of the previous step. Thus, the top of
S is given by i+ 1, and we can pop it from S (i.e., set S′[i+ 1] to 0). For finding the
leftmost 1 in S′ to the right of j > i (position j has just been popped from S, meaning
that S′[j] has thus been set to 0), we find the leftmost 1 in j’s block Bx, x =

⌊
j−1
s

⌋
,

by consulting p = P [Bx]. If such a 1 exists (i.e., p 6= 0), then xs+ p− 1 is the answer.
If not (p = 0), we first check if M [x] 6= +∞, and if so, compute y = x+M [x] as the
next block containing a 1; the answer is then ys + P [y] − 1. If not (M [x] = +∞),
we compute j’s super-block number as z =

⌊
x
s

⌋
. Then if M ′[z] = +∞, the stack is

empty, and otherwise, we can again use P to find the leftmost 1 in block y = M ′[z].
In total, we can find the new top of S in constant time.

In order to keep M and M ′ up to date, we need to handle the operations where
(1) elements are pushed on S (i.e., a 0 is changed to a 1 in S′), and (2) elements are
popped from S (a 1 changed to a 0). For operation (1), let i be the element that has
just been pushed on S, and let x =

⌊
i−1
s

⌋
and z =

⌊
x
s

⌋
be i’s block and super-block,

respectively. Further, let x′ and z′ be the block/super-block number of S’s former
top element (just before i is pushed), where we assume that x′ = z′ = +∞ if the
stack was empty. Then if z 6= z′ (the former top is in a different super-block), set
M ′[z] to x′ and M [x] to +∞. Otherwise (z = z′), if x 6= x′ (the former top is in a
different block, but in the same super-block), just set M [x] to x′ − zs. For operation
(2), nothing has to be done at all, because even if a popped index j was the last 1 in
its (super-)block x, we know that all (super-)blocks before j’s block do not contain a
1, so all future pointers in M and M ′ will jump over them. Note that this only works
because elements to the right of a popped element will never be pushed again onto S.
This completes the description of the n+ o(n)-bit construction algorithm.

5.3. Lowering the Second-Order-Term. Until now, the second-order-term is

dominated by the O
(
n lg2 lgn

lgn

)
bits from Sadakane’s preprocessing scheme for ±1rmq

(§ 2.5), while all other terms (for rank, select and findopen) are O
(
n lg lgn

lgn

)
. We show

in this section a simple way to lower the space for ±1rmq to O
(
n lg lgn

lgn

)
, thereby

completing the proof of Thm. 5.8. The techniques are similar to the ones presented
in § 3.3.

As in the original algorithm [52], we divide the input array E into n′ =
⌊
n−1
s

⌋
blocks of size s =

⌈
lgn
2

⌉
. Queries are decomposed into at most three non-overlapping

sub-queries, where the first and the last sub-queries are inside of the blocks of size s,
and the middle one exactly spans over blocks. The two queries inside of the blocks
are answered by table lookups using O

(√
n lg2 n

)
bits, as in the original algorithm.

For the queries spanning exactly over blocks of size s, we proceed as follows.
Define a new array E′[0, n′] such that E′[i] holds the minimum of E’s i’th block. E′

is represented only implicitly by an array E′′[0, n′], where E′′[i] holds the position
of the minimum in the i’th block, relative to the beginning of that block. Then
E′[i] = E[is+E′′[i]]. Because E′′ stores n/ lg n numbers from the range [1, s], the size
for storing E′ is thus O

(
n lg lgn

lgn

)
bits. Observe that unlike E, E′ does not necessarily

fulfill the ±1-property. E′ is now preprocessed for constant-time RMQs with the
systematic scheme from Lemma 3.6 in § 3, using 2n′ + o(n′) = O

(
n

lgn

)
bits of space.

SPACE EFFICIENT PREPROCESSING SCHEMES FOR RANGE MINIMUM QUERIES 25

Thus, by querying rmqE′(i, j) for 1 ≤ i ≤ j ≤ n′, we can also find the minima for the
sub-queries spanning exactly over the blocks in E.

Two comments are in order at this place. First, the RMQ-scheme from § 3 does
allow the input array to be represented implicitly, as in our case. And second, it does
not use Sadakane’s solution for ±1rmq, so there are no circular dependencies. Hence,
we get:

Theorem 5.7. Let E[1, n] be an array of numbers with the property E[i] −
E[i − 1] = ±1 for all 1 < i ≤ n, encoded as a bit-vector S[1, n] by S[1] = 0, and
S[i] = 1 iff E[i] − E[i − 1] = +1 for all 1 < i ≤ n. Then there is a preprocessing
scheme for RMQs on E with time complexity 〈O(n), O(1)〉 and bit-space complexityr
O
(
lg3 n

)
, |S|+O

(
n lg lgn

lgn

)z
.

5.4. The Final Result. We summarize this section in a final theorem.
Theorem 5.8. For a static array A with n elements from a totally ordered set

and access time tA, there is a preprocessing scheme for RMQs with time complexity
〈O(n · tA), O(1)〉 and bit-space complexity

s
|A|+ n+O

(
n lg lg n

lg n

)
, 2n+O

(
n lg lg n

lg n

){
.

Proof. The scheme needs 2n bits for the DFUDS U of the 2d-Min-Heap of A,
plus O

(
n lg lgn

lgn

)
bits for doing rank, select, and findopen in O(1) time. § 5.3 shows

that the space for ±1rmq is also O
(
n lg lgn

lgn

)
bits — note that E needs not be stored

at all, as it is encoded implicitly by U (see Eq. (5.1)).
Construction space is n+O

(
n lg lgn

lgn

)
for U (see § 5.2), and at most O

(
n lg lgn

lgn

)
for

rank, select, and findopen. The ±1rmq-scheme from Thm. 5.7 needs only a negligible
amount of construction space. Construction time is linear for all structures.

Instead of using [29] for rank and select, [27] for findopen, and Thm. 5.7 for
±1rmq, we could also use [48] for rank and select, and [55] for findopen and ±1rmq
(see § 2.3–2.5), in exchange for an increased construction space:

Corollary 5.9. For an array A of n objects from a totally ordered universe
and access time tA, there is a preprocessing scheme for RMQs with time complexity
〈O(n · tA), O(1)〉 and bit-space complexity

s
|A|+O(n), 2n+O

(
n

lgγ n

){
,

for any constant γ > 0.

6. Conclusions. We gave several space-optimal preprocessing schemes for one-
dimensional range minimum queries on static arrays in constant time; the problem is
thereby mostly settled in one dimension in the static case, at least in terms of worst-
case complexity. There are some open questions we wish to mention: (1) dynamic
problems: while linear schemes [11] for worst-case O(1)-LCAs in dynamic trees exist
(under insertion and deletion of nodes), no such results are known for RMQs on
dynamically changing arrays. The problem is here that a single modification of the
array could change large portions of the underlying tree, be it the usual Cartesian
Tree or our newly introduced 2d-Min-Heap. (2) better compression: Thm. 4.1 exploits
repetitions in the input, but it would certainly be desirable to have schemes that are
adaptive to other kinds of regularities. We are only aware of the work of Poon and

26 J. FISCHER AND V. HEUN

Yiu [47] that aims at this target. (3) higher dimensions: in two dimensions, there is
a systematic data structure using O(n/c) bits and has O(c lg2 c) query time [8], while
the lower bound states that one needs O(n/c) bits for O(c) query time. It would be
interesting to close this gap, also in dimensions greater than 2.

Acknowledgments. We thank the anonymous referees for their valuable com-
ments that helped to improve the presentation substantially. J.F. wishes to thank
Gad M. Landau (Haifa University) for his continious reassurance that this work is
going in the right direction.

REFERENCES

[1] S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe. Nearest common ancestors: A survey and
a new algorithm for a distributed environment. Theory Comput. Syst., 37:441–456, 2004.

[2] A. Amir, G. M. Landau, and U. Vishkin. Efficient pattern matching with scaling. In Proc.
SODA, pages 344–357. ACM/SIAM, 1990.

[3] V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradzev. On economic construction
of the transitive closure of a directed graph. Dokl. Akad. Nauk. SSSR, 194:487–488, 1970.
English translation in Soviet Math. Dokl., 11:1209–1210, 1975.

[4] M. A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, and P. Sumazin. Lowest common
ancestors in trees and directed acyclic graphs. J. Algorithms, 57(2):75–94, 2005.

[5] D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, and S. S. Rao. Representing
trees of higher degree. Algorithmica, 43(4):275–292, 2005.

[6] O. Berkman and U. Vishkin. Recursive star-tree parallel data structure. SIAM J. Comput.,
22(2):221–242, 1993.

[7] I. Bialynicka-Birula and R. Grossi. Amortized rigidness in dynamic Cartesian Trees. In Proc.
STACS, volume 3884 of LNCS, pages 80–91. Springer, 2006.

[8] G. S. Brodal, P. Davoodi, and S. S. Rao. On space efficient two dimensional range minimum
data structures. In Proc. ESA (Part II), volume 6347 of LNCS, pages 171–182. Springer,
2010.

[9] G. Chen, S. J. Puglisi, and W. F. Smyth. LZ factorization using less time and space. Math.
Comput. Sci., 1(4):605–623, 2007.

[10] K.-Y. Chen and K.-M. Chao. On the range maximum-sum segment query problem. In Proc.
ISAAC, volume 3341 of LNCS, pages 294–305. Springer, 2004.

[11] R. Cole and R. Hariharan. Dynamic LCA queries on trees. SIAM J. Comput., 34(4):894–923,
2005.

[12] M. Crochemore, C. S. Iliopoulos, M. Kubica, M. S. Rahman, and T. Walen. Improved algo-
rithms for the range next value problem and applications. In Proc. STACS, pages 205–216.
IBFI Schloss Dagstuhl, 2008.

[13] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Structuring labeled trees for
optimal succinctness, and beyond. In Proc. FOCS, pages 184–196. IEEE Computer Society,
2005.

[14] P. Ferragina and G. Manzini. Indexing compressed text. J. ACM, 52(4):552–581, 2005.
[15] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representations of se-

quences and full-text indexes. ACM Trans. Algorithms, 3(2):Article No. 20, 2007.
[16] P. Ferragina and R. Venturini. A simple storage scheme for strings achieving entropy bounds.

Theor. Comput. Sci., 372(1):115–121, 2007.
[17] J. Fischer. Optimal succinctness for range minimum queries. In Proc. LATIN, volume 6034 of

LNCS, pages 158–169. Springer, 2010.
[18] J. Fischer. Wee LCP. Inform. Process. Lett., 110(8–9):317–320, 2010.
[19] J. Fischer and V. Heun. Theoretical and practical improvements on the RMQ-problem, with

applications to LCA and LCE. In Proc. CPM, volume 4009 of LNCS, pages 36–48. Springer,
2006.

[20] J. Fischer and V. Heun. A new succinct representation of RMQ-information and improvements
in the enhanced suffix array. In Proc. ESCAPE, volume 4614 of LNCS, pages 459–470.
Springer, 2007.

[21] J. Fischer, V. Heun, and S. Kramer. Optimal string mining under frequency constraints. In
Proc. European Conf. on Principles and Practice of Knowledge Discovery in Databases
(PKDD), volume 4213 of LNCS, pages 139–150. Springer, 2006.

SPACE EFFICIENT PREPROCESSING SCHEMES FOR RANGE MINIMUM QUERIES 27

[22] J. Fischer, V. Heun, and H. M. Stühler. Practical entropy bounded schemes for O(1)-range
minimum queries. In Proc. DCC, pages 272–281. IEEE Press, 2008.

[23] J. Fischer, V. Mäkinen, and G. Navarro. Faster entropy-bounded compressed suffix trees.
Theor. Comput. Sci., 410(51):5354–5364, 2009.

[24] G. Franceschini, S. Muthukrishnan, and M. Pǎtraşcu. Radix sorting with no extra space. In
Proc. ESA, volume 4698 of LNCS, pages 194–205. Springer, 2007.

[25] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques for geometry
problems. In Proc. STOC, pages 135–143. ACM Press, 1984.

[26] A. Gál and P. B. Miltersen. The cell probe complexity of succinct data structures. Theor.
Comput. Sci., 379(3):405–417, 2007.

[27] R. F. Geary, N. Rahman, R. Raman, and V. Raman. A simple optimal representation for
balanced parentheses. Theor. Comput. Sci., 368(3):231–246, 2006.

[28] L. Georgiadis and R. E. Tarjan. Finding dominators revisited: extended abstract. In Proc.
SODA, pages 869–878. ACM/SIAM, 2004.

[29] A. Golynski. Optimal lower bounds for rank and select indexes. Theor. Comput. Sci.,
387(3):348–359, 2007.

[30] R. González and G. Navarro. Statistical encoding of succinct data structures. In Proc. CPM,
volume 4009 of LNCS, pages 294–305. Springer, 2006.

[31] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. In Proc.
SODA, pages 841–850. ACM/SIAM, 2003.

[32] R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with applications to text
indexing and string matching. SIAM J. Comput., 35(2):378–407, 2005.

[33] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM J.
Comput., 13(2):338–355, 1984. See also FOCS’80.

[34] W. K. Hon, R. Shah, and J. S. Vitter. Space-efficient framework for top-k string retrieval
problems. In Proc. FOCS, pages 713–722. IEEE Computer Society, 2009.

[35] G. Jacobson. Space-efficient static trees and graphs. In Proc. FOCS, pages 549–554. IEEE
Computer Society, 1989.

[36] J. Jansson, K. Sadakane, and W.-K. Sung. Ultra-succinct representation of ordered trees. In
Proc. SODA, pages 575–584. ACM/SIAM, 2007.

[37] D. E. Knuth. The Art of Computer Programming Volume 4 Fascicle 4: Generating All Trees;
History of Combinatorial Generation. Addison-Wesley, 2006.

[38] H.-F. Liu and K.-M. Chao. Algorithms for finding the weight-constrained k longest paths in a
tree and the length-constrained k maximum-sum segments of a sequence. Theor. Comput.
Sci., 407(1–3):349–358, 2008.

[39] U. Manber and E. W. Myers. Suffix arrays: A new method for on-line string searches. SIAM
J. Comput., 22(5):935–948, 1993.

[40] G. Manzini. An analysis of the Burrows-Wheeler transform. J. ACM, 48(3):407–430, 2001.
[41] J. I. Munro and V. Raman. Succinct representation of balanced parentheses and static trees.

SIAM J. Comput., 31(3):762–776, 2001.
[42] S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Proc. SODA, pages

657–666. ACM/SIAM, 2002.
[43] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing Surveys, 39(1):Ar-

ticle No. 2, 2007.
[44] E. Ohlebusch, J. Fischer, and S. Gog. CST++. In Proc. SPIRE, volume 6393 of LNCS, pages

322–333. Springer, 2010.
[45] D. Okanohara and K. Sadakane. An online algorithm for finding the longest previous factors.

In Proc. ESA, volume 5193 of LNCS, pages 696–707. Springer, 2008.
[46] R. Pagh. Low redundancy in static dictionaries with constant query time. SIAM J. Comput.,

31(2):353–363, 2001.
[47] C. K. Poon and W. K. Yiu. Opportunistic data structures for range queries. J. Comb. Optim.,

11(2):145–154, 2006.
[48] M. Pǎtraşcu. Succincter. In Proc. FOCS, pages 305–313. IEEE Computer Society, 2008.
[49] V. Ramachandran and U. Vishkin. Efficient parallel triconnectivity in logarithmic time. In

Proc. AWOC, volume 319 of LNCS, pages 33–42. Springer, 1988.
[50] R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with applications to

encoding k-ary trees and multisets. ACM Trans. Algorithms, 3(4):Article No. 43, 2007.
[51] K. Sadakane. New text indexing functionalities of the compressed suffix arrays. J. Algorithms,

48(2):294–313, 2003.
[52] K. Sadakane. Compressed suffix trees with full functionality. Theory Comput. Syst., 41(4):589–

607, 2007.
[53] K. Sadakane. Succinct data structures for flexible text retrieval systems. J. Discrete Algorithms,

28 J. FISCHER AND V. HEUN

5(1):12–22, 2007.
[54] K. Sadakane and R. Grossi. Squeezing succinct data structures into entropy bounds. In Proc.

SODA, pages 1230–1239. ACM/SIAM, 2006.
[55] K. Sadakane and G. Navarro. Fully-functional succinct trees. In Proc. SODA, pages 134–149.

ACM/SIAM, 2010.
[56] S. Saxena. Dominance made simple. Inform. Process. Lett., 109(9):409–421, 2009.
[57] J. Schwartz. Ultracomputers. ACM Trans. Program. Lang. Syst., 2(4):484–521, 1980.
[58] T. Shibuya and I. Kurochkin. Match chaining algorithms for cDNA mapping. In Proc. WABI,

volume 2812 of LNCS, pages 462–475. Springer, 2003.
[59] N. Välimäki and V. Mäkinen. Space-efficient algorithms for document retrieval. In Proc. CPM,

volume 4580 of LNCS, pages 205–215. Springer, 2007.
[60] J. Vuillemin. A unifying look at data structures. Comm. ACM, 23(4):229–239, 1980.
[61] H. Yuan and M. J. Atallah. Data structures for range minimum queries in multidimensional

arrays. In Proc. SODA, pages 150–160. ACM/SIAM, 2010.

