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Abstract. We present an efficient algorithm for shortest path compu-
tation in road networks with turn costs. Each junction is modeled as
a node, and each road segment as an edge in a weighted graph. Turn
costs are stored in tables that are assigned to nodes. By reusing turn
cost tables for identical junctions, we improve the space efficiency. Pre-
processing based on an augmented node contraction allows fast shortest
path queries. Compared to an edge-based graph, we reduce preprocess-
ing time by a factor of 3.4 and space by a factor of 2.4 without change
in query time.
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1 Introduction

Route planning in road networks is usually solved by computing shortest paths
in a suitably modeled graph. Each edge of the graph has an assigned weight
representing, for example, the travel time. There exists a plethora of speed-up
techniques to compute shortest paths in such weighted graphs [1]. The most
simple model maps junctions to nodes and road segments to edges. However,
this model does not consider turn costs. Turn costs are important to create a
more realistic cost model and to respect banned turns.

To incorporate turn costs, usually a pseudo-dual of the simple model is
used [2,3], modeling road segments as nodes and turns between two consecu-
tive road segments as edges. Thus the edges in the simple model become nodes
in the pseudo-dual. Therefore, we will refer to the result of the simple model as
node-based graph and to the pseudo-dual as edge-based graph. The advantage of
the edge-based graph is that no changes to the speed-up techniques are required
to compute shortest paths, as only edges carry a weight. The drawback is a
significant blowup in the number of nodes compared to the node-based graph.
To avoid this blowup, we will extend the node-based graph by assigning turn
cost tables to the nodes, i.e., junctions, and show how to efficiently perform
precomputation for a major speed-up technique. We further reduce the space
consumption by identifying junctions that can share the same turn cost table.
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Related Work

There is only little work on speed-up techniques with respect to turn costs. The
main reason is that incorporating them is seen as redundant due to the usage of
an edge-based graph [2,3].

Speed-up techniques for routing in road networks can be divided into hierar-
chical approaches, goal-directed approaches and combinations of both. Delling
et al. [1] provide a recent overview of them. In this paper, we focus on the
technique of node contraction [4,5,6]. It is used by the most successful speed-up
techniques known today [6,7,8]. The idea is to remove unimportant nodes and
to add shortcut edges (shortcuts) to preserve shortest path distances. Then, a
bidirectional Dijkstra finds shortest paths, but never needs to relax edges leading
to less important nodes. Contraction hierarchies (CH) [6] is the most successful
hierarchical speed-up technique using node contraction; it contracts in principle
one node at a time. Node contraction can be further combined with goal-directed
approaches to improve the overall performance [7]. The performance of CH on
edge-based graphs has been studied by Volker [9].

2 Preliminaries

We have a graph G = (V,E) with edge weight function c : E → R+ and turn
cost function ct : E×E → R+∪{∞}. An edge e = (v, w) has source node v and
target node w. A turn with cost ∞ is banned. A path P = 〈e1, . . . , ek〉 must not

contain banned turns. The weight is c(P ) =
∑k

i=1 c(ei) +
∑k−1

i=1 c
t(ei, ei+1). The

problem is to compute a path with smallest weight between e1 and ek, that is a
shortest path. Note that source and target of the path are edges and not nodes.

To compute shortest paths with an algorithm that cannot handle a turn
cost function, the edge-based graph [3] G′ = (V ′, E′) is used with V ′ = E and
E′ = {(e, e′) | e, e′ ∈ E, target node of e is source node of e′ and ct(e, e′) <∞}.
We define the edge weight by c′ : (e, e′) 7→ c(e′) + ct(e, e′). Note that the cost of
a path P = 〈e1, . . . , ek〉 in the edge-based graph misses the cost c(e1) of the first
edge. Nevertheless, as each path between e1 and ek misses this, shortest path
computations are still correct.

To compute a shortest path in the edge-based graph, any shortest path al-
gorithm for non-negative edge weights can be used. E. g., Dijkstra’s algorithm
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Fig. 1. Graph (unit distance) that restricts the turn 1→ 2→ 6. Therefore, the
shortest path 1→ 2→ 3→ 4→ 2→ 6 visits node 2 twice.



computes shortest paths from a single source node to all other nodes by settling
nodes in non-decreasing order of shortest path distance. However, on a node-
based graph with turn cost function, settling nodes is no longer sufficient, see
Figure 1. Instead, we need to settle edges, i.e., nodes in the edge-based graph. Ini-
tially, for source edge e1 the tentative distance δ(e1) is set to c(e1), all other ten-
tative distances are set to infinity. In each iteration the unsettled edge e = (v, w)
with smallest tentative distance is settled. Then, for each edge e′ with source w,
the tentative distance δ(e′) is updated with min

(
δ(e′), δ(e) + ct(e, e′) + c(e′)

)
.

This resulting edge-based Dijkstra successfully computes shortest paths. By stor-
ing parent pointers, shortest paths can be reconstructed in the end.

3 Turn Cost Model

We take into account two kinds of turn costs: a limited turning speed inducing
a turn cost and a fixed cost added under certain circumstances. Banned turns
have infinite turn cost.

3.1 Fixed cost

We add a fixed turning cost when turning left or right. In addition to this a fixed
cost is applied when crossing a junction with traffic lights.

3.2 Turning speed

Tangential acceleration. We can use the turn radius and a limit on the tan-
gential acceleration a to compute a limit on the turning speed v: maxv =√

maxa ∗ radius. Given a lower limit on the resolution δmin of the underlying
data we estimate the resolution δ the turn is modeled with: When turning from
edge e into edge e′ the respective edge length are l and l′. Then, δ is estimated
as the minimum of l, l′ and δmin. We compute the turn radius from the angle α
between the edges: radius = tan(α/2) ∗ δ/2.

Traffic. When turning into less important road categories we restrict the max-
imum velocity to simulate the need to look out for traffic. We differentiate be-
tween left and right turns, e.g. it might not be necessary to look out for incoming
traffic when turning right. Furthermore, we limit the maximum turning speed
when pedestrians could cross the street.

Turn costs. We can derive turn costs from the turn speed limit maxv. Consider a
turn between edges e and e′. When computing c(e) and c(e′) we assumed we could
traverse these edges at full speed v and v′. When executing the turn between
them, we now have to take into account the deceleration and acceleration process.
While traversing edge e we assume deceleration adec from v down to maxv at
the latest point possible and while traversing edge e′ we assume immediate start
of acceleration aacc from maxv to v′. The turn cost we apply is the difference



between this time and the projected travel time on the edges without acceleration
and deceleration. The resulting turn cost is ct(e, e′) = (v −maxv)2/(2 ∗ adec) +
(v′−maxv)2/(2 ∗ aacc). Of course, this is only correct as long as the edge is long
enough to fully accelerate and decelerate.

4 Node Contraction

Node contraction without turn costs was introduced in an earlier paper [6]. The
basic idea behind the contraction of a node v is to add shortcuts between the
neighbors of v to preserve shortest path distances. In a graph without turn costs,
this is done by checking for each incoming edge (u, v) from remaining neighbor
u and for each outgoing edge (v, w) to remaining neighbor w, whether the path
〈u, v, w〉 is the only shortest path between u and w. If this is the case, then a
shortcut (u,w) representing this path needs to be added. This is usually decided
using a node-based Dijkstra search (local search) starting from node u. The
neighbors u and w are more important than node v, as they are not contracted
so far. A query algorithm that reaches node u or w never needs to relax an edge
to the less important node v, as the shortcut can be used. The query is bidirected
and meets at the most important node of a shortest path. This shortest path
P ′ = 〈e1, e2, . . . , ek〉 found by the query can contain shortcuts. To obtain the
path P in the original graph, consisting only of original edges, each shortcut e′

needs to be replaced by the path 〈e′1, . . . , e′`〉 it represents.

4.1 With Turn Costs

Turn restrictions complicate node contraction. As we showed in Section 2, we
need an edge-based query instead of a node-based one. Therefore, we have to
preserve shortest path distances between edges, and not nodes. An important
observation is that it is sufficient to preserve shortest path distances only between
original edges. This can be exploited during the contraction of node v if the
incoming edge (u, v) and/or the outgoing edge (v, w) is a shortcut. Assume that
(u, u′) is the first original edge of the path represented by (u, v) and (w′, w) is
the last original edge of the path represented by (v, w). We do not need to add a
shortcut for 〈(u, v), (v, w)〉 if it does not represent a shortest path between (u, u′)
and (w′, w) in the original graph. The weight of the shortcut is the sum of the
weights of the original edges plus the turn costs between the original edges.

We introduce the following notation: A shortcut (u → u′, w′ → w) is a
shortcut between nodes u and w, the first original edge is (u, u′) and the last
original edge is (w′, w). If two nodes are connected by an arrow, e. g., u → u′,
then this always represents an original edge (u, u′). A node-triplet connected by
arrows, e. g., u′′ → u→ u′, always represents a turn between the original edges
(u′′, u) and (u, u′) with cost ct(u′′ → u→ u′).

Local search using original edges. Now that we have established the basic idea
of node contraction in the presence of turn costs, we will provide more details.



An observation is that we cannot avoid parallel edges and loops between nodes
in general, if they have different first or last original edge. Therefore, we can
only uniquely identify an edge by its endpoints and the first and last original
edge. Loops at a node v make the discovery of potentially necessary shortcuts
more complicated, as given an incoming edge (u → u′, v′ → v) and outgoing
edge (v → v′′, w′ → w), the potential shortcut (u → u′, w′ → w) may not
represent 〈(u→ u′, v′ → v), (v → v′′, w′ → w)〉 but has to include one or more
loops at v in between. This can happen, e. g., in Figure 1, if nodes 2, 3 and 4
are contracted, then there has to be a shortcut between nodes 1 and 6 including
a loop. Therefore, we use the local search to not only to decide on the necessity
of a shortcut, but also to find them. The local search from incoming edge (u→
u′, v′ → v) computes tentative distances δ(·) for original edges only. Initially,
for each remaining edge (u → u′, x′ → x) with first original edge u → u′,
δ(x′ → x) := c(u → u′, x′ → x), and all other distances are set to infinity. To
settle an original edge x′ → x, for each edge e′ = (x → x′′, y′ → y) with source
x, the tentative distance δ(y′ → y) is updated with min

(
δ(y′ → y), δ(x′ →

x)+ ct(x′ → x→ x′′)+ c(e′)
)
. A shortcut (u→ u′, w′ → w) is added iff the path

computed to w′ → w only consists of the incoming edge from u, the outgoing
edge to w and zero or more loops at v in between. Otherwise a witness is found
of smaller or equal weight. The weight of the shortcut is δ(w′ → w).

4.2 Optimizations

The algorithm described so far preserves shortest path distances between all
remaining uncontracted nodes. However, as our query already fixes the first and
last original edge of the shortest path, we can further reduce the number of
shortcuts. It would be sufficient to only add a shortcut (u → u′, w′ → w) if
there are two original edges, a source edge (u′′, u) and a target edge (w,w′′)
such that 〈(u′′, u), (u→ u′, w′ → w), (w,w′′)〉 would be only shortest path in the
remaining graph together with (u′′, u) and (w,w′′) but without node v. This
allows to avoid a lot of unnecessary and ‘unnatural’ shortcuts. E. g., a query
starts from a southbound edge of a highway but the journey should go north.
Naturally, one would leave at the first exit, usually the target of the edge, and
reenter the highway northbound. Our improvement allows to avoid shortcuts
representing such changes of direction.

Aggressive local search. We can use the above observation to enhance the local
search in a straightforward manner. Instead of executing a local search from
the original edge (u, u′), we perform a local search separately from each original
incoming edge (u′′, u). Then, we check for each original edge (w,w′′) whether the
shortcut is necessary. While this approach can reduce the number of shortcuts,
it increases the number of local searches, and therefore the preprocessing time.

Turn replacement. To avoid performing a large amount of local queries we try to
combine the searches from all the original edges incoming to u into one search. We
cannot start from all these original edges simultaneously while still computing



just a single distance per original edge. It is better to start from all original edges
outgoing from u simultaneously. We initialize the local search as in Section 4.1.
Furthermore, we consider all other remaining edges (u → u′2, x

′ → x) outgoing
from u. However, as we now replace a turn u′′ → u→ u′ by a turn u′′ → u→ u′2,
an outgoing turn replacement difference −→r (u→ u′, u′2) := maxu′′

(
ct(u′′ → u→

u′2)−ct(u′′ → u→ u′)
)

needs to be added to account for the different turn costs,
see Figure 2. Note that we consider the worst increase in the turn cost over all
incoming original edges of u. So δ(x′ → x) := −→r (u→ u′, u′2)+c(u→ u′2, x

′ → x).
The local search settles original edges as before, but has a different criterion to
add shortcuts. We add a shortcut (u→ u′, w′ → w) with weight δ(w′ → w) iff the
path computed to w′ → w only consists of the incoming edge (u→ u′, v′ → v),
the outgoing edge to (v′′ → v, w′ → w) and zero or more loops at v in between,
and none of the other edges incoming to w offers a witness. Consider a path
computed to an original edge w′2 → w incoming to node w. If we consider
this path instead of the one computed to w′ → w, we would replace the turn
w′ → w → w′′ by the turn w′2 → w → w′′. A incoming turn replacement
difference ←−r (w′2, w

′ → w) := maxw′′
(
ct(w′2 → w → w′′)− ct(w′ → w → w′′)

)
is

required to account for the different turn costs. We do not need to add a shortcut
if ←−r (w′2, w

′ → w) + δ(w′2 → w) < δ(w′ → w).

uu′′ vu′

u′
2

Fig. 2. If a witness uses turn u′′ → u→ u′2 instead of u′′ → u→ u′, we have to
account for the turn cost difference ct(u′′ → u→ u′2)− ct(u′′ → u→ u′).

Loop avoidance. Even with the turn replacement approach of the previous para-
graph, there can still be a lot of unnecessary loop shortcuts. E. g., in Figure 1,
assume that nodes 1 and 6 are not present. After the contraction of nodes 3 and
4, there would be a loop shortcut at node 2 although it is never necessary. We
only need to add a loop shortcut, if it has smaller cost than a direct turn. That
is, considering a loop shortcut (u→ u′, u′′ → u) at node u, if there are neighbors
u′2 and u′′2 such that ct(u′2 → u→ u′) + c(u→ u′, u′′ → u) + ct(u′′ → u→ u′′2) <
ct(u′2 → u→ u′′2).

Limited local searches. Without turn costs, local searches only find witnesses
to avoid shortcuts. Therefore, they can be arbitrarily pruned, as long as the
computed distances are upper bounds on the shortest path distances [6]. That
ensures that all necessary, and maybe some superfluous shortcuts are added.
But with turn costs, a local search also needs to find the necessary shortcuts.
Therefore, we cannot prune the search for those. We limit local searches by
the number of settled original edges. Once we settled a certain number, we



only settle original edges whose path from the source is a prefix of a potential
shortcut. Furthermore, if all reached but unsettled original edges cannot result
in a potential shortcut, we prune the whole search.

5 Preprocessing

To support turn costs, the CH preprocessing [6] only needs to use the enhanced
node contraction described in Section 4. The preprocessing performs a contrac-
tion of all nodes in a certain order. The original graph together with all shortcuts
is the result of the preprocessing. The order in which the nodes are contracted is
deduced from a node priority consisting of: (a) The edge quotient, i.e., the quo-
tient between the amount of shortcuts added and the amount of edge removed
from the remaining graph. (b) The original edge quotient, i.e., the quotient be-
tween the number of original edges represented by the shortcuts and the number
of original edges represented by the edges removed from the remaining graph.
(c) The hierarchy depth, i.e., an upper bound on the amount of hops that can be
performed in the resulting hierarchy. Initially, we set depth(u) = 0 and when a
node v is contracted, we set depth(u) = max(depth(u),depth(v)+1) for all neigh-
bors u. We weight (a) with 8, (b) with 4 and (c) with 1 in a linear combination
to compute the node priorities. Nodes with higher priority are more important
and get contracted later. The nodes are contracted in parallel by computing
independent node sets with a 2-neighborhood [10].

6 Query

The query computes a shortest path between two original edges, a source s→ s′

and a target t′ → t. It consists of two Dijkstra-like searches that settle original
edges (cf. Section 2) one in forward direction starting at s → s′, and one in
backward direction starting at t′ → t. The only restriction is that it never relaxes
edges leading to less important nodes. Both search scopes meet at the most
important node z of a shortest path. E. g., the forward search computes a path
to z′ → z, and the backward search computes a path to z → z′′. As usually
z′ 6= z′′, when we settle an original edge x′ → x in forward direction, we need to
check whether the backward search reached any outgoing edge x→ x′′, and vice
versa. Such a path with smallest weight among all meeting nodes is a shortest
path.

Stall-on-demand. As our search does not relax all edges, it is possible that an
original edge x′ → x is settled with suboptimal distance. In this case, we can
prune the search at this edge, since the computed path cannot be part of a
shortest path. To detect some of the suboptimally reached edges, the stall-on-
demand technique [5] can be used, but extended to the scenario with turn costs:
The edge x′ → x is settled suboptimally if there is an edge (y → y′, x′ → x) and
an original edge y′′ → y such that δ(y′′ → y)+ ct(y′′ → y → y′)+ c(y → y′, x′ →
x) < δ(x′ → x).



Path unpacking. To unpack the shortcuts into original edges, we can store the
middle node whose contraction added the shortcut. Then, we can recursively
unpack shortcuts [6]. Note that if there are loops at the middle node, they may
be part of the shortcut. A local search that only relaxes original edges incident
to the middle node can identify them.

7 Turn Cost Tables

We can store the turn cost function ct : E × E → R+ ∪ {∞} efficiently using a
single table per node. Each adjacent incoming and outgoing edge gets assigned
a local identifier that is used to access the table. To avoid assigning bidirectional
edges two identifiers we take care to assign them the same one in both directions.
This can easily be achieved by assigning the bidirectional edges the smallest
identifiers.

To look up the correct turn costs in the presence of shortcuts we need to
store additional information with each shortcut: A shortcut (u → u′, w′ → w)
has to store the identifier of (u, u′) at u and the identifier of (w′, w) at w.

Storing these identifiers does not generate much overhead as their value is
limited by the degree of the adjacent node.

7.1 Redundancy

Since the turn cost tables model the topology of road junction they tend to be
similar. In fact many tables model exactly the same set of turn costs. We can
take advantage of this by replacing those instances with a single table. To further
decrease the amount of tables stored we can rearrange the local identifiers of a
table to match another table. Of course, we have to take care to always assign
bidirectional edges the smallest identifiers.

Given a reference table t and a table t′ we check whether t′ can be represented
by t by trying all possible permutations of identifiers. Bidirectional identifiers
are only permuted amongst themselves. Because the amount of possible per-
mutations increases exponentially with the table size we limit the number of
permutations tested. Most junctions only feature a limited amount of adjacent
edges and are not affected by this pruning. Nevertheless, it is necessary as the
data set may contain erroneous junctions with large turn cost tables.

To avoid checking a reference table against all other tables we compute hash
values h(t) for each table t. h(t) has the property that if h(t) 6= h(t′) neither
t can be represented by t′ nor t′ by t. We compute h(t) as follows: First, we
sort each row of the table, then sorting the rows lexicographically. Finally, we
compute a hash value from the resulting sequence of values.

We use this hash values to greedily choose an unmatched table and match
as many other tables to it as possible.



8 Experiments

Environment. The experimental evaluation was done on a machine with four
AMD Opteron 8350 processors (Quad-Core) clocked at 2 GHz with 64 GiB of
RAM and 2 MiB of Cache running SuSE Linux 11.1 (kernel 2.6.27). The program
was compiled by the GNU C++ compiler 4.3.2 using optimization level 3.

Instances. We use three road networks derived from the publicly available data
of OpenStreetMap, see Table 1. Travel times where computed using the MoNav
Motorcar Profile [11]. Using the node-based model with turn cost tables requires
about 30% less space than the edge-based model. That is despite the fact that in
the node-based model, we need more space per node and edge: Per node, we need
to store an additional pointer to the turn cost table (4 Bytes), and an offset to
compute a global identifier from the identifier of an original edge (u, u′) local to
a node u (4 Bytes). Per edge, we need to additionally store the local identifier of
the first and last original edge (2× 1 Byte rounded to 4 Byte due to alignment).

Table 1. Input instances. In the edge-based model, a node requires 4 Bytes
(pointer in edge array), and an edge requires 8 Bytes (target node + weight +
flags). In the node-based model, a node requires additional 8 Bytes (pointer to
turn cost table + offset to address original edges), and an edge requires additional
4 Bytes (first and last original edge). An entry in a turn cost table requires 1
Byte.

graph model
nodes edges turn cost tables

[×106] [MiB] [×106] [MiB] [×103] % [MiB]

Netherlands
node-based 0.8 9.4 1.9 22.2 79 9.9% 0.8
edge-based 1.9 7.4 5.2 39.7 - - -

Germany
node-based 3.6 41.3 8.5 97.1 267 7.4% 3.1
edge-based 8.5 32.4 23.1 176.3 - - -

Europe
node-based 15.0 171.1 35.1 401.3 834 5.6% 9.5
edge-based 35.1 133.8 95.3 727.0 - - -

Redundant turn cost tables. Already for the Netherlands, only one table per ten
nodes needs to be stored. The best ratio is for the largest graph, Europe, with
one table per 18 nodes. This was to be expected as most unique junctions types
are already present in the smaller graphs. Identifying the redundant tables is
fast, even for Europe, it took only 20 seconds.

Node Contraction. Preprocessing is done in parallel on all 16 cores of our ma-
chine. We compare the node contraction in the node-based and the edge-based
model in Table 2. In the node-based model, we distinguish between the basic
contraction without the optimizations of Section 4.2, the aggressive contraction
mentioned in Section 4.2, and the contraction using turn replacement (TR) and



loop avoidance (LA). Clearly, TR+LA is the best contraction method. The ba-
sic contraction requires about a factor 3–4 times more preprocessing time, about
5–7 times more space, and results in 3–4 times slower queries. It misses a lot of
witnesses which leads to denser remaining graphs, so that its preprocessing is
even slower than the aggressive contraction’s. The aggressive contraction finds
potentially more witnesses as TR+LA, but shows no significant improvement,
neither in preprocessing space nor query performance. For Europe, its perfor-
mance even slightly decreases, potentially due to the limited local searches and
because a different node order is computed. Furthermore, its preprocessing is
about a factor 3 slower, because we execute several local searches per neighbor
with an edge incoming to the contracted node.

Table 2. Performance of contraction hierarchies (TR = turn replacement,
LA = loop avoidance).

graph model contraction
preprocessing query

time space time settled
[s] [MiB] % [µs] edges

Netherlands
node-based

basic 66 31.9 144% 1 177 713
aggressive 57 7.0 32% 319 367
TR + LA 19 7.0 32% 315 363

edge-based regular 63 46.6 117% 348 358

Germany
node-based

basic 250 124.2 128% 2 339 1 158
aggressive 244 17.3 18% 735 594
TR + LA 73 17.3 18% 737 597

edge-based regular 253 183.9 104% 751 535

Europe
node-based

basic 1 534 592.2 148% 4 075 1 414
aggressive 1 318 117.4 29% 1 175 731
TR + LA 392 116.1 29% 1 107 651

edge-based regular 1308 817.1 112% 1061 651

We will compare the contraction in the edge-based model only to the con-
traction in the node-based model using TR+LA. Its preprocessing is about 3.4
times faster than in the edge-based model. One reason is that there are about
2.3 fewer nodes need to be contracted, and TR+LA, compared to the aggres-
sive contraction, needs only one local search per incoming edge. We argue that
the additional speed-up comes from the fact that contracting junctions instead
of road segments works better. Note that there is a fundamental difference in
contracting a node in the node-based and edge-based model: Adding a shortcut
in the node-based model would map to an additional node in the edge-based
model. We observe that the total space required including preprocessed data is
about a factor 2.4 larger for the edge-based model.

Furthermore, in the node-based model, bidirected road segments can be
stored more efficiently by using forward/backward flags. In comparison, assume
that you have a bidirected edge in the original edge-based graph. This implies



that the edge represents two U-turns between (u, v) and (v, u), see Figure 3.
Therefore, bidirected road segments cannot be stored efficiently in the edge-
based model.

u→ u′

v′ ← v

u′ = vv′ = u

Fig. 3. A bidirected edge in the original edge-based graph between two original
edges (u, u′) and (v, v′) in the node-based graph. Because a turn from (u, u′) to
(v, v′) is possible, u′ = v, and because a turn from (v, v′) to (u, u′) is possible,
v′ = u. Therefore, both turns are U-turns.

Query. Query performance is averaged over 10 000 shortest path distance queries
run sequentially on a single core of our machine. Source and target edge have
been selected uniformly at random. The resulting distances were compared to
a plain edge-based Dijkstra for correctness. Interestingly, the best query times
that can be achieved in both models are almost the same. One reason might be
that both queries settle original edges. For the smaller graphs the query time is
even a bit faster in the node-based model, because most of the turn cost tables
fit into cache, thus causing almost no overhead.

9 Conclusions

Our work shows the advantages of the node-based model over the edge-based
one. The node-based model stores tables containing the turn costs. By identifying
redundant turn cost tables, we can decrease the space required to store them by
one order of magnitude. Still, our query has to settle original edges so that we
need to store a local identifier per edge and an offset to obtain a global identifier
per node. Therefore, a query in the original node-based graph is the same as in
the original edge-based graph, but storing the graph requires 30% less space.

Our preprocessing based on node contraction works better in the node-based
model in terms of preprocessing time (factor ≈ 3.4) and space (factor ≈ 2.4)
without affecting the query time. To augment the node-based contraction to turn
cost tables, we had to augment the local searches to not only identify witnesses,
but also shortcuts, because parallel and loop shortcuts can be necessary. To
restrict the node contraction to one local search per incoming edge (factor ≈ 3
faster) without missing too many witnesses, we developed the techniques of turn
replacement and loop avoidance.



9.1 Future Work

We want to integrate the turn cost tables into an existing mobile implementation
of contraction hierarchies [12]. To further reduce the space requirements of the
turn cost tables, we can approximate their entries. This not only reduces the
number of different turn cost tables we need to store, but also the bits required
to store a table entry.

Acknowledgement. The authors would like to thank Dennis Luxen for his valu-
able comments and suggestions.

References

1. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning
Algorithms. In Lerner, J., Wagner, D., Zweig, K.A., eds.: Algorithmics of Large and
Complex Networks. Volume 5515 of Lecture Notes in Computer Science. Springer
(2009) 117–139

2. Caldwell, T.: On Finding Minimum Routes in a Network With Turn Penalties.
Communications of the ACM 4(2) (1961)

3. Winter, S.: Modeling Costs of Turns in Route Planning. GeoInformatica 6(4)
(2002) 345–361

4. Sanders, P., Schultes, D.: Highway Hierarchies Hasten Exact Shortest Path Queries.
In: Proceedings of the 13th Annual European Symposium on Algorithms (ESA’05).
Volume 3669 of Lecture Notes in Computer Science., Springer (2005) 568–579

5. Schultes, D., Sanders, P.: Dynamic Highway-Node Routing. In Demetrescu, C., ed.:
Proceedings of the 6th Workshop on Experimental Algorithms (WEA’07). Volume
4525 of Lecture Notes in Computer Science., Springer (June 2007) 66–79

6. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction Hierarchies:
Faster and Simpler Hierarchical Routing in Road Networks. In McGeoch, C.C., ed.:
Proceedings of the 7th Workshop on Experimental Algorithms (WEA’08). Volume
5038 of Lecture Notes in Computer Science., Springer (June 2008) 319–333

7. Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.:
Combining Hierarchical and Goal-Directed Speed-Up Techniques for Dijkstra’s Al-
gorithm. ACM Journal of Experimental Algorithmics 15(2.3) (January 2010) 1–31
Special Section devoted to WEA’08.

8. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A Hub-Based Labeling
Algorithm for Shortest Paths on Road Networks. In Pardalos, P.M., Rebennack,
S., eds.: Proceedings of the 10th International Symposium on Experimental Algo-
rithms (SEA’11). Lecture Notes in Computer Science, Springer (2011) To appear.

9. Volker, L.: Route Planning in Road Networks with Turn Costs (2008)
Student Research Project. http://algo2.iti.uni-karlsruhe.de/documents/

routeplanning/volker_sa.pdf.
10. Vetter, C.: Parallel Time-Dependent Contraction Hierarchies (2009) Student Re-

search Project. http://algo2.iti.kit.edu/download/vetter_sa.pdf.
11. Vetter, C.: MoNav. http://code.google.com/p/monav/ (2011)
12. Vetter, C.: Fast and Exact Mobile Navigation with OpenStreetMap Data. Master’s

thesis, Karlsruhe Institute of Technology (2010)

http://algo2.iti.uni-karlsruhe.de/documents/routeplanning/volker_sa.pdf
http://algo2.iti.uni-karlsruhe.de/documents/routeplanning/volker_sa.pdf
http://algo2.iti.kit.edu/download/vetter_sa.pdf
http://code.google.com/p/monav/

	Efficient Routing in Road Networks with Turn Costs
	Robert Geisberger and Christian Vetter

