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Abstract

In systems with Non-UniformMemory Access (NUMA), memory bandwidth depends upon the memory
location relative to the accessing processor. Ea processing node can have its own local memory, but
accesses foreign memory transparently in the same address space. Our approa is to minimize memory
access time by seduling jobs on the processing node where most memory access happens. We have
implemented a working user-land seduler favoring local memory access with a user interface similar
to the one of Intel read Building Blos (TBB). Furthermore, we devise a model to predict the effects
of concurrently running jobs. We then show theoretically and in experiments, how efficiency can be
gained by executing two different jobs in parallel rather than sequentially. is implies the concurrent
execution of more than one query in a DBMS can be advantageous.





Declaration Erklärung

I hereby confirm that the thesis at hand is
my own work, and that all literal quotations
and other author’s ideas have been anowl-
edged in notes to the text or the bibliography.

I erkläre hiermit, die vorliegende Ar-
beit selbständig verfasst zu haben und keine
außer den angegebenenellen verwendet zu
haben.

Karlsruhe, May 8, 2011
Joen Seidel

i



Deutsche Zusammenfassung German Abstract

Systeme mit nituniformem Speierzugriff (Non-Uniform Memory Access, NUMA) be-
stehen aus miteinander verbundenen Reenknoten, an die jeweils lokaler Arbeitsspeier an-
gebunden ist. Sämtlie lokalen Speier erseinen in solen Systemen transparent als ein
zusammenhängender physikaliser Speierberei. Die einem Job zur Verfügung stehende
Speierbandbreite hängt daher von der Entfernung zu der angefragten Speierstelle ab.
In dieser Arbeit wird ein Ansatz verfolgt, Speierzugriffe für parallele Jobs, deren Daten über

mehrere Knoten verteilt liegen, zu besleunigen. Dies soll dadur gesehen, dass die Aus-
führung des Jobs auf demjenigen Reenknoten stafindet, an dem die Daten lokal im Speier
liegen.
Zunäst wird analysiert, wie si parallel ausgeführte Programme verhalten, die den glei-

en Speierkanal belegen. Dabei stellt si heraus, dass lokaler Speierzugriff eine etwa
doppelt so große Bandbreite erreit wie Speierzugriff auf fremde Knoten. Aufgrund dieser
Feststellung wird das C++ Seduling-Framework NUMA Building Blos (NBB) entwielt. In
diesem können Jobs festlegen, auf welem Knoten die benötigten Daten vorhanden sind. Die
Seduling-Entseidungen werden dabei innerhalb der Anwendungssit getroffen, da nur
dort Wissen über Aueilung und Verwendung des genutzten Hauptspeiers auf versiedene
Knoten vorhanden ist.
Das Framework ist so gestaltet, dass der Seduler austausbar ist. Dies soll zukünig ermög-
lien, au andere Seduling-Algorithmen und -Konzepte experimentell zu testen. Die Pro-
grammiersnistelle der Bibliothek orientiert si dabei in groben Zügen an derjenigen der
TBB-Bibliothek von Intel.
Eine bereits existierende Implementierung des TPC-H Datenbank-Benmarks setzt TBB zur

Parallelisierung ein. Dur die besriebenen Vorarbeiten ist es mit geringem Aufwand mög-
li, diese aumit NBB zu übersetzen. Anhand des Benmarks wird die Praxistauglikeit des
entwielten Frameworks demonstriert. Bei der Evaluation können in Extremfällen Laufzeit-
gewinne bis zu 67% für diese realitätsnahe Anwendung beobatet werden. Die Anwendung
liefert außerdem weitere Anhaltspunkte über das Verhalten von parallel ausgeführten band-
breitenintensiven Jobs.
Um diese Effekte zum Treffen von Seduling-Entseidungen vorhersagen zu können, wird

sließli einModell entwielt. In dem Modell werden sowohl Besleunigungseffekte dur
Zuteilung vonmehr als einen Prozessor zu einem Job, als auVerlangsamung dur besränk-
te Speierbandbreite abgebildet. Dies führt zur Charakterisierung eines Jobs dur zwei Kenn-
zahlen: Laufzeit auf einem Prozessor mit unbesränkter Speierbandbreite und demjenigen
Anteil der Laufzeit, in dem auf Speierzugriffe gewartet wird. Trotz der Tatsae, dass viele
Renereigensaen wie z.B. Caes bei der Modellierung außer At gelassen wurden, liefert
das Modell gute Vorhersagen über die Programmlaufzeit.
Außerdem sind mit Hilfe des Modells Aussagen darüber mögli, ob die parallele Ausführung
von zwei Jobs den Rener effizienter auslasten kann als die sequenzielle Ausführung. Dies
kann dann der Fall sein, wenn einer der Jobs während seiner Laufzeit nur wenig Speierband-
breite benötigt, ein anderer jedo sehr viel. In diesem Fall profitiert der speierintensive Job
aufgrund der besränkten Bandbreite kaum von zusätzlien Prozessoren. Daher ist es sinn-
voller, diese zur Ausführung des reenintensiven Jobs zu nuzten, der den anderen wegen seines
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geringen Bandbreitenbedarfs kaum verlangsamt.
Experimente ergaben jedo, dass der auretende Parallelisierungsoverhead einen weitaus

größeren Einfluss auf die Laufzeit hat. Demgegenüber ist die mit Hilfe des Modells vorhergesag-
te Effizienzsteigerung vernalässigbar. Wie diese Effekte besser abgebildet und vorhergesagt
werden können bleibt daher zu beantworten.
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1. Introduction

is diploma thesis addresses the problem arising from the discrepancy between processing
speed and memory bandwidth of current processors. We will analyze how job execution time is
influenced by available memory bandwidth. Eventually we devise a newmodel for job sedul-
ing in order to predict these effects. In order to accomplish that we first develop a new user-land
seduling library. We port an existing benmark program to the new seduling library and
observe how seduling decisions affect job run-time.
Our approa differs from others in the fact that the two modeled resources CPU time and

memory bandwidth are interacting with ea other. Before presenting our results we will now
briefly introduce some terminology and discuss how our work relates to job seduling and
database systems.

1.1. NUMA Architecture

e term Non-Uniform Memory Access (NUMA) is used to describe multi-processing environ-
ments where not all memory can be accessed at the same speed, although it is available in one
continuous (physical) address space. is stems from the fact that in shared-memory systems
with more than one processor soet, ea soet has local memory aaed to it. In order to
access memory aaed to another processor soet, the processors are connected by a com-
munication network. Accessing non-local memory is called foreign memory access. Not only
does it exhibit higher access latency because it is not aaed to the local memory controller,
but also the bandwidth is smaller as it is for local memory access.
NUMA systems were designed to overcome the memory bolene that arises in Simultane-

ous Multiprocessing (SMP) systems, where multiple processor cores share a common memory
bus. In fact, current NUMA systems are a combination of the two aritectures: Multiple pro-
cessor cores are aaed to one soet with a shared memory bus, and multiple interconnected
soets form a NUMA computer. Some current processors also support Simultaneous Multi-
threading (SMT), whi is called “Hyperthreading” by Intel. Here, one CPU core presents itself
as multiple logical CPUs to the operating system. is allows the CPU to execute more than
one thread on one core, whi can be beneficial if for example a thread is waiting for data to
be feted from memory. In su cases, the processor core can execute arithmetic instructions
from another thread running on the logical CPU belonging to that core.
Figure 1.1 on the following page gives a sematic view of a typical NUMA system. A NUMA

node consists of a processor with aaed local memory. Ea processor can be composed
of multiple SMP cores whi in turn may support SMT. It is not necessary that the network
connecting the nodes forms a complete graph.
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Figure 1.1.: Sematic view of a NUMA system consisting of SMP processors.

1.2. Job Scheduling

In the classic job seduling problem k jobs or tasks with run-times ti have to be seduled on p
processors. In the standard case the goal is to minimize overall time needed to execute all jobs,
whi is called makespan.

Many variants of this problem have been studied. For example seduling of jobs that require
a fixed amount of processors at the same time (multiprocessor jobs), jobs that have varying run-
times depending on a fixed number of processors available to that job (moldable jobs) or jobs
that can vary the number of used processors during run-time (malleable jobs). Jobs may also
be preemptible, probably at a certain cost, have a dependency relation, an arrival time before
whi the job cannot be seduled, or the requirement to meet a specific deadline.

Different optimization goals apart from makespan include average response time (time be-
tween job arrival and completion), whi is also called flow time, and throughput (jobs pro-
cessed per time). Variants with additional independent resource constraints were investigated
as well. e problems have been studied both as on-line and off-line variants.

is thesis will concentrate on moldable and partly on malleable jobs. We analyze the ef-
fects of an implicitly shared resource, namely memory-bandwidth, on job run-time. As for
the optimization criterion we will discuss the consequences of our findings on makespan and
throughput. Seduling jobs as they appear in database systems is an own field of resear,
whi oen focuses on maximizing throughput for longer running jobs and/or minimizing av-
erage response time for interactive jobs.
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1.3. Database Systems

1.3. Database Systems

Traditional relational database systems store structured data that can be accessed and modified
using a standardized language for relational database systems, usually referred to as “Struc-
tured ery Language” (SQL). All data is stored on disk and required parts are loaded into
main memory on demand. A lot of resear was conducted concerning inter- and intra-query
parallelism. To execute a query in parallel, so-called query execution plans are arranged from
basic database operations and optimized for anticipated execution time. ese optimizations
may also consider disk access seduling to improve this main bolene of traditional database
systems.
However, continuous declines in RAM pricing have led to a new concept for databases: In-

stead of keeping data on disk, all data can be kept in memory. Furthermore, the traditional data
layout has anged from row-wise storage to columnar data storage. e reason for that lies
in the fact that most database queries refer to only few columns of a table. Because not only
data from disk, but also main memory is transferred blo-wise only (one sector or cae line
respectively), many unneeded data transfers occur when data is stored by row. MonetDB¹ is a
popular example of a main-memory based columnar database.
A standardized database benmark suite was designed by the Transaction Processing Coun-

cil (TPC), a “non-profit corporation founded to define transaction processing and database
benmarks”². Its focus is to model data and queries as they appear in real-world business
applications. In this thesis, we will use the TPC Benmark Specification H (TPC-H) as a col-
lection of database jobs for seduling. We use an experimental in-memory implementation by
Jonathan Dees³ to measure the effects of bandwidth-sharing on NUMA hardware.
In the following section we present the macro-structure of this thesis.

1.4. Outline

e remainder of this thesis is structured as follows: Aer reviewing related work in section 1.5,
we will describe the different hardware setups that were used in our experiments in apter 2
at first. Aer describing the basic setup, we present memory bandwidth and SPECint rate2006⁴
benmark results in section 2.1 in order to quantitatively aracterize the setup. Analysis of
these results lets us expect NUMA-aware seduling to be beneficial to certain workloads.
Inapter 3, we then present our newly developed library forNUMA-aware user-land sedul-

ing. Aer giving a broad overview in section 3.1 and simple examples of usage, the details of
our implementation are described in section 3.3.
We then use this seduling framework to sedule the execution of TPC-H database ben-

mark queries in apter 4. Analysis of execution times reveal our approa in some cases is as
mu as 67% faster compared to NUMA-agnostic seduling.

¹http://monetdb.cwi.nl/
²http://www.tpc.org/information/about/about.asp
³is work is not published yet.
⁴http://www.spec.org/
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1. Introduction

Collecting further measurements of the memory-bandwidth dependent run-time of those
queries, we devise a new model for parallel job execution in apter 5. It allows not only
to model moldable and malleable jobs, but also takes effects of memory bandwidth sharing into
account. In section 5.4 we then show, why the model suggests that certain pairs of jobs can be
executed with higher efficiency when running them in parallel rather than sequentially. We
then try to verify the predicted effect in experiments and discuss arising problems.
Finally, we summarize our results in apter 6 and point out possible future work on these

topics.

1.5. Related Work

Job seduling is a broad field in computer science. e Handbook of Seduling edited by
Leung et al. [13] gives an overview on the topic. A good overview of many theoretical results
concerning multiprocessor task seduling can be found in [5]. e authors of [18] describe an
polynomial 2-approximation for non-preemptive moldable job seduling. In [2] a classifica-
tion for resource constrained seduling problems is introduced and relations between classes
identified.
e gap between theory and practice in job seduling is the topic of [7] by Feitelson et al.

Fratenberg and Feitelson also point out common “Pitfalls in parallel job seduling evalua-
tion” in [8]. In [4] Cirne and Berman show how using job moldability can improve turn-around
time of jobs running on a supercomputer system.
Many experimental studies focus on locality of seduling to minimize cae misses or com-

munication overhead. Arora [1] andMeng et al. [15] are examples for this inmulti-programmed
(SMP and SMT) systems. Consequently, Bret [3] and Koita et al. [11] concentrate on NUMA-
seduling in terms of system-wide seduling and focus on seduling related jobs on nearby
cores. Philbin et al. [16] showed that spliing problems into fine-grained threads can even
improve performance in sequential programs due to fewer cae misses.
e Sequoia Programming Language [6] takes a different approa where the programmer has
to deal with the memory hierary (CPU cae levels as well as per-node memory) explicitly.
Garofalakis investigated seduling of parallel query execution plans with respect to time-

and space-shared resources (CPUs or disks and memory, respectively) in [9]. Manegold’s
Ph.D. esis [14] introduces a sophisticated modeling tenique to develop cae-conscious
database algorithms. Lee et al. show how to reduce cae misses due to concurrently running
queries that compete for a shared cae by a tenique called page colouring in [12].
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2. Hardware Setup

e experiments were conducted on two different hardware setups. One was composed of four
Intel Xeon processors, the other of four AMD Opteron processors. Basically, these processor
ips (NUMA nodes) consist of a number of processor cores supporting SMP. e number of
links ea node can have to other nodes is limited, thus the interconnections need not necessar-
ily form a fully connected graph (though this is the case for the Xeon system). Note that due to
virtual memory management, an application cannot tell whether it is accessing local or foreign
memory without help from the operating system.
e Xeon system additionally has support for SMT, visible to the user as two logical CPUs

with shared L1- and L2-Cae. e third level cae is shared among all cores on the ip, as
depicted in figure 2.1.

...
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.
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.L1 Cache .

L2 Cache
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.
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.L1 Cache .
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.

· · ·

..

Core 7

.

CPU

.

CPU

. L1 Cache.

L2 Cache

.

Local
Memory

.

links to other processors

Figure 2.1.: Cae hierary of Xeon processors, using the X7560 model as example.

eXeon systemhas four pairwise connected Intel XeonX7560 processors running at 2.27 GHz.
One X7560 processor is divided into eight cores with two SMT threads ea, totalling in 16 log-
ical CPUs per soet and 64 in the whole system. e eight cores in one soet share 24 MB of
level 3 cae. Ea soet has 64 GB of main memory aaed, summing up to a total of 256 GB
main memory available.
e Opteron system differs from the Xeon system in several aspects. First, the Opteron 6168

processor whi we used for our experiments does not support SMT, so only one thread can
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Figure 2.2.: Sematic view of our Opteron system.

be seduled per processor core. Second, there are two processor ips per soet. Ea ip
consists of six SMP processing cores with 6 MB of shared L3-Cae and has 32 GB local main
memory aaed to it. One su ip with local memory represents one NUMA node, whi
means that with four soets, eight NUMA nodes are available. As ea processor ip can have
four connections to other nodes, the connections do not form a complete graph. e graph is
shown in figure 2.2.
An overview of specifications and SPECint rate2006¹ benmark results for both systems is

given in table 2.1 below.

Cores logical CPUs Memory (GB) SPECint

System Soets L3 (MB) Soet Total Soet Total Soet Total rate2006

Xeon 4 24 8 32 16 64 64 256 1150
Opteron 4 12 12 48 12 48 64 256 706

e Opteron system has 2× 6 cores with 2× 6MB L3-Cae and 2× 32 GB main memory per soet.
SPECint rate2006 values taken from http://www.spec.org/.

Table 2.1.: Systems used in our experiments.

We now further investigate memory performance of both systems and compare bandwidth
of local and foreign memory access.

2.1. Memory Benchmark

A widely accepted measure for memory bandwidth is the well-known STREAM² memory
benmark. We executed this benmark on our test systems to get a first impression of avail-
able bandwidth. To minimize caing effects, we executed the tests with 200,000,000 elements,

¹http://www.spec.org/
²http://www.cs.virginia.edu/stream/
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2.1. Memory Benmark

i. e. 4.6 GB of memory were used. Table 2.2 shows the results when executing the benmark
with a single thread. As customary for the STREAM benmark we only list the highest ob-
served bandwidth.

Rate, single threaded (MB/s)

System Copy Scale Add Triad

Xeon 6,252 6,012 6,613 6,445
Opteron 5,929 5,939 6,234 6,237

Benmark with 200,000,000 elements (4,578 MB of memory).

Table 2.2.: STREAM memory benmark results with one single thread.

One thread does not suffice to utilize all available bandwidth. Executing the benmark
on all available CPUs thus yields 6–10 times higher results on the Xeon system, as listed in
table 2.3. e STREAM benmark uses the OpenMP library for parallelization. To simulate a
more complex memory layout, we also tried striping (see section 3.1.1 on page 13) the memory
over all available nodes in unks of 3 MiB. As there are no means to tell OpenMP about our
memory layout, in su cases performance degrades by up to 40% on the Xeon system.
e Opteron system has a lower single-threaded throughput. Yet, as it consists of twice as

many nodes as the Xeon system, maximum bandwidth is higher by a factor of 1.4-1.5 compared
to the Xeon system. However, it suffers considerably more from suboptimal memory layout,
because the communication graph is not complete. As table 2.3 shows, performance can drop
by 60-65% in these cases.

Default Rate (MB/s) Striped Rate (MB/s)

System T Copy Scale Add Triad Copy Scale Add Triad

Xeon 64 47,492 47,465 53,002 53,408 27,781 25,738 34,476 31,989
Opteron 48 70,396 69,988 76,848 76,938 26,888 26,862 27,904 28,385

Benmark with 200,000,000 elements (4,578 MB of memory). Default means no special memory parti-
tioning took place, whereas in the striped test memory was spread over all available soets in unks
of 3 MB.
Column T denotes the number of threads used.

Table 2.3.: STREAM memory benmark results with different memory allocations
when using all available processors.

We have seen that varying memory distribution can have an impact on performance of the
STREAM benmark. While the benmark is a good indicator for overall system performa-
cne, it does not describe how a single node of the NUMA system performs. Hence we further
investigate properties of local and foreign memory access.
Table 2.4 on the following page shows local memory write throughput for an increasing num-

ber of threads running on a single node while the rest of the system is idle. Maximum available
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Xeon Opteron

reads GiB/s per read GiB/s per read

1 4.270 1.000 3.932 1.000
2 7.523 1.762 5.274 1.341
3 8.946 2.095 5.959 1.515
4 9.611 2.251 6.317 1.607
5 9.778 2.290 6.351 1.615
6 9.820 2.300 6.311 1.605
7 9.839 2.304 — —
8 9.861 2.309 — —

Table 2.4.: Local memory bandwidth.

bandwidth when using all CPUs on the Opteron system is only 1.6 times the bandwidth of one
thread, while on the Xeon system it is 2.3 times as large.
Bandwidth of foreign memory access is shown in table 2.5. As discussed before, not all nodes

can be reaed in one hop on the Opteron system. We therefore measured both memory band-
width for one and two hops on that system, while on the Xeon system all foreign nodes can be
reaed in one hop.
Foreign memory bandwidth when accessed across one hop is 25-40% less than local memory

access on both systems. While on the Opteron system foreign memory bandwidth fluctuates
between 70-75% of local memory bandwidth, on the Xeon system it systematically decreases
from 76% to 62% as the number of threads increases.
Accessing memory across two hops on the Opteron system yields only 43% of local memory

bandwidth from one thread. It decreases to 29% when using all six threads.
ese findings suggest a significant decrease of run-time formemory-bound jobswhen sedul-

ing takes the memory layout of the application into account. erefore the goal of this thesis
is to maximize usable memory bandwidth by seduling threads local to the required data. To

Xeon Opteron 1 Hop Opteron 2 Hops

reads GiB/s per read GiB/s per read GiB/s per read

1 3.267 1.000 2.778 1.000 1.700 1.000
2 5.430 1.662 3.966 1.428 1.806 1.062
3 6.187 1.894 4.415 1.589 1.812 1.066
4 6.499 1.989 4.492 1.617 1.810 1.064
5 6.371 1.950 4.506 1.622 1.808 1.064
6 6.125 1.875 4.490 1.617 1.806 1.062
7 6.043 1.849 — — — —
8 5.923 1.813 — — — —

Table 2.5.: Foreign memory bandwidth.
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2.1. Memory Benmark

that end we first develop a new user-land seduling library, whi is presented in the following
apter. It eases programming of NUMA-aware applications and enables us to measure effects
of NUMA-aware seduling.
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3. NUMA-Aware User-Land Scheduling

As we saw in experiments in the preceding section 2.1, access to local memory on NUMA
computers yields higher throughput than non-local memory access. us, execution speed of
memory-bound jobs depends on the oice of the executing NUMA node. We therefore expect
to increase processing speed by seduling jobs so most of their memory access will be local.
Exact knowledge of memory layout and usage is inherently only available to the application

itself. While modern operating systems offer methods to reserve memory on specific nodes,
the process seduler cannot have a-priori knowledge about whi thread will access whi
memory blo next.

Operating system schedulers can hence migrate threads to different nodes based solely
on heuristics, whi may incorporate page faults resulting from foreign memory access. is
implies a thread has to run a certain amount of time before it can be considered for migration.
Furthermore, migration can result in penalties from cae loss.
To counteract these effects, operating systems offer low-level system calls to set a thread’s

affinity for a given node, core or logical processor, and to allocate memory on a specific node.
In Linux they are defined in the header files sched.h and numa.h. is leaves responsibility
for optimal memory and thread placement to the application programmer.
Seduling strategies known as gang seduling and coseduling have been implemented

at operating system level. ese favour seduling a specified set or subset of related threads
on neighbouring cores or nodes, in order to reduce cost of communication via shared memory
blos and to allow cae reuse between cooperating processes.

Parallelization libraries like ForestGOMP¹ (anGNUOpenMP² fork), MPI³ (Message Passing
Interface) or Intel’sreading Building Blos, a parallelization library by Intel (TBB),⁴ can also
incorporate coseduling or gang seduling on the thread level.
To the best of our knowledge, none of them allow to take the application’s internal memory

layout into account when making seduling decisions. is might not be a problem if the
application does not lay out memory in a specific way, or if either memory layout or thread
granularity is coarse enough, so that cost for thread migration is negligible. While these as-
sumptions can be true for HPC (High Performance Computing) applications (as indicated by
the STREAM benmark results in section 2.1 on page 6), database applications are a different

¹http://runtime.bordeaux.inria.fr/forestgomp/
²http://gcc.gnu.org/projects/gomp/ is an open implementation of the OpenMP specification, whi can
be found at http://openmp.org/

³http://www.mpi-forum.org/
⁴http://threadingbuildingblocks.org/
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3. NUMA-Aware User-Land Seduling

maer. is is due to the fact that unlike in HPC most memory cells are only read once and
not read and wrien repeatedly. It is thus important the first memory access is carried out with
maximal performance already.
Before describing our approa to NUMA-Aware User-Land Seduling in detail, we will

give an overview of the library concepts and design and show a simple example of usage.

3.1. NBB Library Overview
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Figure 3.1.: NBB Library Components.

We have argued why it is beneficial to take knowledge about memory layout into account for
seduling. NUMA-aware seduling leads to higher memory throughput, whi is essential
for database applications.
Jonathan Dees’ to-be-published implementation of the TPC-H database benmark queries

use Intel’s TBB library for inter-query parallelization. is library offers a convenient and
platform-independent way to iterate over ranges of memory and perform non-trivial reduction
operations. However there is no way to tell the seduler whi memory blo to be processed
is present at whi node. Preliminary tests revealed the result of this ignorance is varying
memory bandwidth, and one gets the best execution time only if jobs are seduled at the right
nodes by ance. See section 4.1 on page 32 for a quantification of this effect. As the TPC-
H benmark provides a collection of real-world database jobs for evaluation, one goal when
writing the library was to minimize migration efforts.
To aieve this we tried to sti to the TBB interface as closely as possible. Consequently, we

implemented functions like parallel_for and parallel_reduce, whi appear in similar
form in TBB. Admiedly, in our case one has to pass additional knowledge of the application’s
memory layout. We named the library NUMA Building Blos (NBB) and implemented it in
C++. As pictured in figure 3.1, NBB can be separated in roughly three parts: Memory manage-
ment, seduler and parallel constructs, whi convey information about memory allocation to
the seduler. We will now give a brief conceptual overview of ea component, starting with
memory management.
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3.1. NBB Library Overview

3.1.1. Memory Management

As mentioned earlier, the NBB seduler was designed to sedule jobs on specific nodes, given
knowledge of the job’s node-affinity. For this reason, users can allocate memory that is striped
across given nodes in a defined manner. is definition can later be used to advise in seduling
decisions. An illustration of a striped memory region is given in figure 3.2.
Defining the affinity of a (memory) range is done by means of partitioner objects. e

knowledge stored in the partitioner class is represented by the arrows in figure 3.2.
One versatile partitioner class striping_partitioner is available. It can be parametrized

by stripe-size, grain-size and a vector of nodes. For memory allocation only the stripe-size and
the node vector parameter are used. e stripe-size parameter defines how many elements
should be taken to form one stripe, i.e. the largest continuous range of memory to be allocated
on a single node. e memory for stripe number i will be allocated on the node given by the
element at position i in the vector of nodes.
ere may be more stripes to allocate than nodes listed in the vector. Assume the vector holds

k elements. In that case the nth stripe will be allocated on the node given by the element at
position i (mod k) in the vector, i.e. the vector will be used cyclically.
ese parameters allow for different memory layouts, the most obvious case being regu-

lar striping over all or a subset of all nodes. Note that the stripe-size could also be set to
(required memory size/node count) so memory gets divided into only one stripe per node.
Random striping⁵ can be aieved by shuffling the vector of nodes to use. Beyond that it is
of course possible to implement a custom partitioner.
e grain-size parameter is used by the seduler to determine the minimal amount of data

that should be processed as one work paage, i.e. job object. Partitioner objects carry only

⁵Of course the resulting striping will only be random if the vector contains as many elements as there are stripes
to distribute.
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Figure 3.2.: Striping memory over two nodes.
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information about memory striping (i.e. the arrows in figure 3.2 on the preceding page). Actual
memory allocation is done by an allocator class that knows about a specific partitioner. Aer
allocation the memory region is accessible as one contiguous blo in the virtual address space
of the application.
A simple container class taking advantage of this is nbb::array, whi is basically a fixed-

size vector class. When information about the striping used for allocation is required, e. g. to
pass it to nbb::parallel_for, it can be retrieved from the array instance.
Note that due to the fact that the physically distributed memory is mapped to a continu-

ous region in the virtual address space, the striping itself is transparent to the programmer.
us, accessing an element using the array is as simple as with standard containers by using
operator[], e.g. my_array[5] and directly maps to standard pointer arithmetics.
We will now describe how the NBB seduler was designed so it could take knowledge about

memory layout into account.

3.1.2. Scheduler

Upon initialization, NBB starts one worker thread on every CPU in the system. Ea worker
thread then tries to retrieve a single job object from the seduler.
Job objects have virtual methods affinity() and execute() (among others), the former

returning on whi node the job shall be executed, and the laer performing actual work. e
job is responsible for returning the most suitable value for affinity, taking knowledge about
memory layout into consideration. An example of how this can be done will be shown in the
following section about parallel constructs.
A seduler in NBB is a C++ template taking a “seduling policy” class as parameter. e

seduler retrieves requests for job objects from workers and forwards them to an instance of
its seduling policy class. e policy in turn is responsible for executing a job with a worker
thread on the desired node. Furthermore, some basic job management functions like waiting
for a job’s ildren are implemented in the seduler.
Seduling policies can define “policy hints”. ese may give additional information about a

seduled job, e.g. priority, precedence or additional resource constraints. Besides a very simple
policy that does nothing special but to execute jobs on the desired node and only takes an empty
policy hint there is the static_policy class. static_policy defines a set of CPUs as hint

...

Scheduling Policy
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Scheduler
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Worker

.

Worker

.

. . .

.

Worker

..
Policy Hint

.
Job Object

Figure 3.3.: Conceptual overview of seduler.
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and sedules the job on these CPUs only. It is helpful for evaluation of statically precomputed
sedules for moldable jobs.
e design of our seduling framework allows to test and evaluate different seduling al-

gorithms and concepts in practice. To that purpose one simply needs to replace the seduling
policy and use the appropriate policy hints inside the application.
e higher level parallel constructs parallel_for and parallel_reduce provide an easy

way to convey information about memory striping to the seduler. Both rely on deriving from
the abstract job class to accomplish that goal.

3.1.3. Parallel Constructs

Apart from basic job objects described in the previous paragraph, NBB also offersparallel_for
and parallel_reduce as higher level parallel constructs. parallel_for simply iterates over
a given range of values, while parallel_reduce additionally performs a reduction aer iter-
ation. Both take the same arguments

• a range of values over whi to iterate (usually my_array.range(), i.e. the range of an
array),

• a partitioner that knows about the values affinities (usually my_array.partitioner()),

• a callable body object to execute,

• a seduler and

• a policy hint that mates the policy of the seduler.

e difference between the two lies in the required body objects (functors). e one used by
parallel_reduce additionally needs to implement means to split an instance and join two
previously split instances, similar to TBB. In contrast to that only one body instance will be
used for iteration with the parallel_for function.

3.2. Usage Examples

To demonstrate how the library can be used for parallel programming, we will now give a
simple example. We will allocate an array of size n and fill it with numbers from 0 to (n-1) in
parallel. en, we demonstrate how to sum up all elements in the array using parallel reduction.
Before we can use the parallel constructs described above we need to initialize the NBB sed-

uler, set up a partitioner to our needs and allocate memory.

Initialization. NBB does not automatically initialize a global seduler, because it cannot
knowwhi policy should be used. erefore the seduler has to be initialized with the desired
seduling policy manually:
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#include <nbb/scheduler.hpp>
#include <nbb/static_policy.hpp>

nbb::static_policy policy;
nbb::scheduler<static_policy> scheduler(policy);

Listing 3.1: Initializing nbb::scheduler.

First, one needs to initialize a policy object. static_policy does not take any parameters
upon construction, but a policy supporting priorities could for example be initialized with a
maximal priority value. en a seduler object using the desired policy can be constructed.

Memory Partitioning. Before allocating memory, a partitioner must be configured. Parti-
tioners are used to partition ranges of indices, and (typed) ranges describe a range of indexed
values of a specific type.

#include <nbb/partitioner.hpp>
#include <nbb/range.hpp>

typedef nbb::typed_range<size_t, int> my_range_t;

nbb::striping_partitioner<my_range_t>
custom_partitioner(stripesize, grainsize, vector_of_nodes);

nbb::striping_partitioner<my_range_t>
default_partitioner(range, vector_of_nodes);

Listing 3.2: Configuring nbb::striping_partitioner.

ese two partitioner instances partition ranges of ints whi are addressed by values of type
size_t. When constructed like custom_partitioner, stripe-size and grain-size can be set to
custom values. Used in the second form reasonable defaults are osen for both parameters.
At this point, those reasonable defaults are merely constant values we determined in run-time
experiments. In both cases, the last parameter vector_of_nodes can be omied, whimeans
striping should use all available nodes.
Now, one can allocate memory for an array of integers with the defined striping:

#include <nbb/array.hpp>
typedef nbb::array<int, nbb::alloc, nbb::striping_partitioner>

my_array_t;
my_array_t
array(desired_number_of_elements, default_partitioner);

Listing 3.3: Allocating Memory using nbb::array.

e first template parameter defines the type of elements to be stored inside the array, the
second whi allocator to use (currently, there is only one available). e last parameter is
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the partitioner template to use for memory striping. If no partitioner instance is passed to the
constructor, a default-constructed one will be used.
Now we will can iterate over this range of memory using the aforementioned functions

parallel_for and parallel_reduce.

Parallel Iteration and Reduction. To iterate over a range of partitioned values, use the
parallel_for loop. As mentioned earlier, a callable body object needs to be passed to the
parallel_for function. It is called for_body_inst in the following listing:

#include <nbb/parallel_for.hpp>

struct for_body {
my_array_t &a;

for_body(my_arary_t &a) : a(a) { }

template <class range>
void operator()(const range &r) {
for (typename range::const_iterator

end = r.end(),
it = r.begin();

it != end;
++it)

a[it] = it;
} for_body_inst(array);

nbb::static_policy::policy_hint hint;

nbb::parallel_for(array.range(), array.partitioner(),
for_body_inst, scheduler, hint);

Listing 3.4: Using nbb::parallel_for.

nbb::array offers some convenience methods to retrieve the associated partitioner and range
instances. ose are used in the listing above to set up the parallel iteration usingparallel_for.
Before seduling a job, one needs a seduling hint mating the seduling policy. Aer ex-

ecuting the loop, array[i]will hold the value i. is could be verified using parallel_reduce:

#include <nbb/parallel_reduce.hpp>

struct reduce_body {
my_array_t &a;
int sum;
reduce_body(my_arary_t &a)
: a(a), sum(0) { }

17
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reduce_body(reduce_body const &other, nbb::split)
: a(other.a), sum(0) { }

template <class range>
void operator()(const range &r) {
int local_sum = 0; // allow to allocate register
for (typename range::const_iterator

end = r.end(),
it = r.begin();

it != end;
++it)

local_sum += a[it];
sum += local_sum;

}
void join(reduce_body const &other) {
sum += other.sum;

}
} reduce_body_inst(array);

nbb::static_policy::policy_hint hint;

nbb::parallel_reduce(array.range(), array.partitioner(),
reduce_body_inst, scheduler, hint);

size_t n = array.size() - 1; // array holds values from 0..n
assert(body_instance.sum == (n*(n+1))/2);

Listing 3.5: Using nbb::parallel_reduce.

Note the implementations of an additional spliing constructor and a join() method. For the
exact semantics of those please refer to section 3.3.7 on page 29. New instances of the functor
are constructed by the library using the spliing constructor. ey usually need to be initialized
as identities to the join operation (here the sum is set to 0 for plus). It is well known that aer
execution the assertion on the last line holds.

3.3. Implementation Details

As the implementation of NBB makes use of C++ templates, most functionality is provided in
header-only libraries. Some convenience functionality does not depend on template parameters,
and is compiled as shared library. e library consists of roughly 3,500 lines of code⁶, about 1,000
thereof being tests.
Various boost⁷ libraries are used for thread management, synronization and memory pool

⁶Determined using David A. Wheeler’s ’SLOCCount’.
⁷http://www.boost.org/
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management. Unit tests were wrien using the boost test framework. SCons⁸ is used as build
tool, Doxygen⁹ to generate reference documentation from comments in the source code, and
git¹⁰ for version control.
We start discussion of the implementation details with memory allocation.

3.3.1. Memory Allocation

Mapping from virtual to physical memory addresses is done page-wise, and the operating sys-
tem offers system calls to pin pages of memory to a certain node. is implies memory striping
cannot be arbitrarily fine-grained.
e region of memory to manage is represented by a range class, while knowledge about the

striping across NUMA nodes is encapsulated in a partitioner class. A NUMA-aware allocator
class can use this knowledge to request the desired mapping from virtual to physical memory
from the operating system. An example of how these classes can be used in conjunction is the
array container class. We will now describe those concepts in more detail.

Range. e blocked_range<integral> class encapsulates a one-dimensional range [a, b)
of integral values. It offers methods begin() and end() to iterate over these values as well
as a range-spliing constructor blocked_range(blocked_range &o, integral split_
index). e right half [split index, b) of o is returned in the new range, while o is updated
to contain the le half [a, split index).
Another class blocked_type_range<integral, T> is used to convey information about

the type T indexed by the range. is information is needed for the partitioner class to determine
how many elements of T fit on a single page.

Partitioner. Knowledge about how elements indexed by a range should be distributed across
available NUMA nodes is encapsulated in a partitioner class called striping_partitioner.
It can be parametrised by two scalar values: stripe-size and grain-size. For memory manage-
ment only the first is used, the laer will be used when seduling jobs that iterate over a given
range. Both values are given to the partitioner in numbers of elements, not in bytes. Further-
more, a std::vector<int> enumerating the nodes to use for striping can be passed to the
constructor.
e grain-size parameter defines theminimal number of consecutive elements to be processed

as one job when using parallel_for or parallel_reduce (see sections 3.3.6 and 3.3.7 on
pages 27 and 29 respectively). It is up to the seduling policy to decide the exact range that
will be processed as a single job. e static_policy described in section 3.3.4 on page 26
however will always split the ranges as many times as possible, i.e. until they are not larger
than the grain-size.
e stripe-size parameter defines howmany consecutive elements will be allocated on a single

node. As memory can only be pinned to specific nodes in whole pages, the stripe-size will be

⁸http://www.scons.org/
⁹http://www.doxygen.org/
¹⁰http://git-scm.com/

19

http://www.scons.org/
http://www.doxygen.org/
http://git-scm.com/


3. NUMA-Aware User-Land Seduling

adjusted so that one stripe is at least the size of one memory page. More precisely, the size of
one stripe will be the least common multiple of page size, and the amount of memory required
to hold the desired number of elements to avoid page thrashing.
If the vector of nodes to use for striping is not passed to the constructor, all available nodes

will be used. is default vector can be accessed by the ALL_NODES() function. If there are
more stripes to allocate than nodes listed in the vector, it will be re-used cyclically, i.e. the i-th
stripe will be allocated on node vector[i] % vector.size().¹¹
Overall performance depends heavily on the seing of the stripe- and grain-size parameters.

is is because a seduling policy would always split a range until the size does not exceed the
stripe-size to ensure local memory access. If the resulting ranges are too small, the overhead
required to sedule ea range for execution becomes a dominant factor in overall run-time.
On the other hand the ranges should not be too large to allow homogeneous load sharing. For
the default stripe-size we found 1 MiB to be a good oice in many cases, the default grain-size
we found works best was 256 kiB. It is possible though to tweak both parameters manually
using the stripesize(size_t n) and grainsize(size_t n) methods.

Interface of striping_partitioner template class.

bool has affinity(typed range const &r) const Determinewhether the given range
r resides on a single node.

int affinity(typed range const &r) const If r resides on a single node, returnwhi
node it is.

bool should split(typed range const &r) const Return true if the range r spans over
more than one node. Spliing the range should eventually lead to a sub-range residing
on a single node. Essentially, this method returns true iff r.size()<stripesize.

bool could split(typed range const &r) const Return true if the range can be split
into smaller sub-ranges. Essentially, this method returns true iff r.size()<grainsize.

typed range split(typed range &r) const Split r by using the range-spliing construc-
tor.

void nodewise action(function &f, typed range const &r) is templatemethod
is used by the allocator to quily determine the affinity of sub-ranges. f is expected to
take three parameters. e function call f(left, right, node) means that the ele-
ments from the range [left,right) are allocated on the given node. It is ensured that
the union of ranges from all function calls is equal to r and that the ranges do not overlap.

ose methods (except nodewise_action) will be used by the job objects implementing
the parallel_for and parallel_reduce functionality to determine affinity of range to be
processed. Available constructors and methods to set stripe- and grain-size are described in the
accompanying Doxygen documentation.

Allocator. e NUMA-aware allocator class alloc<T, partitioner> tries to follow the
C++ standard for allocators [10] as closely as possible. By an additional template parameter
one can oose whi type of partitioner should be used. e main difference is the allocate

¹¹% denotes the modulus operator in C++.
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method, whi takes an additional parameter—the partitioner object that should be used for
memory striping. If le out, a default-constructed partitioner will be used. To acquire page-
aligned regions ofmemory, the glibc¹² library function posix_memalign is used. Aermemory
allocation, the nodewise_actionmethod of the partitioner object to pin the memory pages to
the desired nodes using the numa_tonode_memory library call provided by libnuma¹³.

Array. A simple container class that takes advantage of the concepts and classes introduced
above is the array<T, allocator, partitioner> template class. It offers a straightforward
interface to construct an array holding a given number of elements that are spread over the
nodes using a specific partitioner.
As with standard containers it can be accessed using iterators or the operator[]. In addition

to that, the two methods range() and partitioner() are available. ese offer a convenient
way to iterate over the array using parallel_for and parallel_reduce.

3.3.2. Job Class

template <class Scheduler>
class job<Scheduler> {
protected:
job(policy_hint_t &policy_hint); // construct a root job with

policy hint
job(job *parent); // construct a ild job with policy hint from

parent

public:
virtual bool has_affinity() const = 0;
virtual int affinity() const = 0;
virtual bool should_split() const = 0;
virtual bool could_split() const = 0;
virtual job* split() = 0;
virtual void execute() = 0;

. . .

Listing 3.6: Constructors and pure virtual methods of job class.

Sedulable entities in NBB are called job and are derived from the abstract template class
job. Jobs have a reference to a designated policy hint whi determines how this job and its
ildren should be seduled. As the seduling policy class affects the type of the seduler
(see section 3.3.3), the job base class is implemented as a template class.

Constructors of job template class.

¹²http://www.gnu.org/software/libc/
¹³http://oss.sgi.com/projects/libnuma/
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Figure 3.4.: Hierary of job classes.

job(policy hint t &policy hint) Constructor to create root jobs. policy_hint param-
eter is stored as a reference and made available to seduling policy.

job(job *parent) Constructor to create ild jobs, whi will use the same policy_hint
as the parent job. Child count of the parent job is increased.

Virtual interface of job template class.

bool has affinity() Return true iff calling affinity() returns the node id on whi this
job should be seduled.

int affinity() Return the node id onwhi this job should be executed, if has_affinity()
returns true. If it returns false, any valid node id (e.g. 0) must be returned.

bool should split() Determine whether calling split() will eventually return job ob-
jects that have affinity for a specific node, i.e. whi return true when has_affinity()
is called.

bool could split() Determine whether this job object could be split into smaller jobs even
if has_affinity() already returned true. Implementations of this method should honor
the implication should_split()⇒ could_split().

job t *split() If could_split() returns true, split the job into two smaller jobs. e re-
turned job should become aild of this and use the same seduling hint. is can easily
be accomplished by using theild job constructor mentioned above. Calling execute()
on both jobs (in any order or concurrently) aer calling split() must yield the same
result as executing the original job object.
If could_split() returns false, behaviour of this method is not defined. us, the actual
implementation may be empty (i.e. return NULL) for jobs that cannot be split.
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void execute() Actual action to be performed. When a job is seduled for execution by
a worker thread, this method will be called once. Because all seduling takes place in
user-space, bloed worker threads cannot retrieve another job object to work on. In that
case the operating system seduler will likely free the allocated CPU. Hence, this method
should not make any potentially bloing system calls.

All virtual methods of the abstract job class are declared as pure virtual methods, i.e. no
default implementation is defined in the base class. erefore all virtual methods of the job
class must be overridden.

Ranged Job Class

e ranged_job template class provides an implementation for some of the virtual methods
declared in the job class. It works as a simple example on how the virtual methods could be
implemented. parallel_for (section 3.3.6 on page 27) and parallel_reduce (section 3.3.7
on page 29) both rely on deriving from the ranged_job class.

template <class Range, class Partitioner, class Scheduler>
class ranged_job : public job<Scheduler>
{
ranged_job(); // hide default constructor
protected:
Range _range;
Partitioner const &_partitioner;

// construct a root job with policy hint
ranged_job(Range const &r, Partitioner const &p, typename

Scheduler::policy_hint_t &policy_hint);
: job<Scheduler>(policy_hint), _range(r), _partitioner(p) { }

// construct a ild job whi uses policy hint from parent
ranged_job(Range const &r, Partitioner const &p, ranged_job *parent);
: job<Scheduler>(parent), _range(r), _partitioner(p) { }

public:
bool has_affinity() const { return _partitioner.has_affinity(_range); }
int affinity() const { return _partitioner.affinity(_range); }
bool should_split() const { return _partitioner.should_split(_range); }
bool could_split() const { return _partitioner.could_split(_range); }

};
Listing 3.7: e ranged_job class.

Note that this is still an abstract class, because execute() has no implementation yet. is
is why the split() method cannot be implemented at this point. It must be implemented
by classes that derive from this class. Implementing this method usually involves calling the
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ild-job constructor. A simple example how themethod could be implemented is shown in list-
ing 3.8 below, whi is an excerpt of the for_job class used to implement the parallel_for
construct. It relies on the split() method of a partitioner object to divide the given
range. e ild-job constructor leaves most initialization to the corresponding constructor
of ranged_job.
For more details about the implementation of the parallel_for loop also see section 3.3.6

on page 27.

template <class Range, class Partitioner, class Body, class Scheduler>
class for_job : public ranged_job<Range, Partitioner, Scheduler> {
Body &_body;
// constructs a ild for job with given range
for_job(Range const &r, Partitioner const &p, Body &b, for_job *parent)

: ranged_job<Range, Partitioner, Scheduler>(r, p, parent), _body(b)
{ }
public:
for_job *split() {
return new for_job<Range, Partitioner, Body, Scheduler>(

this→_partitioner.split(this→_range), // split range and return one part
this→_partitioner,
_body, // shared reference of body object
this); // parent job

} . . .

Listing 3.8: Excerpt from for_job class.

3.3.3. Scheduler Class

As mentioned before, one design goal was to provide a framework that facilitates testing differ-
ent seduling strategies. For this purpose the seduler is implemented as a C++ template class
taking a seduling policy class as template parameter. e seduler template class manages

..
scheduler

..

- get job(worker t *w)
- finish(job t *j)
+ scheduler(policy &p)
+ schedule(job *j)
+ wait(job *j)
+ wait for children(job *j)
+ yield()
+ get current worker(): worker t *
+ stats() : stats t

. policy..

- admit job(job *j)
- get job(worker t *w) : job t *
- wait for work(worker t *w)
- job finished hook(job *j)
- root job finished hook(job *j)
- set scheduler(scheduler t &s)

.

worker

..

- run()

..

1

.

1

...

1

.

1..∗

.

Figure 3.5.: (Incomplete) class diagrams of seduler, policy and worker class.
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the worker threads and provides common functionality, like waiting for a job to finish. Upon
construction the worker threads are started.
e constructor of the seduler class takes an instance of the seduling policy class (whi

itself might require some run-time initialization) as parameter. All requests requiring sedul-
ing decisions are forwarded to the specified seduling policy instance. ose requests include
workers asking for job objects to process or user requests to sedule jobs.

Methods implemented by scheduler<policy> template class.

scheduler(policy &p) Constructor to create a seduler object with the given policy. Starts
upworker threads and initializes the policy object by calling thepolicy.set_scheduler
method (see below).

void schedule(job t *j) Sedule a job for execution. e call is forwarded to the sedul-
ing policy.

void wait(job t *j) Wait for a job j to finish. Returns when all ildren of j and j itself
have been processed. Only one call to this (or the wait for children) method per job
is allowed. If called from a worker thread, other job objects may be processed while
waiting.

void wait for children(job t *j) Wait forildren of job j to disappear. Returns when
all ildren of j have been processed. Only one call to this (or the wait) method per job
is allowed. If called from a worker thread, other job objects may be processed while
waiting.

void yield() Yield the current worker thread to another job object. Tries to process another
job using the current worker thread and returns later.

worker t *get current worker() Return worker class associated with calling thread, or
NULL if the calling thread is not managed by the NBB seduler object.

stats t &stats() Return collected statistics if enabled via the NBB COLLECT STATS compile
time parameter.

e remaining methods (e.g. to get a worker class by its id) are documented in the pro-
vided Doxygen documentation. e finish method used by workers to mark a job as fin-
ished is declared as private. It wakes up threads waiting for the job to finish and forwards the
call to the seduling policy in case further actions are required. e methods get_job and
wait_for_work (also marked private) will be called by worker threads and are forwarded to
the seduling policy. e interface of a seduling policy class required by the seduler is
described below.

Methods required from scheduling policies.

void admit job(job t *j) Admit a job for seduling. is method is called by the sed-
uler when a new job j is seduled for execution.

job t *get job(worker t *w) Return a job forworker w. Called byworker threads (through
the seduler class) to retrieve a job object to execute. reads will pass the associated
worker class whi carries information about the assigned node andCPU.eexecute()
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method of the returned job object will be called. If there is no work available, the sedul-
ing policy may return NULL.

void wait for work(worker t *w) Wait for new work to arrive for worker w. Will be
called if get_job returned NULL.

void job finished hook(job t *j) Called by the seduler when job j is finished. If no
special action is required in su cases, the implementation may be empty.

void root job finished hook(job t *j) Called by seduler when a root job j is fin-
ished. If no special action is required in su cases, the implementation may be empty.

void set scheduler(scheduler t *s) Called once before seduling starts, but aer all
threads have been started. Useful if the policy needs to initialize data structures depend-
ing on the seduler’s configuration (e.g. the number of available threads).

e static seduling policy is a basic example of how su policies can be implemented. It
is discussed in the following section.

3.3.4. Static Scheduling Policy

class static_policy : boost::noncopyable {
public:
// default constructor
static_policy();

class policy_hint {
public:
// default constructor (job allowed to run on any unused CPU)
policy_hint()

: _cpus(EMPTY_VECTOR()), _strict(false)
{ init_queues(); }

// restriction constructor (job runs on only given CPUs, if strict or on
given and unused CPUs if not strict)

policy_hint(std::vector<int> const &cpus, bool strict)
: _cpus(cpus), _strict(strict)

{ init_queues(); }

// copy constructor (a policy hint may only be used for one root−job)
policy_hint(policy_hint const &o)

: _cpus(o._cpus), _strict(o._strict)
{ init_queues(); }

. . .

Listing 3.9: Constructors of static_policy and its associated policy_hint.

A basic seduling policy that can be used in NBB is the static_policy class. It allows to
define exactly whi CPUs can be used to work on a job. While the policy constructor does
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not take any arguments, a vector of CPUs (identified by their ID number) must be handed over
to the associated policy_hint constructor. Upon construction of a policy_hint instance,
one work-queue per node is created. When the policy is asked to sedule a ild job that has
affinity for a specific node, it is put into the according work-queue. Others will be distributed
across nodes using round-robin. One lo per node and root-job is used to protect the queues
from concurrent access.
When a worker thread calls the get_job(worker_t *w) method (through the seduler)

it retrieves a job from the appropriate queue. If there is no work available on that node, it
tries to get a job object from another node’s queue. is behaviour can be swited off by
the NBB_DONT_STEAL_FROM_FOREIGN_NODE preprocessor macro. It can be set globally in the
SCons build scripts if jobs should never be seduled on foreign nodes.

3.3.5. Worker Threads

Upon initialization of the seduler one worker thread is spawned for ea available CPU. e
sched_setaffinity Linux system call is used to fix ea thread to one specific CPU. Further-
more, the numa_set_preferred function is used to ensure executed jobs allocate newmemory
on their executing node.
As NBB was implemented as a user-land library, the NBB seduler cannot influence thread

seduling of the operating system in a direct manner. erefore, NBB can neither inhibit nor
easily detect preemption of worker threads. Note, that this can lead to starvation issues when
other processes run on the same system.
Aer a worker thread was started it repeatedly calls the get_job method of the seduler,

whi forwards this call to the corresponding policy. If a job object j is returned, j.execute()
is called. Aerwards, the method finish(j) of the seduler is invoked to indicate that the
job object has been processed. When there is no job available for the requesting worker thread,
the method call might return NULL. In that case, the wait_for_work method is called, whi
may blo the worker thread until there is a new job object available.

3.3.6. Parallel Iteration

template<class Range, class Partitioner, class Body, class
Scheduler>

void nbb::parallel_for(
Range const &r,
Partitioner const &p,
Body const &b,
Scheduler &s,
typename Scheduler::policy_hint_t &h )

Listing 3.10: Function signature: parallel_for.
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Parameters of parallel_for.

r Range for parallel iteration, usually something like my_array.range().
p Partitioner object to determine node affinity of sub-ranges. Usually the one used to par-

tition the range r, like my_array.partitioner().
b Instance of functor implementing operator()(Range const &r)const method.
s Seduler object to use.
h Hint for used seduling policy.

struct my_for_body {
void operator()(Range const &r) const; // parallel iteration

};

Listing 3.11: Methods of functor class required for parallel_for.

Interface required for parallel_for functors.

operator()(Range const &r) const Operator for parallel iteration. is method must
allow multiple concurrent calls.

e parallel_for loop can be used to iterate over a range of values in parallel. When
calling the parallel_for template function, an instance of for_job whi is a subclass of
ranged_job will be seduled. Range-spliing and assignment of node-affinity according to
the given partitioner is done in the ranged_job class as described in section 3.3.2 on page 21.
e execute()method is overridden to call b.operator() with the range to be processed. As
the executemethod is declared const in Body, all worker threads can share the same instance
of Body. No guarantees are made regarding order of execution.

..........................
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.
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....

Shared Body instance

.
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..
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. . .
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Figure 3.6.: Iterating over a striped memory region.
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3.3.7. Parallel Reduction

template<class Range, class Partitioner, class Body, class
Scheduler>

void nbb::parallel_reduce(
Range const &r,
Partitioner const &p,
Body &b,
Scheduler &s,
typename Scheduler::policy_hint_t &h )

Listing 3.12: Function signature: parallel_reduce.

Parameters of parallel_reduce.

r Range for parallel reduction, usually something like my_array.range().
p Partitioner object to determine node affinity of sub-ranges. Usually the one used to par-

tition the reduction range r, like my_array.partitioner().
b Instance of functor to use. e required interface is shown in listing 3.13 and described

below. is instance will also hold the result of the reduction. In the current implemen-
tation operator() is required to be associative and commutative.

s Seduler object to use.
h Hint for used seduling policy.

struct my_reduce_body {
my_body(my_body const &other, nbb::split); // spliing

constructor
void operator()(Range const &r); // parallel iteration
void join(my_body const &lhs); // join operation

};

Listing 3.13: Methods of functor class required for parallel_reduce.

Interface required for parallel_reduce functors.

Body(Body const &other, nbb::split) Spliing constructor. Ea worker thread will
create one instance of the functor object using this constructor. Newly created instances
usually has to be the neutral element to the join operation.

operator()(Range const &r) Operator for parallel iteration. In contrast to the functor
usage of parallel_for (compare section 3.3.6 on page 27), in parallel reduction no con-
current calls to this method will be made. Instead, multiple functor instances will be
created using the spliing constructor. No guarantees about processing order of r are
made.
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Figure 3.7.: Reduction of parallel_reduce body instances.

join(Body const &rhs) Join method. Aer ea sub-range of r has been processed using
operator(), the instances of Body will be joined as depicted in figure 3.7.

Parallel reduction over a given range can be performed using the parallel_reduce func-
tion. e first step in a reduction is the same as for parallel_for: a range of items is pro-
cessed in parallel using a C++ functor object of type Body. But it differs in the fact that mul-
tiple instances of the functor may be created using a spliing constructor. Concurrent calls to
Body.operator() will always be made using different instances of the Body functor. is en-
sures mutual exclusion when accessing data members of Body from operator(). It is aieved
by creating a new instance of Body for every worker thread involved in the reduction.
us, concurrent calls to the spliing constructor may occur, even while a worker is executing

operator(). However this is usually not a problem, as the spliing constructor initializes the
new instance as neutral element to the join operation.
Aer all elements have been processed, intermediate results have been accumulated in ea

created instance of Body. Now, join operations are executed as depicted in figure 3.7. Assume
the amount of work for one join operation of two body instances depends only on the number
of join operations that have been executed with those instances so far. en the amount of work
to perform in one call to the joinmethod is the same for all join-nodes in one level of the tree.
is way work is balanced perfectly among the join operations.
A call to lhs.join(rhs) should update the le-hand-side instance lhs to include the results

stored in rhs. e final result will be stored in the instance of Body that was passed to the
parallel_reduce function call. While an instance of Body is reserved for a specific worker
during iteration to ensure exclusive use, the join operation can be executed by any available
worker. However, it is guaranteed that only one concurrent call to the join method will be
made per instance.
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e TPC-H benmark [17] is a well-known benmark for database systems, focusing on
queries as they appear in business scenarios. It describes eight database tables, whi are sized
according to a scaling factor s. e total size of all data is about sGiB. Furthermore, 22 database
queries are listed as SQL statements. ese queries are then used to define two benmark tests:
Power Test androughput Test.
In this apter, we will concentrate on the Power Test, where only one query is executed

at a time. Its focus is to minimize overall execution time, i.e. makespan. e roughput
Test defines how multiple query streams shall be executed concurrently to measure database
throughput. We will point out some thoughts on this test in Section 5.4 on page 46 and in the
future work section in apter 6.
Jonathan Dees wrote an in-memory implementation of those benmark queries. As men-

tioned before, Intel’s TBB library was used for intra-query parallelism. In this implementation
all data is kept in memory, thus utilizing memory bandwidth as efficiently as possible can be
expected to be an important factor for run-time performance of memory intensive queries.

Generating the Database. e TPC ships a tool called dbgen to generate the tables required
for the TPC-H benmark. Before building, one needs to edit the shipped makefile.suite to
specify some system-dependent seings. Aer generating the plain-text files with dbgen, the
data needs to be converted in order to be used with Jonathan Dees’ TPC-H implementation.
Use the queries binary to aieve this.

$ make -f makefile.suite # build dbgen
$ dbgen -s 1 -v # generate database for scale factor 1
$ queries --build # build and transform tables in three steps
$ for i in $(seq 1 3); do queries --transform $i; done

e TPC-H benmark specifies a scale factor that roughly scales the database size in giga-
bytes. Expected query results for all queries are provided for scale factor 1, whimainly serves
for validation purposes. To allow for beer comparability of results, only the scale factors 1, 10,
30, 100, . . . , 30,000 and 100,000 are specified as being valid for testing.
All benmark results discussed in the remainder of this thesis were obtained from running

the queries for the scale factor 100 database. is was the maximum size that would fit into
main memory and thus best allows us to observe effects of memory bandwidth.
Aer generating the required database tables, we can now discuss the results from running

the benmark queries.
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Figure 4.1.: Run-time comparison of query 5 on our Opteron system with TBB and
NBB.

4.1. TPC-H Power Test

e power test is part of the TPC-H benmark specification. e goal of the power test is
to execute ea TPC-H query in order and measure the time needed to complete all queries.
Consequently, the power test result can be optimized by minimizing ea query execution time.
erefore we will now consider ea query separately.
Using the implementation based on TBB as baseline, we find two main results: First, even

when using the TBB seduler with memory striped by the NBB framework, execution times
of the benmark queries decreased in some cases. One example for this is query 5.
Figure 4.1 shows run-time results for execution of that query with TBB, TBB with memory

striping and the NBB seduler on our Opteron system. With 24 threads, i.e. 3 threads per
NUMA-node, the striping provided by the NBB library boosts TBB’s average performance by
about 10%, while NBB gains 18% performance. Using all six threads per node, TBBwithmemory
striping runs 30% faster than TBB without striping, while performance gain of NBB over TBB
is slightly lower at 23%.
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Figure 4.2.: Run-time comparison of query 21 on our Opteron system with TBB and
NBB.

e reason why even TBB can benefit from uniform memory striping at all is that the TBB
seduler tries not to swit threads when processing adjacent data. us, a thread has a higher
ance to process data residing on the same node repeatedly, and might even be migrated to
the correct node by the operating system seduler.

e previously described drop in performance gain for NBB could indicate non-local memory
access during the execution of query 5. We ba this claim by analyzing the run-time behaviour
of query 21, whi is shown in figure 4.2. Its run-time is roughly the same as for query 5,
thus we can rule out effects resulting from seduling overhead. Nevertheless, we observe
performance gains of NBB over TBB ranging from 2% on one processor per node to 44% for all
six processors per node. is was also the maximal performance gain observed on the Opteron
system. Meanwhile, performance gained by TBB due to memory striping is only between -2
and 16%. It is therefore important how the accessed data structures are laid out in memory,
whi may not always be a simple task.

Our second observation is a decrease in run-time deviation. Compared to NBB the run-time
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Figure 4.3.: Run-time comparison of query 5 on our Xeon system with TBB and NBB.

of a single query when executed with TBB can deviate in a relatively large range, even when
memory is striped using NBB.is is caused by the aforementioned fact that TBB may sedule
job execution on the most advantageous NUMA nodes by ance.

Both effects can be aributed to the knowledge about memory layout, as the TBB seduler is
quite sophisticated and has been thoroughly optimized. Seduling jobs whi are not memory
bound or run only for a short amount of time therefore performs beer with TBB than with
NBB (also see the following section 4.2).

Another thing to note is that the described effects are hardware-dependent. Figure 4.3 shows
the run-times of query 5 as observed on the Xeon system. Remember the Xeon system consists
of four nodes, and ea pair of nodes is interconnected. us, effects of foreign memory ac-
cess are not as significant as they are on the Opteron system, and NBB outperforms TBB with
memory striping when more than 3 CPUs per node are in use. e mean performance gained
for NBB over TBB range from -4% to 19% when executing query 5.

e maximum performance gain was observed when executing query 13 on the Xeon system
with one CPU per node. Its run-time is shown in figure 4.4. While memory striping shows
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Figure 4.4.: Run-time comparison of query 13 on our Xeon systemwith TBB and NBB.

only a 2% performance gain for TBB with memory striping, the NBB seduler manages to
gain 67% in performance. e gap decreases as more processors are aloed, as this helps TBB
utilize more memory bandwidth. Still, with 16 CPUs per node (i.e. 64 CPUs in total) NBB is
16% faster than TBB, while TBB with memory striping is only 8% faster. We also observe that
NBB run-time does not decrease significantly aer using 5 CPUs per node, indicating memory
bandwidth becomes the bolene for execution speed at that point.

4.2. Observed Problems

Our experiments revealed some issues with the soware we used for evaluation as well as with
NBB itself. ery 3 displayed very odd anges in run-time when increasing the number of
alloed processors, as can be seen in figure 4.5 on the next page. Given the more predictable
behaviour of other queries this can be aributed to the implementation of query 3. We thus
discard this query from our further studies.
Another limitation is that our NBB seduling framework is not as highly tuned as TBB.
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Figure 4.5.: Run-time comparison of ery 3 on our Xeon system.

Accomplishing that lies beyond the scope of this thesis. It is not only a problem of the seduler
itself, but also that in the current implementation of NBB the grain-size is set as a constant
value. Although it can be osen by the application programmer before seduling of a job
starts, poor oices for that parameter can lead to high seduling overhead. While Jonathan
Dees introduced heuristics in the TPC-H query implementation to oose an appropriate value,
we expect dynamically oosing the job size as TBB does to yield a performance boost.
ese limitations of NBB appear only for relatively short-running jobs. Run-times of queries

2, 4, 11, 17, 19 and 20 are in the range of 1 to 10 milliseconds and display effects of overhead in
NBB. is is depicted using query 17 as example in figure 4.6 on the opposing page.

4.3. Summary of the Benchmark Results

Summing up, we conclude NUMA-aware seduling can yield high performance gains for
memory-bound jobs. Maximum gain can only be aieved by carefully arranging the mem-
ory layout. is is not always easy to accomplish, even with the utilities provided by the NBB
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Figure 4.6.: Run-time comparison of short-runningery 17 on our Xeon system.

framework.
Recapitulating the benmark results, the question arises whether we can find a simple model

to predict the run-time behaviour and effects of interactions between bandwidth-dependent
jobs. is will be addressed in the following apter, where we will devise a model for NUMA-
aware seduling and try to predict interaction of concurrently running jobs.
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5. A NUMA-Aware Processing Model

As could be seen in section 2.1 on page 6, only few threads on a single node can already utilize
all available local memory bandwidth of this node. To see how queries respond to bandwith
sharing, we execute them in parallel with a bandwith consuming job. e results of this exper-
iment lead us to the question of how one could represent the interaction between demand of
processor time andmemory bandwidth with a simple realistic model. It should take moldability
and malleability of jobs and corresponding anges in memory bandwidth into account, as well
as the effects of memory bandwidth limitation.
Aer validating the model with single queries, we use it to argue why parallel execution of

certain jobs can improve efficiency and try to prove this claim by experiments.

5.1. A New Processing Model

Figure 5.1 on the next page shows execution time of a single query job. e horizontal axis cor-
responds to an increasing number of jobs competing for memory bandwidth. Different colors
indicate different numbers of CPU cores assigned to the running query job. ery run-time
is ploed on the vertical axis and decreases when more cores are assigned, but increases when
competing jobs consume memory bandwidth. us we will split job run-time into two frac-
tions q and (1 − q), both ∈ (0, 1), representing time spent waiting for memory requests and
computation time respectively.
First we will now discuss how to model bandwidth, and then describe how to take this into

account when modeling job run-time.

Memory Bandwidth. Figure 5.2 on page 41 displays howmu bandwidth is available when
accessing local memory on a single node of the Xeon system. e bandwidth is scaled so that
the first thread consumes one bandwidth-unit. As discussed in section 2.1 on page 6, only a few
threads are needed to utilize a large portion of available bandwidth. Furthermore, bandwidth
growth decreases as the number of competing cores increases. us, the maximum bandwidth
b, whi is less than the number of available CPUs, is not aieved when the number of running
threads reaes b.
Since we will model bandwidth demand with fractions, we will use a continuous function to

model available bandwidth. In the course of this thesis we will denominate bandwidth func-
tions by h(x), where x is the total non-negative bandwidth demand. We assume bandwidth
functions to be non-negative, concave and bounded by some constant b for the domain [0,∞).
Additionally we demand the derivative h′ to be bounded by 1, because bandwidth is measured
on a per-thread basis.
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Figure 5.1.: Run-time of ery 5 on the Xeon system when increasing memory load
or processor count.

A simple solution is to use a spline interpolation¹ hspline(x) of the bandwidth observed in sec-
tion 2.1 on page 6. Another possibility would be to connect the measured values by a piecewise
linear curve hpoly(x). In our experiments, whi are discussed in detail in section 5.3 on page 43,
we found that the spline interpolation yielded good results. In figure 5.2 on the facing page it
is ploed in blue.
When bandwidth demand exceeds the available bandwidth, time for memory access in-

creases. is is modeled by introducing a slowdown-factor f(x):

f(x) :=
h(x)

x

Because 0 ≤ h(x) ≤ x we have f(x) ∈ [0, 1]. We will use this factor to adjust the other-
wise linear speedup of the memory-bound fraction of the program. Figuratively speaking, the
available bandwidth is divided into equal fractions for ea processor.

Job Execution Time. As said before, job execution is modeled as consisting of q fractions
of memory access and (1 − q) computation fractions. Processors are not shared while a job is

¹Note that the spline curve violates the requirement h′(x) < 1 for some x ∈ (0, 1).
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Figure 5.2.: Different models for memory bandwidth on the Xeon system.

running. erefore, we assume computations to scale linearly with the number of processors
used. Time for memory access on the other hand depends not only on available processors but
also on bandwidth available.
Denoting the number of available processors by p, the memory bandwidth requested by other

jobs as k and the running time on one processor as t, we can write

time(p, q, k, t) :=
t

p
·
(

q

f(p · q + k)
+ (1− q)

)
for the execution time of a job. Note that k as well as p in the malleable case might not be
constant for the whole job duration.
Assume kanges to k′ aer t′ units of time, but the job is not finished, i.e. t′ < time(p, q, k, t).

In that case, only a ratio r := t′

time(p,q,k,t) of the job has completed when k anges. e remain-
ing time needed to complete the job is then time(p, q, k′, (1−r)·t), resulting in a total execution
time of time(p, q, k, r · t)+ time(p, q, k′, (1−r) · t). Further anges of k′ (or p in the malleable
case) can be dealt with in a similar manner.
Examples of run-times modeled by this function are given in figure 5.3 on the next page.

5.2. Limitations of Our Model

Note that this model disregards many aspects whi can influence job run-time. First of all,
we assume the job to scale linearly in the number of processors—neither are there sequential
program sections nor is there overhead for parallelization. e laer limitation can be removed
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by introducing an overhead function o(p) for ea job, depending on the number of processors
used as model parameters. It is unclear, though, how sequential portions of the program should
be modeled. Adding additional terms qseq and (1 − qseq) for sequential memory-dependent
and CPU-dependent fractions would be possible. However, sequential and parallel sections
of a program are normally not mixed arbitrarily. us, extending the model by precedence
constraints and spliing jobs into sequential and parallel jobs would be a beer approa.
Furthermore, we assume all memory access to be local, because in our case the NBB seduler

has exact knowledge of the data layout. In our experiments in section 2.1 we found the foreign
memory bandwidth to be only about half as large as local memory access. Additionally, in some
cases we observed decreasing foreign memory if bandwidth demand was increased. When
taking foreign memory access into account, this loss of performance needs to be incorporated.
Additionally, it has to be determined how local memory access on one node A interferes with
foreign memory access from another node B to node A. Another issue with foreign memory
access occurs when the communication graph is not complete. Not only will higher penalties
occur for access to more distant nodes, but routing memory access from node A to B through a
node C might also affect other foreign memory accesses routed through node C.
Another problem is hidden bandwidth usage. is can occur when the processor can prefet

required data from memory while performing independent calculations on already available
data. e effect would be a small value of q for the given job, because its computation does not
stall frommemory access. Bandwidth usage of this job nevertheless does have an effect on other
jobs running on the same node. To address this problem, the fraction q for memory access could
be split up in two parts q = o+ q′, o being the fraction that overlaps with computations, while
the fraction q′ does not overlap. e resulting new run-time function is time(p, q′, o, k, t) :=
t
p
·
(

q′

f(p·(q′+o)+k)
+ (1− q′)

)
. e use of system status counters that meter memory transfers in

conjunction with the method currently used to determine q (whi really determines q′) could
help to find good values for o.
One more unmodeled aspect whi is local to a given node are cae effects. Many ques-
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tions arise when trying to model caes: What access paerns does the job generate? How
large is the cae footprint in relation to the number of processors used? When and how does
data get displaced by another thread? e laer point can be overcome by teniques like page
colouring [12]. Access paerns and to some extent displacement have been modeled in Mane-
gold’s thesis covering MonetDB [14]. But moldability and malleability have not been taken into
account in these studies, and we are not aware of any that have.
Finally, SMT has not been taken into account in our model, as the Opteron processor we

used does not have this feature. Consequently, this feature was disabled for the following
experiments on the Xeon system as well.
e question remains whether these limitations have severe impact on the model quality. We

will discuss this in the following section.

5.3. Model Validation

To validate our model, we try to predict how two queries running concurrently affect ea
other’s run-time. Because ea query will be executed on all available nodes, we slightly alter
the semantics of the parameters used in the model from what we described before: e param-
eter p now stands for the number of cores used per node, and t is the time needed to execute
the query when running on one core per node with full memory bandwidth. ese alterations
are valid, because due to the use of NBB memory access is local on ea node, and we assume
work to be evenly distributed across all nodes.
In order to predict execution times of queries running in parallel, we need to know the two

parameters q and t for ea query. We used the measurements displayed in figure 5.1 on page 40
to find these. To that end we use the nonlinear least squares method of GNU R² to fit the time
function on the measured values by varying q and t for ea query. We assumed the memory
bandwidth consuming threads to have q = 1 in our model, so the parameter k of the time
function used to find values for q and t is equal to the number of those threads running.
e memory bandwidth consuming thread uses the movntq Streaming SIMD Extensions

(SSE) instruction to write data directly to memory, bypassing the caes to aieve maximum
throughput and not pollute the caes.
Table 5.1 on the next page lists values for q and t as determined by minimizing the sum of

squared errors. As stated in section 4.2 on page 35, queries 2, 3, 4, 11, 17, 19 and 20 were not
considered. For queries 1 and 18 minimizing the squared error lead to negative values for q on
both systems. We assume this is an effect of parallelization overhead and hidden bandwidth
usage as described in the previous section 5.2. e same effect can be observed for queries 10, 13,
16 and 22 on the Opteron, but not on the Xeon system. Furthermore, the residual error of query
9 is large on both systems. is can be addressed to bad scalability of this query. Not modeling
these effects is apparently a shortcoming of the devised model whi needs to be taken care of.
is is, however, beyond the scope of this thesis.
For the remaining queries the squared residual error is relatively small. Figure 5.4 on page 45

shows an example of how the fied curves compare to the values measured in our experiments.

²http://www.r-project.org/
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Xeon Opteron

ery q (%) t RS2 q (%) t RS2

1 -0.15 1.68 0.0026 -24.22 11.37 248.8587
5 20.24 0.50 0.0015 6.83 0.46 0.0043
6 0.86 0.34 0.0005 1.66 0.39 0.0017
7 22.66 0.87 0.0097 8.60 1.11 0.0034
8 18.64 0.19 0.0003 7.42 0.33 0.0027
9 20.38 2.52 1.2253 1.58 1.32 0.7577
10 16.09 0.37 0.0224 -0.08 0.42 0.0168
12 6.29 0.70 0.0471 5.64 0.68 0.0930
13 3.75 0.22 0.0173 -11.30 0.26 0.0754
14 23.71 0.51 0.0060 5.61 1.21 0.0206
15 39.37 0.93 0.0434 — — —
16 12.99 0.41 0.0164 -2.57 0.31 0.0373
18 -2.05 0.83 0.0018 -0.05 0.40 0.0011
21 16.55 0.66 0.0055 0.88 0.46 0.0134
22 13.39 0.11 0.0007 -8.12 0.08 0.0039

q and t are the job parameters determined by minimizing the sum of squared error. RS² is the residual
sum of squared differences between model function and observed values. ery 15 was not executed
on our Opteron system.

Table 5.1.: Jobaracteristics q and t of TPC-H queries as observed for scale factor 100.

Aer having determined values of q and t for ea query we can now predict execution time
of two concurrently running queries. ose experiments were only conducted on our Opteron
maine.³
It is not surprising that run-time prediction for pairs that include queries 1 or 9 is erroneous.

Looking at table 5.1, this could be expected as the residual errors for those queries are larger
than for other queries. Run-time prediction for other pairs of queries is beer, e.g. for queries
6 and 7 whi are shown in figure 5.5.
In the following section we use the model to predict effects of seduling jobs in a way that

augments average bandwidth usage.

³When running preliminary tests on a Xeon maine similar to the one we described in this thesis, the results
were similar though.
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5.4. Gaining Efficiency by Parallel Execution

Our model suggests that sharing memory bandwidth and processors during parallel execution
of two programs can be more efficient than executing the programs sequentially utilizing all
processors. e reason is that one job alone may not be able to utilize the full memory band-
width, while the other one does not gain more memory bandwidth than it would already have
with just some of the processors it uses. ese effects are shown in figure 5.6: (a) shows how
average bandwidth usage can be increased by executing the jobs in parallel, and in (b) the re-
sulting execution time is shown. For both jobs in the figure, t was set to 1. e effect is larger
if the values for q lie further apart.
Figure 5.6 also shows why the bandwidth model predicts only lile gain in efficiency if ea

jobs uses only lile bandwidth when running alone (or both use all available bandwidth), i.e.
the difference of q for both queries is small. is is because average bandwidth for sequential
execution is then nearly the same as when running in parallel.
In subfigure 5.6b the problem already described previously occurs: Aer the shorter job has

finished, available bandwidth for the longer running jobanges. While it would in principle be
possible to take these effects into account as described in section 5.1, weose another approa.
Instead of running ea job only once, we oose a minimal time tmin to run both jobs in

parallel—job 1 on p1 processors and job 2 on p2 processors per node. Both jobs are then re-
executed until the experiment has run for time tmin.
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During the experiment we count how many times ea job
has been executed. e point in time at whi the first of both
jobs finishes aer tmin units of time have passed is called tpar,
depicted by the bold line in figure 5.7. is will be the actual
duration used in our calculations. Let job 1 be the first job to
finish execution aer tmin units of time have passed. We denote
the number of times job 1 was executed by k1. e finishing-
time of job 1’s last execution is thus equal to tpar.

When job 1 has finished its last counted execution, job 2 may
still be running. Let job 2 be in its k′

2-th execution phase at
time tpar. However, we do not wish to count the whole run-
time of this last execution of job 2, but only the fraction that
was finished at time tpar.

To determine this fraction, we keep tra of the k′
2-th

starting- and finishing-time of job 2. ey are denoted by t2start
and t2stop respectively. We then can determine the fraction r of
job 2 that was executed aer tpar by

r :=
t2stop − tpar

t2stop − t2start
∈ [0, 1).

To determine efficiencywe use k2 := k′
2−r runs of job 2 instead

of k′
2 runs. In summary, job 2 has completed k2 (fractional) runs

in the time job 1 needed to complete k1 (integer) runs.

Note that we have to ensure foreign memory bandwidth us-
age for job 2 does not ange during the course of its last exe-
cution. To that end we continue to repeatedly execute job 1 as long as job 2 has not finished,
without counting those runs.

We compare the time needed to run both jobs in parallel to the time needed for sequential
execution of both jobs on all processors. erefore, both jobs are executed k1 and k′

2 times
respectively on all p1 + p2 processors. Total time taken to execute the jobs is measured as t1
and t′2 accordingly. Now, the execution time t

′
2 of job 2 needs to be reduced with respect to k2,

i.e. t2 := t′2 · (k′
2/k2). e total time tseq taken to execute both jobs on all available processors

sequentially is then the sum of t1 and t2.

To perform the same amount of work, namely executing job i ki times, in the sequential case
all processors have been in use for tseq units of time. In the parallel case the same amount of
work was performed in tpar units of time utilizing the same number of processors. e resources
(processor-time) required were (p1 + p2) · tseq and (p1 + p2) · tpar respectively. us we can
measure the efficiency gain ρ by (1− ρ) · (p1 + p2) · tpar = (p1 + p2) · tseq.
Similarly, we can use the time function to predict the performance gain. We will denote the

number of times ea job is executed in the model bym1 andm2 respectively. With p := p1+p2
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and constants q1, t1 and q2, t2 that describe the aracteristics of ea job, we have

(1− ρmodel) ·
(
p ·m1 · time(p, q1, 0, t1) + p ·m2 · time(p, q2, 0, t2)

)
= p1 ·m1 · time(p1, q1, p2 · q2, t1)︸ ︷︷ ︸

L

+ p2 ·m2 · time(p2, q2, p1 · q1, t2)︸ ︷︷ ︸
R

Because we assume L = R due to our experiment setup, we can writem2 in terms ofm1, p1,
p2, t1, t2, q1 and q2. By substituting m2 and the time(p, q, k, t) function, we see that t2 can be
dropped. Furthermore, we can factor outm1 · t1 on both sides of the equation. We can oose
m1 arbitrarily, and set m1 := 1

t1
. As expected ρmodel only depends on p1, p2, q1 and q2, i.e. the

partitioning of processors used and the memory bandwidth demand of ea job.
With

πi :=
qi

f(p1 · q1 + p2 · q2)
+ 1− qi and σi :=

qi
f((p1 + p2) · qi)

+ 1− qi

for parallel and sequential execution respectively, we can write the ratio as

ρmodel = 1− 2 · π1 · π2

σ1 · π2 + π1 · σ2

Now we can compare the performance gain predicted by our model to what was determined
experimentally.

5.4.1. Experimental Results

e following table lists ρmodel and actually observed values for ρ on both systems. Not all pairs
of queries could be tested due to issues with our test systems. In this experiment both queries
were alloed half the number of available CPUs for parallel execution on ea system.

Table 5.2.: Predicted and observed efficiency gain ρmodel and ρ.

Xeon Opteron

ery 1 ery 2 ρmodel (%) ρ (%) ρ− ρmodel ρmodel (%) ρ (%) ρ− ρmodel

1 1 0.00 2.11 2.11 0.00 49.44 49.44

5 1 0.80 3.23 2.44 2.42 37.19 34.77
5 5 0.00 9.98 9.98 0.00 0.14 0.14

6 1 0.00 3.70 3.70 1.43 35.97 34.54
6 5 0.76 5.30 4.54 0.13 14.16 14.03
6 6 0.00 4.20 4.20 0.00 4.67 4.67

7 1 1.17 -0.96 -2.13 2.85 34.42 31.58
7 5 0.04 0.36 0.32 0.02 -0.94 -0.96
7 6 1.13 0.30 -0.83 0.24 6.49 6.24
7 7 0.00 3.92 3.92 0.00 -2.63 -2.63
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Table 5.2.: Predicted and observed efficiency gain ρmodel and ρ (continued).

Xeon Opteron

ery 1 ery 2 ρmodel (%) ρ (%) ρ− ρmodel ρmodel (%) ρ (%) ρ− ρmodel

8 1 0.60 2.97 2.37 2.55 39.69 37.13
8 5 0.01 3.06 3.04 0.00 -0.38 -0.38
8 6 0.57 4.01 3.44 0.16 19.77 19.61
8 7 0.09 -4.55 -4.65 0.01 -2.44 -2.45
8 8 0.00 10.06 10.06 0.00 7.15 7.15

9 1 0.81 39.29 38.48 1.42 50.19 48.77
9 5 0.00 40.23 40.23 0.13 34.36 34.23
9 6 0.77 39.66 38.89 0.00 35.10 35.10
9 7 0.03 37.80 37.77 0.25 30.35 30.10
9 8 0.02 40.76 40.74 0.17 39.20 39.04
9 9 0.00 56.95 56.95 0.00 43.23 43.23

10 1 0.38 11.54 11.17 1.18 40.54 39.36
10 5 0.08 6.24 6.16 0.22 21.05 20.83
10 6 0.35 11.88 11.53 0.01 16.69 16.68
10 7 0.22 4.98 4.76 0.36 17.24 16.88
10 8 0.03 10.32 10.29 0.26 23.77 23.51
10 9 0.08 37.72 37.63 0.01 37.37 37.36
10 10 — — — 0.00 12.23 12.23

12 1 0.03 -3.06 -3.09 2.16 34.72 32.56
12 5 0.51 -1.66 -2.17 0.01 11.44 11.43
12 6 0.02 -3.07 -3.09 0.07 6.25 6.18
12 7 0.83 -6.58 -7.40 0.05 1.87 1.82
12 8 0.36 -1.82 -2.18 0.02 13.48 13.47
12 9 0.53 36.98 36.45 0.08 33.91 33.83
12 10 — — — 0.15 14.20 14.06
12 12 — — — 0.00 -0.13 -0.13

13 1 0.01 14.95 14.94 0.23 49.97 49.74
13 5 0.63 10.72 10.08 1.14 35.07 33.93
13 6 0.00 19.51 19.51 0.51 30.52 30.02
13 7 0.97 14.12 13.15 1.45 18.99 17.54
13 8 0.46 14.34 13.88 1.24 30.14 28.91
13 9 0.65 44.72 44.07 0.50 47.00 46.50
13 10 — — — 0.36 27.44 27.08

14 1 1.38 -2.04 -3.42 2.15 34.00 31.85
14 5 0.08 -0.70 -0.78 0.01 17.66 17.65
14 6 1.33 -1.81 -3.14 0.07 10.60 10.52
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Table 5.2.: Predicted and observed efficiency gain ρmodel and ρ (continued).

Xeon Opteron

ery 1 ery 2 ρmodel (%) ρ (%) ρ− ρmodel ρmodel (%) ρ (%) ρ− ρmodel

14 7 0.01 -6.31 -6.32 0.05 11.33 11.28
14 8 0.15 -4.74 -4.89 0.02 21.05 21.03
14 9 0.07 36.91 36.84 0.08 34.93 34.86
14 10 — — — 0.14 21.33 21.18
14 12 — — — 0.00 10.04 10.04
14 14 — — — 0.00 1.75 1.75

15 1 7.54 15.10 7.56 — — —
15 5 2.74 3.29 0.56 — — —
15 6 7.39 6.81 -0.57 — — —
15 7 2.07 -0.36 -2.43 — — —
15 8 3.20 -0.06 -3.26 — — —

16 1 0.20 16.27 16.07 0.88 42.66 41.79
16 5 0.20 16.24 16.04 0.38 14.97 14.59
16 6 0.18 15.37 15.19 0.07 22.98 22.91
16 7 0.40 13.72 13.32 0.56 13.93 13.37
16 8 0.11 15.86 15.75 0.44 24.31 23.87
16 9 — — — 0.07 38.59 38.52
16 10 — — — 0.02 22.23 22.20
16 12 — — — 0.28 20.04 19.76
16 14 — — — 0.28 20.67 20.39
16 16 — — — 0.00 16.12 16.12

18 1 0.00 2.50 2.50 1.18 36.68 35.49
18 5 0.86 5.20 4.34 0.22 13.37 13.16
18 6 0.00 4.15 4.15 0.01 11.61 11.60
18 7 1.26 1.84 0.59 0.36 8.00 7.64
18 8 0.66 5.75 5.10 0.26 19.86 19.60
18 9 — — — 0.01 36.41 36.40
18 10 — — — 0.00 11.31 11.31
18 12 — — — 0.15 10.96 10.81
18 14 — — — 0.14 21.03 20.88
18 16 — — — 0.02 23.26 23.24
18 18 — — — 0.00 11.96 11.96

21 1 0.41 9.42 9.01 — — —
21 5 0.06 10.40 10.33 — — —
21 6 0.39 10.35 9.96 — — —
21 7 0.19 5.72 5.53 — — —
21 8 0.02 8.22 8.20 — — —
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Table 5.2.: Predicted and observed efficiency gain ρmodel and ρ (continued).

Xeon Opteron

ery 1 ery 2 ρmodel (%) ρ (%) ρ− ρmodel ρmodel (%) ρ (%) ρ− ρmodel

22 1 0.22 20.92 20.70 — — —
22 5 0.18 23.37 23.18 — — —
22 6 0.20 19.47 19.27 — — —
22 7 0.38 7.50 7.13 — — —
22 8 0.10 22.18 22.09 — — —

We can observe the predicted efficiency gains are oen far below the observed values. is is
especially the case when a query is executed concurrently with itself. In su cases, the model
will always predict that concurrent execution is not more efficient than sequential execution,
because average memory bandwidth is the same in both cases. us the gain in efficiency
for parallel execution of two instances of the same query can be aributed to parallelization
overhead of that query.
In conformance with the statement in the previous section 5.3, query 9 benefits most from

this effect: it gains 57% efficiency when running in parallel.
As this effect is huge for other queries as well, the relatively small predicted gain due to

increased average memory bandwith becomes negligible. We thus recommend using a job-
specific speedup function to beer represent overhead effects.

Effects on optimization goals. e model predicts, that parallel seduling of jobs does
never have negative effects on efficiency, because ρmodel ≥ 0 holds. As described above, the ef-
fect is even greater due to decreasing parallelization overhead when executing two jobs in paral-
lel. In other words, the amount of work performed per unit of processor-time does not decrease
if jobs are seduled in parallel rather than sequentially. is implies sedules for malleable
jobs are not optimal if they do not utilize all processors at all times. us, the makespan for a
given set of malleable jobs never increases when seduled in parallel. Similarly, throughput
cannot get worse by parallel seduling in our model.
In contrast to that, average response time for a given set of malleable jobs can increase by

parallel execution. An example is the set of jobs given in figure 5.6 on page 46. Job 1 finishes
later when executed in parallel with job 2, whi increases average response time for parallel
execution. While job 2 finishes earlier when executed in parallel with job 1, this decrease does
not compensate for the run-time increase of job 1. is is an effect of the limited memory
bandwidth, whi denies optimal resource (processor-time) utilization to job 2. e average
response time of those two jobs is thus larger in the parallel case.
We conclude the thesis by recapitulating our results and pointing out possible future work on

the topic.
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6. Results

e results of this thesis are threefold. First, a NUMA-aware user-land seduling library was
developed. Based on memory benmarks we found striving for node-local memory accesses
would be beneficial for jobs with high bandwidth utilization. e operating system sedulers
already offer means to enforce certain memory allocation and thread seduling policies. Our
library provides an easy-to-use abstraction to make use of these concepts. Aside from that it
provides a framework to implement more sophisticated NUMA-aware seduling algorithms
for experimental evaluation.
Second, we evaluated the effects of our new approa to seduling using a widely accepted

database benmark. e observed performance improvement over NUMA-agnostic seduling
was up to 67%. Additionally, we noticed a decrease in the meanderings of job run-times that
resulted from non-local memory access due to suboptimal seduling decisions.
e third and final result of our work is a new model for job seduling. We aracterize jobs

by two key figures: overall run-time and memory access ratio. e model was shown to reflect
the effects of seduling bandwidth-demanding job in parallel. Furthermore, we demonstrated
that themodel allows us to augment efficiency by seduling certain jobs to run in parallel rather
than sequentially. is in turn leads to higher query throughput and/or smaller makespan when
seduling certain jobs in parallel. However, this effect is dominated by effects of parallelization
overhead in practice.
We come to the conclusion that NUMA-aware seduling can be beneficial for memory band-

width demanding workloads as they appear in main-memory based database systems.

6.1. Future Work

is thesis opens many possibilities for further work. While the developed NBB library showed
to provide good performance, there is still potential for optimization. is includes replacing
the used queues by lo-free variants and dynamic adaption of the grain-size used for parallel
iteration and reduction. Also, though it was not required for the algorithms used in our exper-
iments, a parallel join operation supporting non-commutative joins could be implemented. e
parallel execution of TPC-Heries as described in the TPC-H Stream Test could be improved
by implementing a custom seduling policy.
Regarding the processing model it is of interest how the model can be refined to beer predict

job run-time and effects of concurrent job execution as indicated in section 5.4.1. Namely, we
expect modeling hidden bandwidth usage and job-specific speedup functions to improve quality
of run-time prediction. It then would be necessary to ba those findings by more types of
parallel programs.
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So far, the framework was only used to sedule moldable jobs. A custom seduler imple-
mented e.g. for the TPC-H Stream Test could be used to determine, whether the model yields
good predictions for malleable seduling as well. Furthermore, optimization goals different
from makespan could be targeted.
Another aspect is job seduling in our new model. Calculating optimal sedules or solv-

ing the online seduling problem is an open problem. When solving the online problem the
additional problem of finding good parameter estimates for the jobs to be seduled comes up.
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Appendix A.

Building NBB

A.1. Prerequisites

Most prerequisites for building NBB can be obtained by installing the appropriate programs or
development paages of your favourite Linux distribution. For Ubuntu, the following com-
mand should provide all paages needed in addition to the default setup:

$ sudo apt-get install numactl libnuma1 libnuma-dev scons doxygen
git-core

e SCons version used was v1.2.0. Intel’s TBB¹ library is used for comparison in some of
the test scripts, but is not a dependency of the library itself. e “tbb30 20100406oss” release is
known to work.
To be able to compile all template code, we used the GNU C++ compiler from version 4.5.1 of

the GNU Compiler Collection². It was not available as paage for our systems at the time of
this writing. Please refer to the according documentation on how to build a custom compiler,
if this is still the case.
Currently, the latest release of boost is version 1.46.1, whi suffers from a bug³ that can cause

deadlos when NBB is shuing down during program termination. If this causes problems,
please pat boost as described in the referenced boost bug traer entry before compiling boost,
or use a to-be-released version of boost including the fix. Other third-party libraries like lib-
NUMA can be found in this thesis’ soware repository (see THIRD PARTY PATH described
below).

A.2. Directory Structure

e implementation of NBB is spread across several directories. Due to the SCons build process,
the script to build the library is contained in the lib directory. e test directory contains
some unit- and functionality tests wrien using the boost test framework.
All C++ header-library files are located beneath the include/nbb directory. Ea imple-

mented component is stored in a separate directory, split up into declaration and implementa-
tion header files where necessary. Similar to the boost library design, convenience header files

¹http://threadingbuildingblocks.org/
²http://gcc.gnu.org/
³https://svn.boost.org/trac/boost/ticket/4978
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nbb/
SConstruct ...................................................Main build script
lib/ ..................................................Build script for the library
src/ ..................................................Library initialization code
test/ ..............................................Unit- and Functionality tests
include/ .......................................Base for C++ header-library files

nbb/
range/ ........................................Range class implementation
mm/ ............................ Internal memory management for job objects
partitioner/ .............................Partitioner class implementation
parallel for/ ......................... Implementation of parallel iteration
parallel reduce/ .....................Implementation of parallel reduction
array/ ..........................................Basic array container class
sched/ .........................................Seduer and policy classes
alloc/ ...................................NUMA-Aware memory allocation

NBB Directory Structure

whi include both declaration and implementation are provided. ey reside in include/nbb
to hide these details from the programmer.

A.3. Build Process

As described before, SCons is used to build NBB. When SCons is invoked it looks for a build
script named SConstruct wrien in Python. In the course of writing this thesis several other
build scripts were used for side projects. All share a common local build config.pywhere
several system-specific variables can be set:

BOOST PATH Path to boost installation, e.g. /usr/local.

TBB PATH Base path to TBB, e.g. /opt/intel/tbb/tbb30 20100406oss/ if one uses the
Open-Source edition (OSS) of TBB.

TBB RELEASE, TBB DEBUG When building TBB OSS edition, the libraries will be put in
separate directories. e directory name is system-dependent and usually looks like
“linux intel64 gcc cc4.5.1 libc2.11.1 kernel2.6.32 release”.

NBB PATH Path to NBB base directory, e.g. ~/Diplomarbeit/nbb. is is not required
for the NBB build process itself, but to build the benmark programs that use the NBB
library.

NUMA TOPOLOGY PATH Provides information about hardware topology. Provided in Diplomarbeit/testmessungen.

THIRD PARTY PATH Path to third party libraries collected in Diplomarbeit/external.
ese include libnuma and libNUMA for information about the system topology and Ro-
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man Dementiev’s Intel Performance Counter monitoring library⁴ to collect information
from hardware status registers of Intel processors.

DEES PATH Path to JonathanDees’ TPC-Hery implementation, e.g. ~/repositories/dees.
Used when compiling the parallel query benmark evaluation program.

CXX Set this variable to use a C++ compiler different from the system’s default.

opt Set compiler optimization level. Defaults to 3.

debug Controls mode of compilation. If set to zero (0), SCons will build NBB with optimiza-
tions turned on (by default, -O3 is passed to the compiler). Otherwise, NBB will be com-
piled without optimizations and enabled debugging symbols, i.e. -O0 -g will be passed
to the compiler.
is variable can also contain a (Python) list of module names to be debugged. In this case
additionally various trace messages will be printed from the debugged module. Tracing
can be enabled for the following modules: alloc, array, jobs, parallel for, parallel reduce,
policy, seduler, range and worker. When tracing is enabled for the job module, parent
jobs will also maintain pointers to all spawned ild jobs whi may help debugging job
dependencies.

assertions Boolean to control seing of the NDEBUG preprocessor macro. When true, assertions
will be enabled (regardless of the debug variable described above). Assertions should be
swited off for performance evaluation.

e file local build config.py.template shows some examples of how these variables
can be set to control the build. All parameters can also be set by passing the variable defini-
tion as a SCons command line argument. Command line variables will override seings from
local build config.py. For example, to build an optimized version with optimization level
2 and without assertions using a custom C++-Compiler, use the following command:

$ scons opt=2 CXX=/opt/some-cc/bin/c++ debug=0 assertions=false

It is common to split SConstruct files into several SConscript-files for separate parts of the
project and load them in the main SConstruct file. For NBB, two SConscript files reside in lib/
and test/. e former is responsible for building the library, the laer for building the test
binaries.
Calling SCons without any target name will build the library and test binaries. e following

targets are available:

nbb shared Build shared library libnnb.so.

tests Build test suite for NBB.

run tests Run all tests from suite.

⁴http://software.intel.com/en-us/articles/intel-performance-counter-monitor/
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doc Build HTML documentation using Doxygen. Doxygen configuration suitable for NBB is
provided in the Doxyfile file.

To run all tests and build the documentation at the same time using 42 parallel SCons jobs,
run:

$ scons -j42 doc run_tests

Documentationwill end up in the doc/ directory. Everything else can be found in build/optimize
or build/debug, depending on the value of the debug build variable.
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