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Abstract. We describe an algorithmic framework for lossless compres-
sion of route descriptions. This is useful for hybrid route planning where
routes are computed by a server and then transmitted to a client device
in a car using some mobile radio communication where bandwidth may
be low. Compressed routes are represented by only a few via nodes which
are the connection points when the route is decomposed into unique op-
timal segments. To reconstruct the route efficiently a client device needs
basic but fast route planning capability. Contraction hierarchies make
this approach fast enough for practice: Compressing takes only a few
milliseconds. And previous experiments suggest that a client can decom-
press each route segment virtually instantaneously. So, as the segments
can be decompressed successively while driving, it is not likely that the
driver experiences any delay except for the time needed by the mobile
communication.

1 Introduction

Today GPS-based car navigation is quite common. Routes can be computed
either by a device located in the car or by a server system located in a computing
center. The latter requires that routes are transmitted to the client device in the
car using some mobile radio communication like the cellular phone network. We
denote this server-based mobile setting as hybrid route planning.

Hybrid route planning is not only useful to take the current traffic situation or
the latest changes of POI data into account. It also makes the benefits of several
advanced route planning algorithms available for car drivers. Such algorithms,
which compute high quality routes within milliseconds, are often quite sophisti-
cated and adapting them to work well on mobile devices is usually not trivial – if
at all possible. Examples are time-dependent route planning [1–7] where routes
depend on the departure time, flexible route planning [8] where routes depend on
a freely selectable parameter which models a tradeoff between energy consump-
tion and travel time for example, multi-criteria route planning [9] where routes

? Partially supported by DFG project SA 933/5-1,2. This is a slightly extended version
containing some details we omitted in the original version due to page limit. The
original publication is available at www.springerlink.com.
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are assessed with respect to multiple costs, customizable route planning [10]
where cost functions can be altered rapidly, or the computation of alternative
routes [11, 12]. Possible benefits are, for example,

– that routes are optimized with respect to the time of day which means that
congestions can be avoided based on statistical data,

– that inconvenient roads can be avoided and that toll charges, energy con-
sumption, or detours can be reduced even if travel time is the main objective,

– or that the driver can dynamically choose or fine-tune the cost function.

To make hybrid route planning convenient to use, the latency experienced
by the driver should be as small as possible. However, the descriptions of the
routes that have to be transmitted over the mobile communication can be quite
complex and bandwidths can be low (as in the countryside for example). So,
good compression rates are desirable. Also, the time needed for compressing and
decompressing the routes has to be small.

In this work we present an algorithmic framework for lossless and efficient
compression of route descriptions in the context of hybrid route planning. It
provides good compression rates and the running times needed for compressing
and decompressing are small. As a result, the user should not notice any latency
except for the latency of the mobile communication. Our approach requires that

– the client has basic but fast route planning capability,
– client and server use the same road network topology, and
– the cost function used by the client changes rarely and is known to the server.

A route provided by a sophisticated algorithm running on the server is most
probably not an optimal route with respect to a simple cost function that can be
handled by the mobile client device. We observe, however, that the route can be
composed of a few unique route segments which are optimal with respect to the
client. Our compression exploits this in a simple but effective way: We represent
the route by only giving the few locations where this unique optimal route seg-
ments meet. We call these locations the via nodes. The client can reconstruct the
route from the few via nodes by simply computing the optimal routes between
them. The uniqueness of the segments guarantees that the reconstructed route
is exactly the route originally provided by the server.

To provide efficient decompression, the client device must be able to to per-
form fast and exact1 computation of optimal routes. There, it is enough to de-
compress the first route segment fast. All other segments can be decompressed
successively when driving. Contraction hierarchies (CH) [13, 14] is a fast and ex-
act method for route planning which has also been adapted to run efficiently on
mobile devices. Using these mobile CH the client should be able to decompress
each segment of the route within less than 0.1 s [15]. From the drivers point of
view this is as good as instantaneous. Note that Dijkstra’s well known algorithm
is not an alternative. Though it computes optimal routes, it has running times
of more than a second even on server systems which is far to slow.

1 We speak of exact route planning to indicate that the computed routes are optimal
with respect to the underlying cost function and no heuristic is used.
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Our Contributions. With CH the client is already able to decompress each seg-
ment of the route fast enough. So, we focus on the server-side algorithmic meth-
ods of computing the compressed representation of a path P as a sequence Q
of via nodes. All these algorithmic methods are instances of a generic frame
algorithm (Sect. 2). The first instantiation of the frame algorithm is based on
Dijkstra’s well known algorithm and yields the minimum possible number of
via nodes. In practice, however, the Dijkstra-based compression is to slow. The
second instantiation uses an algorithmic scheme inspired by binary search. It
also yields minimal sequences of via nodes. Like the frame algorithm the binary
scheme is a generic algorithm itself. More precisely, it requires a subroutine that
decides whether a route is the unique optimal route between two nodes. This
subroutine is invoked O(|Q| log |P |) times (Sect. 3).

Realizing the subroutine using the aforementioned CH (Sect. 4) yields a very
fast compression technique, fast enough for practice. Interestingly, this approach
needs sometimes even less via nodes than the Dijkstra-based approach (Sect. 5).
This is because the definition of a unique optimal route is different in the context
of CH. Our experiments indicate that via nodes provide good compression rates
in practice. Also the running time needed by the compression is quite low if CH
are used to realize the subroutine in the generic binary scheme (Sect. 6).

Related Work. We described some of the ideas presented in this work previously
in a technical report [16]. To our knowledge, there is no other publication directly
covering the efficient representation of routes beyond traditional data compres-
sion and error-correction. Tao et al. [17] show how to efficiently compute a repre-
sentation that includes at least one out of every k consecutive nodes. While this
can be seen as a compact representation of a shortest path it is not clear how to
conduct a loss-less reconstruction of the represented path. Via nodes have been
applied to CH in a different way [11, 12] to provide reasonable alternatives to the
optimal route. Here, reasonable means that the alternative is not much longer,
has not too much in common with the optimal route and is locally optimal.

2 Via Nodes and a Generic Frame Algorithm

We model road networks as directed graphs G = (V,E). As the mobile device has
limited main memory and computing power, it uses a very simple cost function:
Every edge (u, v) has a constant weight c(u, v) ∈ IR>0 assigned. Routes are
modeled as paths in G. A path 〈u1, . . . , uk〉 is a shortest path if it has minimal
cost c(〈u1, . . . , uk〉) := c(u1, u2) + · · · + c(uk−1, uk) among all paths from u1 to
uk. A shortest path 〈u, . . . , v〉 is called a unique if it is the only shortest path
from u to v. Subpaths of unique shortest paths are unique shortest paths too.
By G> we denote the transpose graph of G where all edges are reversed.

Consider a path P := 〈u1, . . . , un〉 which is not necessarily a shortest path.
Let Q := 〈〈ui1 , . . . , uik〉〉 be a subsequence of P s.t. the subpaths 〈u1, . . . , ui1〉,
〈uik , . . . , un〉, and 〈uij , . . . , uij+1

〉 of P are unique shortest paths for all 1 ≤ j < k.
Then, we call Q a representation of P (with via nodes). Certainly, P is completely
determined by Q. For |Q| � |P | we can speak of a compressed representation.
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Algorithm 1. Generic frame algorithm computing a representation with via

nodes for a path P . Requires a subprocedure uniqueShortestPrefix (Path) : Path.

1 function frameAlgorithm(P : Path) : Sequence
2 Q := 〈〈〉〉 : Sequence
3 while P 6= 〈〉 do
4 R := uniqueShortestPrefix (P )
5 append last node of R to the end of Q
6 remove prefix R from P

7 remove last node of Q
8 return Q

Observation 1. If all edges in G are unique shortest paths, then all paths in G
can be represented with via nodes.

A trivial representation of P is P itself. If not all edges of G are unique
shortest paths, then this property can be established easily by a simple trans-
formation of G: For every edge (u, v) in G we run a Dijkstra search starting
from u with the constraint that the edge (u, v) must not be relaxed. This yields
a shortest path Puv in the graph (V,E \ {(u, v)}). If c(Puv) ≤ c(u, v) holds, we
introduce a new node x to G and replace (u, v) by the new edges (u, x) and (x, v)
with c(u, x) := c(x, v) := c(u, v)/2. In the following we assume that all edges of
G are unique shortest paths. Thus, every path in G can be represented with via
nodes. A representation Q of P with via nodes is called minimal if there exists
no other representation Q′ of P s.t. |Q′| < |Q|. If P is a unique shortest path,
then the minimal representation is 〈〈〉〉.

A prefix Ri := 〈u1, . . . , ui〉 with i < n is called a real prefix of P . If Ri is a
unique shortest path, then Ri is called a unique shortest prefix of P . If Ri+1 is
not a unique shortest path, then Ri is called the maximal unique shortest prefix
of P . A generic frame algorithm (see Algorithm 1) computes a representation
with via nodes for a given path. It requires that a procedure uniqueShortestPrefix
is present, which computes a unique shortest prefix of a given path. Obviously,
uniqueShortestPrefix is called O(|Q|) times. The frame algorithm can also be
used to find minimal representations as the following theorem shows.

Theorem 2. If uniqueShortestPrefix provides the maximal unique shortest pre-
fix, then Algorithm 1 yields a minimal representation with via nodes.

Proof. Set 〈s, . . . , t〉 := P and let Q = 〈〈u1, . . . , uk〉〉 be the result of the frame
algorithm. Assume there is another representation Q′ = 〈〈v1, . . . , v`〉〉 of P with
` < k. Then 〈s, . . . , vi〉 is a prefix of 〈s, . . . , ui〉 for 1 ≤ i ≤ `. For i = 1 this
is true because 〈s, . . . , u1〉 is computed by uniqueShortestPrefix and hence the
maximal unique shortest prefix of P . For i > 1 we apply induction and assume
〈s, . . . , vi−1〉 is prefix of 〈s, . . . , ui−1〉. But then 〈s, . . . , vi〉 must also be prefix of
〈s, . . . , ui〉. Otherwise 〈ui−1, . . . , ui〉, which is the maximal unique shortest prefix
of 〈ui−1, . . . , t〉, would be a real prefix of the unique shortest path 〈ui−1, . . . , vi〉.
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Algorithm 2. Modification of Dijkstra’s algorithm computing a maximal unique

shortest prefix path of a given path P = 〈u1, . . . , un〉.
1 function uniqueShortestPrefix (〈u1, . . . , un〉 : Path) : Path
2 d[u] :=∞, p[u] := ⊥, unique[u] := true for all u ∈ V
3 k := n, d[u1] := 0
4 M := {(u1, 0)} : PriorityQueue
5 while M 6= ∅ do
6 u := M.deleteMin() // settle node u
7 if u = ui ∈ P then
8 if ¬unique[ui] or c(〈u1, . . . , ui〉) 6= d[ui] then
9 k := min{k, i− 1}

10 for (u, v) ∈ E do
11 if d[u] + c(u, v) < d[v] then // relax edge (u, v)
12 if d[v] =∞ then M.insert(v, d[u] + c(u, v))
13 else M.decreaseKey(v, d[u] + c(u, v))
14 d[v] := d[u] + c(u, v)
15 p[v] := u
16 unique[v] := true

17 else if d[u] + c(u, v) = d[v] then unique[v] := false

18 if d[u] > c(〈u1, . . . , uk〉) then break

19 return 〈u1, . . . , uk〉

But this is not possible. Hence, 〈s, . . . , v`〉 is a prefix of 〈s, . . . , u`〉. But this
means that 〈u`, . . . , t〉 is subpath of 〈v`, . . . , t〉 and hence a unique shortest path.
But this contradicts the fact that 〈u`, . . . , u`+1〉 with u`+1 6= t is the maximal
unique shortest prefix of 〈u`, . . . , t〉. ut

All compression methods described in this work are instantiations of the
frame algorithm with different realizations of the procedure uniqueShortestPrefix .

3 Dijkstra-Based Compression and a Generic Scheme

The first realization of the procedure uniqueShortestPrefix which we describe is
actually Dijkstra’s well known algorithm plus some additional actions. It returns
the maximal unique shortest prefix of a given path as we will see (Algorithm 2).

The original version of Dijkstra’s algorithm computes shortest paths from
a given start node s to all reachable nodes in a graph. To do so it successively
labels all nodes w with labels d[w] and p[w], where d[w] is the tentative cost from
s to w and p[w] the predecessor of w on the corresponding tentative path. After
termination we can obtain a shortest path Psu from s to a node u by successively
selecting the next predecessor node starting from u:

Psu =
〈
s = p[. . . p[u] . . . ], . . . , p[p[u]], p[u], u

〉
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When a node is settled (i.e., removed from the priority queue, Line 6), its ten-
tative cost equals the cost of a shortest path and changes no more. A detailed
explanation of Dijkstra’s algorithm can be found in textbooks (e.g., [18]). Our
modified Dijkstra starts from u1 and maintains an index k which is initialized
with n and repeatedly decreased until 〈u1, . . . , uk〉 is a unique shortest prefix.

Lemma 3. For u ∈ V let Pu := 〈u1, . . . , p[p[u]], p[u], u〉 be the shortest path
found by Algorithm 2. If unique[w] holds for all w ∈ Pu, then Pu is unique.

Proof. Otherwise, there is a shortest path P ′ := 〈u1, . . . , w
′, w〉 with w′ 6∈ Pu for

some w ∈ Pu. After (p[w], w) and (w′, w) have been relaxed (Lines 11 to 17) we
have ¬unique[w] because P ′ and 〈u1, . . . , p[w], w〉 ⊆ Pu are shortest paths, and
d[w] = d[p[w]] + c(p[w], w) = d[w′] + c(w′, w) can not further decrease. But this
also means that unique[w] will not be changed anymore – a contradiction. ut

Lemma 4. Algorithm 2 computes a unique shortest prefix.

Proof. Let k0 be the final value of k. Surely, 〈u1, . . . , uk0
〉 is a shortest path.

Otherwise, the algorithm would return a real prefix of 〈u1, . . . , uk0〉 because of the
second condition in Line 8. Also, 〈u1, . . . , uk0〉 is unique according to Lemma 3 as
unique[uj ] holds for 1 ≤ j ≤ k0. Otherwise, we would have ¬unique[uj ] for some
uj at the time when uj is settled, because unique does not change for settled
nodes as their tentative cost is already minimal. But then, the algorithm would
perform k := j − 1 < k0 which can not be the case. ut

Theorem 5. Algorithm 2 computes the maximal unique shortest prefix.

Proof. Otherwise, 〈u1, . . . , uk0+1〉 is a unique shortest prefix with k0 the final
value of k. As the algorithm sets k to k0, one of the conditions in Line 8 must
be fulfilled. But as 〈u1, . . . , uk0+1〉 is a shortest path, it is ¬unique[uk0+1] which
holds when uk0+1 is settled. This means that uk0+1 is reached by two different
paths with the same cost which must be minimal as it is not decreased afterwards.
But we assumed that the shortest path 〈u1, . . . , uk0+1〉 is unique. ut

So, if we instantiate the procedure uniqueShortestPrefix in the frame algo-
rithm (Algorithm 1) by our modified Dijkstra search (Algorithm 2), we get a
method to compute the minimal representation of a given path with via nodes.

But we also consider another realization of uniqueShortestPrefix which we
call the generic binary scheme (Algorithm 3). It is heavily inspired by binary
search and like the frame algorithm it is also generic. It requires that a procedure
isUniqueShortestPath is present, which decides whether a given path is a unique
shortest path or not. This subprocedure is invoked O(log |P |) times.

Corollary 6. Algorithm 3 computes the maximal unique shortest prefix.

Instantiating the procedure uniqueShortestPrefix in the frame algorithm (Al-
gorithm 1) by the generic binary scheme (Algorithm 3) we get a further generic
method to compute the minimal representation with via nodes Q of a path P .
Obviously, the procedure isUniqueShortestPath is called O(|Q| log |P |) times.
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Algorithm 3. A generic binary scheme checking whether 〈u1, . . . , un〉 is a unique

shortest path. Requires a subprocedure isUniqueShortestPath(Path) : bool .

1 function uniqueShortestPrefix (〈u1, . . . , un〉 : Path) : Path
2 (`,m, r) := (1, n, n)
3 while ` + 1 < r do
4 if isUniqueShortestPath(〈u1, . . . , um〉) then ` := m
5 else r := m
6 m := b(` + 1 + r)/2c
7 return 〈u1, . . . , u`〉

In the following we instantiate the subprocedure isUniqueShortestPath in
the generic binary scheme using the aforementioned CH. This yields a quite fast
realization. It should be noted, however, that the structure of a CH is different
from the structure of the original road network. As a result, via nodes are no
longer nodes where unique shortest paths meet, but nodes where paths meet
that are uniquely representable with respect to CH.

4 Representing Paths Uniquely with CH

In the CH framework [13, 14] we derive a hierarchical structure from the original
road network G in a relatively expensive preprocessing step. There, all nodes of G
are ordered by some notion of importance with more important nodes higher up
in the hierarchy. Roughly, a node is more important, the more shortest paths run
over it. The hierarchy is constructed bottom up by successively contracting the
least important remaining node. Contracting a node v means, that v is removed
from the graph while preserving all shortest paths. To preserve the shortest
paths we have to insert an artificial shortcut edge (u,w) for every removed path
〈u, v, w〉 which is a unique shortest path at that time. If a shortcut (u,w) is
inserted, we set c(u,w) := c(u, v) + c(v, w) and annotate (u,w) with the middle
node v such that (u,w) can be expanded to 〈u, v, w〉. When inserting (u,w) it
may happen that an edge (u,w) is already present. In this case we merge the
two edges. This means we check whether c(u,w) > c(u, v) + c(v, w) holds, and
if it does we replace the middle node by v and the weight by c(u, v) + c(v, w).

Having contracted all nodes we have a hierarchy of graphs which we store in
a condensed way: Every node is materialized exactly once and the original edges
and all shortcuts are put together. The resulting graph is the actual contraction
hierarchy (also abbreviated CH) H. We have G ⊆ H. Fig. 1 shows an example.

Corollary 7. Let H be a CH derived from G. Then he shortest path distances
in H and G are equal (but usually H contains paths not present in G).

We say an edge (u, v) in H leads upward if u is less important than v.
Otherwise, we say (u, v) leads downward. Let H↑ ⊆ H and H↓ ⊆ H be the
subgraphs that only consist of upward and downward edges respectively. Then
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Fig. 1. Example road network (left) whose nodes are ordered by importance according
to v4 ≺ v3 ≺ v2 ≺ v1 ≺ v5 (middle). Doing preprocessing we get a CH (right) with three
shortcut edges (dotted) annotated with their weight and the respective middle node.
When contracting v3 we insert no shortcut because there is more than one shortest
path from v1 to v5 in the remaining network which still contains the nodes v1, v2, v5.
sec:appendix

we have H = H↑∪H↓ where H↑ and H↓ are edge disjoint DAGs. Most probably, a
path P := 〈s, . . . , t〉 in H contains shortcuts. These can be expanded recursively
until no shortcuts are present in the resulting path P ′ ⊆ G. We say that P
represents P ′. A path 〈s, . . . , x, . . . , t〉 in H with 〈s, . . . , x〉 ⊆ H↑ and 〈x, . . . , t〉 ⊆
H↓ is called an up-down-path in H with top node x.

Lemma 8 ([14]). Let H be a CH derived from G and s, t be two nodes. Then,
there is an up-down-path in H that represents a shortest path from s to t in G.

Up-down-paths being also shortest paths are called shortest up-down-paths.
Shortest paths in G can only be represented by shortest up-down-paths in H.
If there is exactly one shortest up-down-path in H representing a shortest path
P ⊆ G, we say P is uniquely representable (by a shortest up-down-path) in H.

A shortest up-down-path from a node s to a node t can be found by per-
forming a bidirectional Dijkstra search that runs upward. That is two Dijkstra
searches that run at the same time, a forward and a backward search each start-
ing from s and t and running in H↑ and H>↓ respectively.2 This is exactly what
Algorithm 4 does. Similar to the Algorithm 2 we maintain tentative cost, pre-
decessor, and uniqueness information, but separately for forward and backward
search: ds and dt, for example, denote the tentative cost of forward and back-
ward search respectively. Whenever the two searches meet in a node u, we put u
into the set C of top node candidates, but only if the weight of the corresponding
up-down-path with top node u is minimal at that time (Line 10). After the bidi-
rectional search is finished, we check whether the shortest of the up-down-paths
that we found is unique (Lines 19 to 26). Algorithm 4 runs very fast because
well-constructed CH are flat and sparse. This means H only contains few short-
cuts and the paths in H↑ and H>↓ only have few hops. Note that we also apply
stall-on-demand [13, 14] to further reduce running time.

2 In reality we run the two searches in an alternating manner instead of simultaneously.
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Algorithm 4. Modified bidirectional Dijkstra search checking whether 〈s, . . . , t〉
is uniquely representable by a shortest up-down-path in the CH H = H↑ ∪H↓.

1 function isUniquelyRepresentable(P := 〈s, . . . , t〉 : Path) : bool
2 dX [u] :=∞, pX [u] := ⊥, uniqueX [u] := true for all u ∈ V , X ∈ {s, t}
3 ds[s] := dt[t] := 0
4 Ms := {(s, 0)},Mt := {(t, 0)} : PriorityQueue
5 X := t, C := ∅ // search direction, candidate set
6 while Ms 6= ∅ or Mt 6= ∅ do
7 if minMs ∪Mt > min{ds[x] + dt[x] | x ∈ C} ∪ {∞} then break
8 if M¬X 6= ∅ then X := ¬X // with s = ¬t and t = ¬s
9 u := MX .deleteMin()

10 if ds[u] + dt[u] ≤ min{ds[x] + dt[x] | x ∈ C} then C := C ∪ {u}
11 foreach edge (u, v) in HX do // Hs := H↑, Ht := H>

↓
12 if dX [u] + c(u, v) < dX [v] then
13 if dX [v] =∞ then MX .insert(v, dX [u] + c(u, v))
14 else MX .updateKey(v, dX [u] + c(u, v))
15 dX [v] := dX [u] + c(u, v)
16 pX [v] := u
17 uniqueX [v] := true

18 else if dX [u] + c(u, v) = dX [v] then uniqueX [v] := false

19 if there is exactly one x ∈ C minimizing ds[x] + dt[x] then
20 x0 := argminx∈C ds[x] + dt[x]
21 Ps := 〈s, . . . , ps[ps[x0]], ps[x0], x0〉 ⊆ H↑
22 Pt := 〈x0, pt[x0], pt[pt[x0]], . . . , t〉 ⊆ H↓
23 if concatenated up-down-path PsPt not represents P then return false
24 if there is X ∈ {s, t}, w ∈ PX s.t. ¬uniqueX [w] then return false
25 return true

26 return false

Theorem 9. A path 〈s, . . . , t〉 ⊆ G is uniquely representable by a shortest up-
down-path in H, if and only if Algorithm 4 returns true.

Proof. First note that both forward and backward search settle the top node
of every shortest up-down-path from s to t adding it to C (Line 10). So, in
the end C contains the top nodes of all shortest up-down-paths from s to t and
min{ds[x]+dt[x] | x ∈ C} is the respective cost of these shortest up-down-paths.

Now, assume the algorithm returns false. Then, only the following reasons
are possible: First, there is no up-down-path from s to t in H at all, or there are
multiple shortest up-down-paths with different top nodes (Line 19 with the above
statement). Second, Ps or Pt is not unique in H↑ or H↓ respectively (Line 24 with
Lemma 3), so there are multiple shortest up-down-paths even if they have the
same top node. Third, the concatenated up-down-path PsPt does not represent
P (Line 23) even it is the only shortest up-down-path from s to t in H.

Assume the algorithm returns true. We know that all shortest up-down-paths
from s to t have the same top node (Line 19). Also, Ps and Pt are unique in
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H↑ and H↓ respectively (Line 24 with Lemma 3). So, PsPt is the only shortest
up-down-path from s to t in H and it represents P (Line 23). ut

5 Compression Based on CH

If we instantiate uniqueShortestPrefix in the frame algorithm (Algorithm 1) with
the binary scheme (Algorithm 3) and isUniqueShortestPath in the binary scheme
with isUniquelyRepresentable (Algorithm 4), we get a very fast CH-based method
to compute representations with via nodes.

As mentioned before, the resulting representations are no longer in terms
of the original road network G but in terms of the CH H which has different
properties. Consider a path P := 〈u1, . . . , un〉 ⊆ G which is not necessarily a
shortest path. Let Q := 〈〈ui1 , . . . , uik〉〉 be a subsequence of P with the property
that the subpaths 〈u1, . . . , ui1〉, 〈uik , . . . , un〉, and 〈uij , . . . , uij+1

〉 of P with 1 ≤
j < k are all uniquely representable by up-down-paths in H. Then, we call
Q a CH-based representation of P (with via nodes). Note that the original road
network G is not enough to reconstruct the path from a CH-based representation
with via nodes. Instead, we have to compute unique shortest up-down-paths
between the via nodes using bidirectional upward searches in the CH. This is
due to Observation 10.

Observation 10. Let H be a CH derived from G. Then, a not unique shortest
path P ⊆ G may still be uniquely representable by an up-down-path in H.

To understand that take a look at Fig. 1. There, the CH contains exactly
one shortest up-down-path from v1 to v5, namely 〈v1, v5〉 which represents the
shortest path 〈v1, v2, v4, v5〉 in the original road network. However, this shortest
path is not unique as the original road network also contains another shortest
path from v1 to v5, namely 〈v1, v3, v4, v5〉.

As a consequence of Observation 10 less via nodes may be needed by a repre-
sentation in terms of CH than in terms of the original road network. Again, look
at Fig. 1. The minimal representation with via nodes of the path 〈v1, v2, v4, v5〉
in terms of the original road network is 〈〈v2〉〉. The minimal CH-based represen-
tation is 〈〈〉〉.

All subpaths of unique shortest paths in G are unique shortest paths them-
selves. In case of CHs, however, the analogous condition does not hold. Again,
Fig. 1 shows an example: The path 〈v1, v2, v4, v5〉 in the original network is
uniquely representable by an up-down-path in H but its subpath 〈v1, v2, v4〉 is
not uniquely representable as there are two up-down-paths from v1 to v4.

Observation 11. Let H be a CH derived from G. Then, a shortest path P ⊆ G
may be uniquely representable in H, but one of its subpaths may be not.

It is because of Observation 11 that the CH-based method does not necessary
yield the minimal possible number of via nodes with respect to H. However, we
are never worse than the minimal representation in terms of the original road
network G. This is due to Lemma 12 as we show in the proof of Theorem 13.
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Lemma 12. Let H be a CH derived from G. Then, every unique shortest path
P ⊆ G is uniquely representable by an up-down-path in H.3

Theorem 13. A CH-based representation computed by our binary CH-based
method needs not more via nodes than a minimal representation with respect
to the original road network.

Proof. Let P = 〈s, . . . , t〉 ⊆ G be the given path. Let QG := 〈〈u1, . . . , uk〉〉 be
a minimal representation of P with respect to G. Assume our binary method
finds a CH-based representation QH := 〈〈v1, . . . , v`〉〉 with respect to H such that
` > k. Then, we know that i, j exist such that the subpath 〈vj , . . . , vj+1〉 ⊆ P
is also a subpath of R := 〈ui, . . . , ui+1〉 with vj+1 6= ui+1.4 But all subpaths
〈vj , . . . , w〉 ⊆ R are unique shortest paths in G and thus, by Lemma 12, uniquely
representable by a shortest up-down-path in H. So, the binary scheme (Algo-
rithm 3) instantiated with Algorithm 4 does not return 〈vj , . . . , vj+1〉 as resulting
prefix path but a longer one – a contradiction. ut

6 Experiments

Setup. As input we use a German road network provided by PTV AG for scien-
tific use. It has 4.7 M nodes, 10.8 M edges, and 7.2 % time-dependent edge weights
reflecting the travel times of midweek (Tuesday till Thursday) traffic collected
from historical data – that is a high traffic scenario. For all edges (u, v) also the
driving distance dd(u, v) is available. The units of time and distance are 0.1 s and
1 m respectively. From this we obtain four different metrics, that is edge weights
and objective functions defining different kinds of optimal routes. With these
metrics we simulate the hybrid route planning scenario, where server-provided
routes are not necessary optimal with respect the client’s objective function.

In the time-dependent metric edge weights are time-dependent travel times.
Optimal routes minimize the travel time depending on the departure time [2–4,
6]. In the free flow metric we also minimize travel time but there is no time-
dependency. As weight of an edge (u, v) we use the minimum travel time mtt(u, v)
of the respective time-dependent edge weight. In the distance metric we simply
use the driving distance dd(u, v) as weight of an edge (u, v). Optimal routes are
minimum distance routes. With the energy metric we optimize an approximation
of energy consumption. As weight of an edge (u, v) we use dd(u, v)+4 ·mtt(u, v).
With typical gasoline prices we assume that driving 1 km costs 0.1e. This implies
that travel time is prized with a rate of 14.4e per hour.

To simulate the server, we compute optimal routes with respect to the metrics
time-dependent and distance. To simulate possible objective functions of the
client, we use the metrics free flow, distance, and energy. This leads to five
combinations of server metrics and client metrics. For all three client metrics
the road network contains edges which are not unique shortest paths. This means

3 A proof can be found in Appendix A.
4 This can be shown by induction over k, see Appendix A.
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Table 1. Behavior of the Dijkstra-based and the binary CH-based compression for all
five combinations of server and client metrics. Algor.= numbers of combined algorithms
as used in this work, max.= maximum, rate= compression rate. All figures except for
the maxima are average values.

# route client via nodes time
nodes metric method Algor. # max. rate[%] [ms]

server metric: time-dependent

996

free flow
Dijkstra-based 1+2 0.071 3 0.006 1 500.78
binary CH-based 1+3+4 0.068 3 0.006 0.36

distance
Dijkstra-based 1+2 9.771 26 1.045 481.60
binary CH-based 1+3+4 9.677 25 1.036 20.98

energy
Dijkstra-based 1+2 1.103 6 0.125 1 326.17
binary CH-based 1+3+4 1.094 6 0.124 1.72

server metric: distance

1 763
free flow

Dijkstra-based 1+2 29.312 76 1.689 162.49
binary CH-based 1+3+4 29.284 76 1.688 12.56

energy
Dijkstra-based 1+2 24.902 69 1.434 182.87
binary CH-based 1+3+4 24.876 69 1.433 15.63

we have to transform the road network a little as described in Sect. 2. For the
client metrics free flow, distance, and energy this increases the number of nodes
by 2.37 %, 1.48 %, and 2.16 % respectively. The reported average numbers of
nodes of the uncompressed paths refers to the non-transformed network.

The experimental evaluation was done on different 64 bit machines with
Ubuntu Linux 10.04. The running times have been measured on a machine with
8 GiB main memory and a Core i5 Double-Core CPU at 3.33 GHz. There, all
programs were compiled using GCC 4.4.3 with optimization level 3. We evaluate
the performance of our compression algorithms in terms of running time, num-
ber of via nodes, and compression rate. The compression rate is defined as the
number of via nodes divided by the number of nodes of the uncompressed path.

Results. To generate “server provided” routes, we randomly select 1 000 pairs of
start and destination nodes computing the optimal routes with respect to both
server metrics. For the metric time-dependent we also select random departure
times from [0, 24h). Table 1 shows the resulting performance of the Dijkstra-
based and the binary CH-based compression. The average compression rate is
never worse than 1.7 % which means that 29 via nodes are needed to represent
a path with 1 763 nodes. The maximum number of via nodes is 76. The number
of via nodes gets larger if server and client metrics are less correlated. The
compression rate achieved by the CH-based method is only sightly better than for
the Dijkstra-based method. However, the minimum number of via nodes possible
with CH is unknown. And unfortunately our implementation of Algorithm 4 is
a bit pessimistic and potentially rejects some uniquely representable subpaths.

The binary CH-based method runs much faster than the Dijkstra-based one.
With average compression times below 21 ms it is fast enough for high through-
put servers. Previous experiments with mobile CH [15] suggest that a client needs
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Fig. 2. The compression time of the Dijkstra-based (top) and the CH-based method
(middle) plotted over the Dijkstra rank for all five combinations of server and client
metrics. The number of via nodes computed by the CH-based method is also plotted
(bottom). There are 100 compressed routes per rank and combination.

clearly less than 0.1 s to decompress each segment of a compressed route. So, for
our German road network compression and decompression should not raise any
noticeable latency – remember that it is enough to decompress the next segment
fast. It is not surprising that the CH-based method runs faster if the number of
via nodes is very small as isUniqueShortestPath is invoked O(|Q| log |P |) times.
It looks surprising, however, that the compression runs faster with 29.3 than
with 9.7 nodes. A possible explanation is that different metrics entail different
distributions of via nodes as well as different numbers of shortcuts in the CH.
Both can influence the compression time of a single segment.
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The running time of the Dijkstra-based method behaves contrary to the CH-
based one: It runs faster the more via nodes we need. Whenever Algorithm 2 finds
a maximum unique shortest prefix, it can be stopped (Line 18). But Dijkstra’s
algorithm has roughly quadratic running time on road networks. So, if we stop
it more early but invoke it more often, the overall running time decreases.

Fig. 2 shows the compression time of both methods as well as the number of
via nodes plotted over Dijkstra rank5. For all combinations of server and client
metrics the compression time of both methods as well as the number of via nodes
increases with the Dijkstra rank.

7 Conclusions and Future Work

We describe an algorithmic framework for convenient hybrid route planning.
Routes computed by servers can be transmitted to client devices in cars effi-
ciently, even when the bandwidth is low. To do so routes are represented as
sequences of only a few via nodes. These are the connection points when routes
are decomposed into unique shortest subpaths with respect to the clients ob-
jective function. Utilizing CH we achieve very good performance: On a German
road network an average compression takes less than 21 ms and yields less than
30 via nodes. The maximum number of via nodes we observe is 76. Using mobile
CH the client can decompress the first subpath of the route in less than 0.1 s as
previous experiments suggest [15]. The following subpaths can be decompressed
one after another during driving. So, except for the time needed by the mobile
communication the driver will most likely not experience any latency. Note that
the low number of via nodes also helps to keep the communication time small.

We also describe a Dijkstra-based method that runs much slower than the
CH-based one. But applying Arc-Flags [19] or ALT [20], two algorithmic tech-
niques for fast and exact route planning, may bring a substantial speedup there.
An interesting question is, whether subpaths that are uniquely representable
with CH can be computed “directly”, that is without repeated bidirectional Di-
jkstra searches. This could further speedup the CH-based compression. Finally,
it should be noted that we could also use via edges instead of via nodes.

References

1. Delling, D., Wagner, D.: Time-Dependent Route Planning. In Ahuja, R.K.,
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A Some Details Omitted in the Original Version

In the original version of this paper, which is available at www.springerlink.com,
we omitted some details due to page limit. These are the proof of Lemma 12
and a statement used in the proof of Theorem 13.

Lemma 12. Let H be a CH derived from G. Then, every unique shortest path
P ⊆ G is uniquely representable by an up-down-path in H.

Proof. According to Lemma 8 there is a shortest path P ′ = 〈s, . . . , t〉 ⊆ G that
is represented by some up-down-path in H. But as P is the only shortest path
from s to t we have P = P ′. ut

In the proof of Theorem 13 we used the following statement without proof
just saying in a footnote that the statement can be shown by induction.

Lemma. Given a path P = 〈s, . . . , t〉 ⊆ G as well as two subsequences Q =
〈〈u1, . . . , uk〉〉 and Q′ = 〈〈v1, . . . , v`〉〉 of P excluding s, t with ` > k. Then, with
u0 := v0 := s and uk+1 := t, there must be i, j such that the subpath 〈vj , . . . , vj+1〉
of P is also a subpath of 〈ui, . . . , ui+1〉 with vj+1 6= ui+1.

Proof. For the base case k = 0 (that is Q = 〈〈〉〉) this is obvious. For k > 0 we ap-
ply induction and assume that the statement holds true for k−1. There are three
possible cases: (1) 〈s, . . . , v`〉 is a real prefix of subpath Pk := 〈s, . . . , uk〉. Then
the statement follows directly from the induction hypothesis as 〈〈u1, . . . , uk−1〉〉
is a subsequence of Pk of size k− 1 and Q′ is also a subsequence of Pk but with
size ` > k > k − 1. (2) 〈s, . . . , v`−1〉 is a real prefix of Pk but 〈s, . . . , v`〉 is not.
Then, 〈〈v1, . . . , v`−1〉〉 is subsequence of Pk of size ` − 1 > k − 1 and again the
statement follows from the induction hypothesis. (3) 〈s, . . . , v`−h〉 with h > 1 is
a real prefix of Pk but 〈s, . . . , v`−h+1〉 is not. Then, we have the subsequences
〈〈〉〉 and 〈〈v`−h+1, . . . , v`〉〉 of the subpath 〈uk, . . . , t〉. But this is the base case and
we are finished. ut


