Time-Dependent Route Planning with
Generalized Objective Functions*

Gernot Veit Batz and Peter Sanders

Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
{batz,sanders}@kit.edu

Abstract. We consider the problem of finding routes in road networks
that optimize a combination of travel time and additional time-invariant
costs. These could be an approximation of energy consumption, distance,
tolls, or other penalties. The resulting problem is NP-hard, but if the ad-
ditional cost is proportional to driving distance we can solve it optimally
on the German road network within 2.3 s using a multi-label A* search. A
generalization of time-dependent contraction hierarchies to the problem
yields approximations with negligible errors using running times below
5ms which makes the model feasible for high-throughput web services.
By introducing tolls we get considerably harder instances, but still we
have running times below 41 ms and very small errors.

1 Introduction

In the last years time-dependent route planning in road networks has gained
considerable interest [1]. This has resulted in several algorithmic solutions that
are efficient in both time [2, 3] and space [4, 5]. Even profile queries, that compute
a result not only for a single but all departure times, can be answered fast [4].
However, all these techniques only deal with minimum travel times. Very little
work has been done on more general time-dependent objective functions so far.
This is disappointing from a practical perspective since real world route planners
based on static network models take into account many other aspects one would
not like to give up. For example, some approximation of energy consumption (just
distance traveled in the most simple case) is important to avoid large detours just
to save a few minutes of travel time — even environmentally insensitive users will
not appreciate such solutions due to their increased cost. Similarly, many users
want to avoid toll roads if this does not cost too much time. We might also want
additional penalties, e.g., for crossing residential areas or for using inconvenient
roads (narrow, steep, winding, bumpy,. ..). In Sect. 3 we show that this seemingly
trivial generalization already makes the problem NP-hard. Nevertheless, on road
networks computing such routes is feasible using a multi-label search algorithm
based on A* — at least for some instances (Sect. 4). However, this algorithm
is much too slow for applications like web-services that need running time in

* Partially supported by DFG project SA 933/5-1,2. The original publication is avail-
able at www.springerlink.com.

2 Gernot Veit Batz and Peter Sanders

the low milliseconds in order to guarantee low delays and in order to handle
many user requests on a small number of servers. We therefore generalize time-
dependent contraction hierarchies (TCHs) [2, 4] to take additional constant costs
into account. Although our adaptation gives up guaranteed optimality in favor
of low query time, it turns out that the computed routes are nearly optimal in
practice (Sect. 5). Just like original TCHs [6], the preprocessing of the adapted
heuristic TCHs can be parallelized pretty well for shared memory. We support
these claims by an experimental evaluation (Sect. 6).

Related Work. Time-dependent route planning started with classical results on
minimum travel times [7,8] and generalized minimum objective functions [9].
Dean provided a introductory tutorial on minimum travel time paths [10]. The
aforementioned TCHs have also been parallelized in distributed memory [11].

2 Preliminaries

We model road networks as directed graphs G = (V, E), where nodes represent
junctions and edges represent road segments. Every edge u — v € E has two
kinds of weights assigned, a travel-time function (TTF) f : IR — IR>¢ and an
additional constant cost ¢ € R>o. We often write u — . v.

The TTF f specifies the time f(7) we need to travel from u to v via u — ¢, v
when departing at time 7 € IR. The constant cost ¢ specifies some additional ex-
penses that incur on traveling along u — ¢|. v independently from the departure
time 7. So, the total (time-dependent) cost of traveling along the edge u — ¢, v is
C(7) = f(7)+c. In road networks we usually do not arrive earlier when we start
later. So, all TTFs f fulfill the FIFO-property, that is 7/ + f(7') > 7+ f(7) for
7/ > 7. Moreover, we model TTFs as periodic piecewise linear functions, usually
with a period of 24 hours. Given a path (u —). v =44 w) in G the TTF of the
entire path is denoted by g* f := go(f+id)+ f, that is (g f)(7) = g(f(7)+7)+
f(7). Note that f* (g*h) = (f *g)*h holds for TTFs f, g, h.

The time needed to travel along a path P = (u1 —fjc; "+ = ijea s Uk)
instead of a single edge also depends on the departure time and is described
by the TTF fp := fx_1 *---* f1. The additional costs simply sum up along
P and amount to cp := ¢; + - -+ + cx—1. Hence, the cost of traveling along P
amounts to Cp(7) := fp(7) + cp for departure time 7. As a lower and upper
bound of this cost we further define C'p := min f; + --- + min f_; + c¢p and
Cp:=max f; + --- + max fr_1 + cp respectively.

Because of the FIFO-property there exists a minimum total cost for traveling
from a node s to a node t for every departure time 7y in G, namely

Cost(s,t,79) = min{Cq(7o)|Q is path from s to t in G} U {oo} .

The function Cost(s,t,-) is called the cost profile from s to t. If path P ful-
fills Cp(19) = Cost(u1,ur, 7o), then it is called a minimum total cost path for
departure time 7y. Note that waiting is never beneficial in the described setting.

Time-Dependent Route Planning with Generalized Objective Functions 3

10 + f

|
T
45

)
1.5‘12 2|

Fig. 1. A simple time-dependent graph. Most edges have constant TTF's. Only vs — vs
has the non-constant TTF f which is depicted on the right.

3 Complexity of Minimum Total Costs

On the first glance, computing minimum total cost paths looks related to the
approach in static route planning with flexible objective functions [12] where a
linear combination of objective functions is considered. However, this problem
does not include any time-dependency but a time-independent parameter. Here,
as we will show, we are stuck with a harder problem. Fig. 1 shows a simple exam-
ple graph that demonstrates how quickly generalized time-dependent objective
functions get unpleasant. There, (v; — v3 — v4 — vs) is the only minimum
total cost path from v; to vs for departure time 0.5. But its prefix path to vy
has no minimal cost for departure time 0.5 and is suboptimal hence. This lack of
prefix optimality implies that Dijkstra-like algorithms will not yield the correct
result, as they throw suboptimal intermediate results away.

Our following proof shows that the problem is NP-hard. It uses a simple
reduction to a partition problem!® and is very much inspired by Ahuja et al. [13]
who show the NP-hardness of a related problem with discrete time.

Theorem 1. Computing a minimum total cost path for given start node, des-
tination node, and departure time is NP-hard, even if there is only a single
time-dependent edge with a constant number of bend points.

Proof. To show our claim, we reduce the number partitioning problem to finding
of a minimum total cost path: Given the numbers b, a1,...,a;r € INsg we ask
whether z1,...,z; € {0,1} exist with b = z1a1 + -+ + xpag. This question
is an NP-complete problem [14]. Given an instance of number partitioning we
construct the time-dependent graph depicted in Fig. 2. There are exactly 2F
paths from vy to vg41, all having the same total cost 2k 4+ ay + - - - + a but not
necessary the same travel time. In particular, there is a path of travel time b+ k
if and only if the underlying instance of number partitioning is answered yes.
Hence, the answer is yes if and only if Cost(v1, vk42,0) =142k +a1 + -+ ax
holds. Note that the period of the TTF f has to be chosen sufficiently large. O

! Indeed, using a slightly more complicated construction we can also directly reduce
the static bicriteria shortest path problem to our minimum total cost time-dependent
problem. This requires only a single time-dependent edge.

4 Gernot Veit Batz and Peter Sanders

3| é!l\ 3|az %!1\ Slar 5[0 bk
d f_< {:/} (\:{ v v
el = Tran =)

Fig. 2. A time-dependent graph encoding an instance of the number partitioning prob-
lem. All edges have constant TTFs except for vg41 — vk42 which has the TTF f
depicted on the right.

Solving the problem for all departure times is also an interesting question in
route planning — in order to find a convenient departure time for example. In
other words, we want to compute cost profiles. The following statement suggests
that cost profiles are harder to obtain than travel time profiles?.

Theorem 2. In a time-dependent network with additional constant costs and
n nodes a cost profile can have 2% bend points, even if there is only a single
time-dependent edge with a constant number of bend points.

Proof. Consider the graph in Fig. 2 with a; := 2% for 1 <4 < k. Then

Costlentnraom) = cin {1 (7 4k 3 o) + 20420 1)

holds. So, Cost(vy,vg42,-) has 2% local minima and at least 2% bend points. O

Compared to cost profiles, travel time profiles are relatively simple. According
to Foschini et al. [15] they can never have more than Kn®(°8™) bend points
for a network with n nodes and K bend points in total. Note that our proof
of Theorem 2 uses nearly the same construction as Hansen did to show that
bicriterion settings can raise exponentially many Pareto optimal paths [16]. This
strengthens the observation that the two problems are connected.

4 Exact Minimum Total Costs

Minimum total cost paths cannot be computed by Dijkstra-like algorithms as
prefix optimality is violated. However, suffix optimality is always provided. So,
can we not just search backward? But this would require us to know the arrival
time which is part of what we want to compute. At least, on computing cost
profiles this is not a problem. We utilize this in the following Dijkstra-like, label
correcting, backward running algorithm that starts searching at the destination
node. Theorem 2 implies that its execution is very expensive of course.

2 If the additional constant costs are zero for all edges, then total cost and travel time
is the same. In this special case a cost profile is called a travel time profile.

Time-Dependent Route Planning with Generalized Objective Functions 5

Backward Cost Profile Search. Given a start node s and a destination node
t we want to compute the cost profile Cost(s,t,-). The label of a node w is a
pair fy|c,. There, f,, is a piecewise linear, piecewise continuous function that
maps the departure time at w to the time one needs to travel from w to ¢ using
the cheapest path discovered for this departure time so far. Correspondingly,
Cw 18 & piecewise constant function that maps the departure time to the sum of
additional constant costs along the respective path. The function f,, 4+ ¢, is a
continuous and piecewise linear tentative cost profile for traveling from w to t.
All nodes have oo|oo as initial label, except for ¢ which has 0]0. With defining

; . g(r)|d(7) if (g + d)(7) < (h +e€)(7)
min(g|d, hle) : 7 = {h(r) |e(r) otherwise
we relax an edge u — f|. v in backward direction as follows: If f,[c, is the label
of v we update the label f,|c, of u by min(fu|cu, fo* flcyo(f+1id)+¢). O

In forward direction Dijkstra-like algorithms are not applicable, but the fol-
lowing variant of multi-label search runs in forward direction and works. It is
similar to the algorithm by Hansen [16] that finds all Pareto optimal paths in
bicriteria settings. Our algorithm generalizes the time-dependent version [7] of
Dijkstra’s algorithm in a way that a node can have multiple labels at a time.

Plain Multi-Label Search. Given a start node s, a destination node ¢, and
a departure time 79 we want to compute Cost(s,t, 7). Nodes w are labeled
with pairs 7|y, where 7, is a time we arrive at w and =, is the sum of the
additional constant costs of the corresponding path from s to w. The initial
label of s is 74|0. In every step we ezpand a label 7,|v, of a node u such that the
value 7, + 7, is currently minimal amongst all non-expanded labels of all nodes.
Expanding 7|y, means, that we relaz all outgoing edges u — | v of u: If the
new label 7, + f(7u)|yu + ¢ is not weakly dominated by any existing label of u,
it is added to the label set L, of u.?> Every old label in L, strictly dominated by
Tu + f(Tu)|7u + ¢ is removed from L,,, all other old labels in L, are kept. The
algorithm stops as soon as a label 7¢|7; of ¢ is expanded for the first time. Then,
with 74 + ¢ — 70 = Cost(s, t, 79), we have found the desired result. O

In Sect. 3 we state that we cannot necessary throw intermediate results (i.e.,
labels) away. But in case of dominated labels we can. However, the running time
of plain multi label search is not feasible as our experiments show (Sect. 6).
This can be improved by switching over to A* search. The resulting algorithm
is inspired by the multiobjective A* algorithm NAMOA [17].

Multi-Label A* Search. With the heuristic function h,(w) := min{Cg, | Q is
path from w to ¢} which fulfills 0 < b, (w) < Cost(w, ¢, 7) forallw € V, 7 € IR we
modify the plain multi-label search described above as follows: We do not choose
the label 7,|v, of an node w with minimal 7, + 7, amongst all non-expanded

3 7|y weakly dominates 7’| if and only if 7 < 7/ and v < 4’ holds. If we also have
T # 7 or v #~/, then we speak of strict dominance.

6 Gernot Veit Batz and Peter Sanders

labels of all nodes, but the label with minimal 7, + v, + I (u). The final result
remains unchanged, but the order in which the labels are expanded can change
a lot. If a label of ¢ is expanded earlier, we have to expand less labels before the
computation stops. This can save much running time. a

Our experiments show that h, makes the computation more feasible on road
networks (Sect. 6). To compute b, we could run Dijkstra’s algorithm in a back-
ward manner starting from ¢ as an initial step of the computation. But then
we would process the whole graph as we would not know when to stop. In-
stead we perform an initial backward interval search [4] to compute the intervals
[hy(w), he(w)] for all reached nodes w (with hy(w) := max{Cq | Q is path from
w to t}). This enables us to stop the interval search as soon as the minimum
key of the priority queue exceeds h(s). Also, multi-label A* search can use hy
to maintain an upper bound of the desired result Cost(s,t,7y) and then desist
from relaxing edges u — |, v where (7, +) + (f(7u) + ¢) + by (v) exceeds this
upper bound — or where v has not even been reached by the interval search.

5 Heuristic Total Costs with TCHs

Essentially, a contraction hierarchy [18,19] orders the nodes by some notion of
importance with more important nodes higher up in the hierarchy. The hierarchy
is constructed bottom up during preprocessing, by successively contracting the
least important remaining node. Contracting a node v means that v is removed
from the graph while preserving all optimal routes. To do so, we have to insert
a shortcut edge u — w for every deleted path (u — v — w) that is part of an
optimal route. The result of this construction is the contraction hierarchy (CH).
It is stored as a single graph in a condensed way: Every node is materialized
exactly once and the original edges and shortcuts are put together and merged
if necessary. The CH has the useful property that optimal paths from s to ¢
can be constructed from an upward path (s — --- — z) and a downward path
(x — --- — t).* This enables us to find an optimal route basically by performing
two upward searches, a forward and a backward search each starting from s and
t. As a well-constructed CH should be flat and sparse, such a bidirectional search
should only take little running time.

Preprocessing. When contracting a node v we want to find out whether a short-
cut u — w has to be inserted for a path (u — v — w). In other words, we have
to discover whether Cp(7) = Cost(s, t,7) holds for some path P := (s — -+ —
u—v—w—---—t) and some 7 € IR. However, the lack of prefix-optimality
imposed by the additional constant costs makes this question difficult to answer
as non-optimal routes can now be part of optimal ones. To decide correctly, we
could examine all non-dominated (i.e., Pareto optimal) paths from u to w. But
as we had to do this for all departure times, we expect that this is too expensive

4 Upward and downward paths use only edges leading from less important to more
important nodes and from more important to less important nodes respectively.

Time-Dependent Route Planning with Generalized Objective Functions 7

with respect to time and space. Also, this might produce so many shortcuts that
also the query times would be disappointing.

Therefore we switched over to a heuristic version which may loose the one or
another optimal path. We insert a shortcut u — g,z |do(s+id)+c w for a deleted
path (u =y v —gjq w) when (g f +do (f +id) +¢)(T) = Clums ;1 0y 0w) (T) =
Cost(u,w,) holds for some 7 € IR (note that ¢ and d can now be piecewise
constant functions and that f and g can now have points of discontinuity). To
check this condition we compute Cost(u,w,) using cost profile search (Sect. 4).
If a shortcut u — g. ¢ | do(f+id)+c W has to be inserted for a path (u —fc v —g1q)
it can happen that an edge u —p,). w is already present. In this case we merge the
two edges, that is we replace u —pje W bY U —wmin(gxf | do(f+id)+e, hle) W- It is this
kind of merging which introduces noncontinuous functions to the preprocessing
and the resulting heuristic TCH.

Just like in case of the original travel time TCHs [2,4, 6] preprocessing of
heuristic TCHs is a computationally expensive task (or maybe even more ex-
pensive with respect to Theorem 2). So, to make the preprocessing feasible, we
adopted many of the techniques applied to travel time TCHs.

Querying. Given a start node s, a destination node t, and a departure time
To, querying works similar as in case of travel time TCHs: In a first phase, we
perform the aforementioned bidirectional search where forward and backward
search only go upward. Here, the forward search is a plain multi-label search
starting from s with initial label 74|0. The backward search is a interval search
as performed before running the multi-label A* search (Sect. 4). Every node x
where the two searches meet is a candidate node. Both searches apply stall on
demand known from the original travel time TCHs. But, in case of the forward
search we stall a node based on strict dominance. In case of the backward search
we stall a node based on upper and lower bounds.

In a second phase we perform a downward search which is again a plain
multi-label search But this time it runs downward in the hierarchy starting from
the candidate nodes processing only edges touched by the backward search. The
labels taken from the forward search act as initial labels.

6 Experiments

Inputs and Setup. As input we use a road network of Germany provided by PTV
AG for scientific use. It has 4.7 million nodes, 10.8 million edges, and TTF's
reflecting the midweek (Tuesday till Thursday) traffic collected from historical
data, i.e., a high traffic scenario with about 7.2 % non-constant TTFs. For all
edges also the driving distance is available which we use as a basis to form
the additional constant costs. Our idea is that the additional constant cost of
an edge estimates the energy consumption raised by traveling along that edge.
With typical gasoline prices we assume that driving 1km costs 0.1€. To prize
the travel time we use rates of 5€, 10€, and 20€ per hour. So, using 0.1s as

8 Gernot Veit Batz and Peter Sanders

unit of time and m as unit of distance we obtain time-dependent total costs of
time + X - distance

where A has the values 0.72, 0.36, and 0.18 respectively. Accordingly, the addi-
tional constant edge costs are simply the driving distance scaled by the respective
value of \. Hence, we have three instances of Germany, one for every value of \.

We also consider the effect of tools. To do so, we fix an extra price of 0.1€ per
km on motorways. This means that edges belonging to motorways have double
additional constant edge costs. This yields three further instances of Germany,
one for every value of .

The experimental evaluation was done on different 64-bit machines with
Ubunbtu Linux. All running times have been measured on one machine with
four Core i7 Quad-Cores (2.67 Ghz) with 48 GiB of RAM with Ubuntu 10.4.
There, all programs were compiled using GCC 4.4.3 with optimization level 3.
Running times were always measured using one single thread except of the pre-
processing where we used 8 threads.

The performance of the algorithms is evaluated in terms of running time,
memory usage, error, and how often deleteMin is invoked. The latter comes
from the fact, that we implemented all algorithms using priority queues. To
measure the average running time of time-dependent cost queries we use 1000
randomly selected start and destination pairs, together with a departure time
randomly selected from [Oh,24h) each. To measure the errors and the average
number of invocations of deleteMin we do the same but with 10000 test cases
instead of 1000. The memory usage is given in terms of the average total space
usage of a node (not the overhead) in byte per node. For TCH-based techniques,
all figures refer to the scenario that not only the total time-dependent costs but
also the routes have to be determined. This increases the running time and the
memory consumption a bit.

Results. For the different values of A\, Table 1 summarizes the behavior of the dif-
ferent algorithmic techniques. These are multi-label A* search (Sect. 4), heuristic
TCHs (Sect. 5), and the original travel time TCHs [4]. In case of the travel time
TCHs we did not use their original query algorithm, but the algorithm of the
heuristic TCHs as described in Sect. 5. It turns out that with tolls we get much
harder instances than without tolls, as the observed space usages and running
times are the larger there. Without tolls we get the hardest instance at A = 0.72,
which corresponds to an hourly rate of 5€. For smaller values of A, which involve
that time and total costs are more correlated, things seem to be easier. With
tolls, in contrast, we get the hardest instance at A\ = 0.36. This is because tolls
are negatively correlated to travel time.

Without tolls, multi-label A* has running times similar to Dijkstra’s algo-
rithm, as its running time is mainly governed by the running time of the Dijkstra-
like backward interval search in this case. This follows from the relatively low
number of invocations of deleteMin (the invocations raised by the backward
interval search are not included in Table 1). Note that this low number of in-
vocations implies that a more efficient realization of the heuristic function h,

Time-Dependent Route Planning with Generalized Objective Functions 9

Table 1. Behavior of time-dependent total cost queries for different values of A. Node
ordering is performed in parallel with 8 threads. delMins= number of invocations of
deleteMin (without interval search in case of A*), MAX and AVG denote the maximum
and average relative error, rate= percentage of routes with a relative error > 0.05%.

space|order query error

usage| time|delMin time| MAX AVG rate
method Al|[B/n]|[h:m] # ms]| [%] [%] [%]

Germany midweek, no toll
multi-label A* 130 —1253933 2328.72 - - —
heuristic TCH |0.72| 1481| 0:28| 2142 4.92| 0.09 0.00 0.00
travel time TCH 1065 0:21| 1192 2.67|12.40 0.68 1.19
multi-label A* 130 —[184 710 2208.76 - - =
heuristic TCH]0.36|| 1316| 0:26| 1774 4.22| 0.03 0.00 0.00
travel time TCH 1065 0:21| 1183 2.33| 7.69 0.27 0.08
multi-label A* 130 —[150970 2234.04 - - =
heuristic TCH [0.18(| 1212| 0:25| 1464 3.51| 0.01 0.00 0.00
travel time TCH 1065 0:21| 1165 2.33| 3.85 0.08 0.00
Germany midweek, with toll

heuristic TCH 0.72 1863| 1:05| 4676 14.96
travel time TCH| 1065 0:21| 2631 4.54
heuristic TCH 0.36 2004| 1:16| 10725 40.96
travel time TCH| 1065 0:21| 2634 4.46
heuristic TCH 018 1659 0:46| 7347 27.90
travel time TCH| 1065| 0:22] 2482 4.39

would turn multi-label A* search into a pretty fast algorithm. Hub-labeling [20]
may be an appropriate candidate. However, with tolls multi-label A* is no longer
efficient. Accordingly, Table 1 omits some errors and error rates as we do not
have the exact results for tolls.

With 5ms and 41 ms heuristic TCHs have much faster query time than multi-
label A*. Though being heuristic in theory, the method is practically exact for
the kind of costs examined here, as there are nearly no routes with a relative
error significantly away from 0%. Admittedly, there are outliers, but they are
not serious. However, the memory consumption is quite large. But it is likely that
similar techniques as used for ATCHs [4] can reduce the memory consumption
very much. Please note that our preprocessing is partly prototypical and takes
considerably longer as in case of our original TCH implementation [4]. It may
be possible to do the preprocessing faster hence.

Simply using the original TCHs with the adapted query algorithm of heuristic
TCHs is not a good alternative to heuristic TCHs. Though the average error is
relatively small, some more serious outliers spoil the result. This is supported by
Fig. 3 and 4 which show the distribution of the relative error over the Dijkstra
rank®. In practice, even few serious outliers may annoy some users which may

5 For ¢ = 5..22 we select a number of random queries such that the time-dependent
version of Dijkstra’s algorithm settles 2° nodes. We call 2° the Dijkstra rank.

10 Gernot Veit Batz and Peter Sanders

B minimum distance B earliest arrival O taveltime TCH O heuristic TCH |
100 5 i
8 o . . L] e
10 4 ° l H l l ° l l H i B i 5 i |
ISUR R N B H ' | Tl Il : Ii
5 J ‘ ’: ': : 8 :
=01+ E : : D L :
w oo e H : i N PR LT
0.01 by . ° R v I IR S |
° ' ° i L L 8
0.001 — ° o ' ' ! torg 't
<0.0001 L - - - -k - i U S-S iiiae
T T T T T T T T T
26 28 210 212 214 216 218 220 222

Time-Depdent Dijkstra Rank

Fig. 3. Relative error of time-dependent total cost plotted over Dijkstra rank for dif-
ferent kinds of routes with A = 0.72 and no tolls: minimum distance routes (green),
earliest arrival routes (red), routes created using travel time TCHs (blue), and using
heuristic TCHs (yellow). Number of queries per rank is 1000 for every algorithm.

@ minimum distance B earliest arrival O traveltime TCH O heuristic TCH |
100 — o
8 s o . 1 [}] [
10 ~ : l e i e é gl &8 im:
g 14 i : T =
5 : : :‘ HEE N
2 0.1+ oo P Piaoiln T
w Boe : ! : P il
0.01 : 5 oo : : . : g 4
0.001 ° : Ly
o I)
<0.0001 [p—— - - B s S ey Lodae 2
T T T T T T T T T
26 28 210 212 214 216 218 220 222

Time-Depdent Dijkstra Rank

Fig. 4. Like Fig. 3 but with A\ = 0.36 and with tolls. No error known for rank 2%2.

already lead to a bad publicity. Of course, this can affect the success of a product
or service.

Fig. 3 and 4 also report the quality of minimum distance and minimum travel
time routes with respect to time-dependent total costs. Obviously, the quality
gets worse with increasing Dijkstra rank. However, serious outliers occur for all
ranks. Fig. 5 shows how the relative error behaves for the three different values of
A — with and without tolls. We are able to report errors for tolls for all Dijkstra
ranks up to 22°. For higher ranks the multi-label A* gets too slow. It turns out
that with tolls the errors are larger but still small.

7 Conclusions and Future Work

We have shown that time-dependent route planning with additional constant
costs is NP-hard in theory, but more than feasible on real-life road networks when
we optimize travel time with a penalty proportional to driving distance: Our
exact multi-label A* search finds optimal routes on the German road network
within 2.3 s. But this may not be the end of the story. Using hub-labeling [20] as a

Time-Dependent Route Planning with Generalized Objective Functions 11

1 4 0O A=072(notoll) O A=0.32(notol) O A=0.18(notoll) O A=0.72 (withtoll) O A=0.32 (withtol) O A =0.18 (with toll)
| [i [| I |] i]]
| I i I | | | i |
| : I : I | | | : I

.. R J i I i I 1. t

—_ 01 i 1 i i i i i £ i
3 | : | | | | | : |
) i i i i i i i e i
B 0.01 i i | | Lo ;
= . |] I I | | E s N |
w | 1 ! | | | ° | K !
| | o | 5 R :

0.001 1 1 1 : 1 1 : R L i

| | 1° ° | | | © |

| | | E | | | i |

| | | | | 1° kS |

<0.0001 j=mmimmmle i m e e e e e m e m s e ca a2 s o !

26 28 210 212 214 216
Time-Depdent Dijkstra Rank

Fig. 5. Boxplot of relative error over Dijkstra rank with heuristic TCHs for A =
0.72,0.36,0.18. As less than 25 % of the routes have greater error than 0.0001 %, all
boxes and whiskers degenerate to small bars at the bottom. So, for readability we
underlay all figures with colors as indicated in the legend. The number of queries per
instance and rank is 1000. With toll we do not know the error for rank 2%2.

heuristic oracle should yield average running times considerably smaller than 1s.
Our heuristic TCHs compute routes within 5ms with mostly negligible errors.
Motorway tolls, however, which are negatively correlated to travel time, make
the problem considerably harder such that the multi-label A* search is no more
feasible. But still our heuristic TCHs show running times below 41 ms and small
errors. Our current implementation of heuristic TCHs is very space consuming.
However, the careful use of approximation — which greatly reduced the space
usage of original TCHs [4] — should also work well here. Faster computation
of heuristic time-dependent cost profiles with very small error should also be
possible with heuristic TCHs. Note that the very efficient corridor contraction [4]
turns to be heuristic in this setting too. An A*-like backward cost profile search
in the corridor with a preceding interval search in the corridor to provide a
heuristic function may bring some speedup too.

Our ideas should also be applicable to additional costs that are themselves
time-dependent as long as the overall cost function has the FIFO-property. Even
waiting, which can be beneficial in some situations, may be translatable in such
a setting. Whether all this runs fast enough in practice, has to be found out
experimentally of course.

Acknowledgements. We thank Robert Geisberger for fruitful discussions.

References

1. Delling, D., Wagner, D.: Time-Dependent Route Planning. In Ahuja, R.K.,
Mohring, R.H., Zaroliagis, C., eds.: Robust and Online Large-Scale Optimization.
Volume 5868 of Lecture Notes in Computer Science. Springer (2009) 207-230

2. Batz, G.V., Delling, D., Sanders, P., Vetter, C.: Time-Dependent Contraction
Hierarchies. In: Proceedings of the 11th Workshop on Algorithm Engineering and
Experiments (ALENEX’09), SIAM (April 2009) 97-105

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Gernot Veit Batz and Peter Sanders

Delling, D.: Time-Dependent SHARC-Routing. Algorithmica 60(1) (May 2011)
60-94 Special Issue: European Symposium on Algorithms 2008.

Batz, G.V., Geisberger, R., Neubauer, S., Sanders, P.: Time-Dependent Contrac-
tion Hierarchies and Approximation. [21] 166-177

Brunel, E., Delling, D., Gemsa, A., Wagner, D.: Space-Efficient SHARC-Routing.
[21] 47-58

Vetter, C.: Parallel Time-Dependent Contraction Hierarchies (2009) Student Re-
search Project. http://algo2.iti.kit.edu/download/vetter_sa.pdf.

Dreyfus, S.E.: An Appraisal of Some Shortest-Path Algorithms. Operations Re-
search 17(3) (1969) 395-412

Orda, A., Rom, R.: Shortest-Path and Minimum Delay Algorithms in Networks
with Time-Dependent Edge-Length. Journal of the ACM 37(3) (1990) 607-625
Orda, A., Rom, R.: Minimum Weight Paths in Time-Dependent Networks. Net-
works 21 (1991) 295-319

Dean, B.C.: Shortest Paths in FIFO Time-Dependent Networks: Theory and Al-
gorithms. Technical report, Massachusetts Institute Of Technology (1999)
Kieritz, T., Luxen, D., Sanders, P., Vetter, C.: Distributed Time-Dependent Con-
traction Hierarchies. [21] 83-93

Geisberger, R., Kobitzsch, M., Sanders, P.: Route Planning with Flexible Objective
Functions. In: Proceedings of the 12th Workshop on Algorithm Engineering and
Experiments (ALENEX’10), SIAM (2010) 124-137

Ahuja, R.K., Orlin, J.B., Pallottino, S., Scutella, M.G.: Dynamic Shortest Paths
Minimizing Travel Times and Costs. Networks 41(4) (2003) 197-205

Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory
of N'P-Completeness. W. H. Freeman and Company (1979)

Foschini, L., Hershberger, J., Suri, S.: On the Complexity of Time-Dependent
Shortest Paths. In: Proceedings of the 22nd Annual ACM—-SIAM Symposium on
Discrete Algorithms (SODA’11), STAM (2011) 327-341

Hansen, P.: Bricriteria Path Problems. In Fandel, G., Gal, T., eds.: Multiple
Criteria Decision Making — Theory and Application —. Springer (1979) 109-127
Mandow, L., Pérez-de-la-Cruz, J.L.: Multiobjective A* Search with Consistent
Heuristics. Journal of the ACM 57(5) (June 2010) 27:1-27:24

Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction Hierarchies:
Faster and Simpler Hierarchical Routing in Road Networks. In McGeoch, C.C., ed.:
Proceedings of the 7th Workshop on Experimental Algorithms (WEA’08). Volume
5038 of Lecture Notes in Computer Science., Springer (June 2008) 319-333
Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact Routing in Large Road
Networks Using Contraction Hierarchies. Transportation Science (2012) Accepted
for publication.

Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A Hub-Based Labeling
Algorithm for Shortest Paths on Road Networks. In Pardalos, P.M., Rebennack,
S., eds.: Proceedings of the 10th International Symposium on Experimental Algo-
rithms (SEA’11). Volume 6630 of Lecture Notes in Computer Science., Springer
(2011) 230-241

Festa, P., ed.: Proceedings of the 9th International Symposium on Experimental
Algorithms (SEA’10). In Festa, P., ed.: Proceedings of the 9th International Sym-
posium on Experimental Algorithms (SEA’10). Volume 6049 of Lecture Notes in
Computer Science., Springer (May 2010)

