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Abstract. Time-dependent Contraction Hierarchies provide fast and
exact route planning for time-dependent large scale road networks but
need lots of space. We solve this problem by the careful use of approxi-
mations of piecewise linear functions. This way we need about an order
of magnitude less space while preserving exactness and accepting only a
little slow down. Moreover, we use these approximations to compute an
exact travel time profile for an entire day very efficiently. In a German
road network, e.g., we compute exact time-dependent routes in less than
2 ms. Exact travel time profiles need about 33 ms and about 3 ms suffice
for an inexact travel time profile that is just 1 % away from the exact
result. In particular, time-dependent routing and travel time profiles are
now within easy reach of web servers with massive request traffic.

1 Introduction

In recent years, there has been considerable work on routing in road networks
(see [1] for an overview). For the special case of constant edge weights (usually
highly correlated with travel time) it is now possible to compute optimal paths
orders of magnitude faster than with Dijkstra’s algorithm. Such algorithms are
now in wide-spread use in server based route-planning systems. There, 10 ms
query time are acceptable but decreasing this to 1 ms is still desirable.

Recently, the more realistic time-dependent edge weights, which can model
congestions during rush-hour and similar effects, have gained considerable in-
terest. For example, time-dependent contraction hierarchies [2, 3] can compute
optimal earliest arrival1 (EA) routes in a German road network with midweek-
traffic in about a millisecond. However, it requires a lot of space – too much for
current low cost servers. Moreover, in a time-dependent setting, we may not only
be interested in the best route for a given departure time, but also in a travel
time profile over a long interval of potential departure times, e.g., in order to
choose a good departure time. We are not aware of previous solutions that allow
such profile queries in time suitable for current systems. In this paper, we address

? Partially supported by DFG grant SA 933/5-1 and the ‘Concept for the Future’ of
KIT within the framework of the German Excellence Initiative. The original publi-
cation is available at www.springerlink.com.

1 For start, destination, and departure time compute the earliest possible arrival time.
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both issues: the reduction of space requirements and the efficient computation of
travel time profiles. It turns out that the key to the solution of both problems is
to approximate the piecewise linear functions used to describe time-dependent
edge weights. Interestingly, this can be done without sacrificing exactness.

Our Contributions in More Detail. Time-dependent contraction hierarchies
(TCHs) make intense use of shortcut edges. The time-dependent edge weights
of the shortcuts contain lots of redundant information. This is where we attack.

We reduce the memory usage of TCHs greatly while accepting only a mod-
erate slowdown of the runtime for the EA problem. Although we (partly) use
approximated data, the result of our computation is still exact. The main idea
behind this is that shortcuts get approximated and non-shortcuts get exact time-
dependent edge weights. A bidirectional search in such an approximated TCH
(ATCH) then yields a corridor of shortcuts. After unpacking these shortcuts, we
can perform a time-dependent search in the unpacked corridor (Section 3.1).

TCHs can be used to compute exact travel time profiles in a straightforward
but expensive way. However, computing a corridor of shortcuts based on upper
and lower bounds first brings better runtimes. Still, the result of our computation
remains exact (Section 3.2). But exact computations of this kind are also possible
with the space saving ATCHs: We again compute a corridor of shortcuts based
on upper and lower bounds. Now, we unpack this corridor completely. However,
a profile search in the unpacked corridor is straightforward but slow. Performing
a corridor contraction instead yields very good performance (Section 3.3).

Our techniques provide an accuracy that may not be necessary at all in
practice. Using solely approximated edge weights yields only a small error but
saves lots of memory and provides nearly full runtime performance for the EA
problem. Moreover, accepting a small error when computing travel time profiles
we get a great speedup compared to the exact computation (Section 3.4).

We have implemented all of the above techniques and performed several
experiments to support our claims (see Section 4).

More Related Work. Contraction hierarchies [4] are the basis of TCHs. Time-
dependent route planning itself started with classical results (e.g. [5]) show-
ing that a generalization of Dijkstra’s unidirectional algorithm works for time-
dependent networks and that a small modification yields a (fairly expensive)
means of profile search. Some TomTom car navigation systems allow a kind of
time-dependent routing. However, the method used is unpublished and probably
not able to guarantee optimal routes. A successful approach to fast EA routing
is to combine a simpler form of contraction with goal directed techniques [6–
8]. In particular, a combination with the arc flag technique (TD-SHARC [7])
yields good speedups, yet has problems when time-dependence is strong – then,
either preprocessing becomes prohibitive or loses so much precision that query
times get fairly high. However, for inexact EA queries it runs very fast (though
preprocessing takes fairly long) [7, 8]. A combination with landmark A∗ (ALT)
works surprisingly well (TD-CALT [6]). We take this as an indication, that a
combination with ALT could further improve the performance of TCHs.
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2 Preliminaries

2.1 Time-Dependent Road Networks

Given a directed graph G = (V,E) representing a road network2. Each edge
(u, v) ∈ E has a function f : R → R≥0 assigned as edge weight. This function
f specifies the time f(τ) needed to reach v from u via edge (u, v) when starting
at departure time τ . Such edge weights are called travel time functions (TTFs).

In road networks we usually do not arrive earlier when we start later. This
is reflected by the fact, that all TTFs f fulfill the FIFO-property: ∀τ ′ > τ :
τ ′ + f(τ ′) ≥ τ + f(τ). In this work all TTFs are piecewise linear functions.3

With |f | we denote the complexity (i.e., the number of points) of f .
For TTFs we need the three operations: (1) Evaluation: Given a TTF f and

a departure time τ we want to compute f(τ). Using a bucket structure this runs
in constant average time. (2) Linking: Given two adjacent edges (u, v), (v, w)
with TTFs f, g we want to compute the TTF of the whole path 〈u→f v →g w〉.
This is the TTF g ∗ f : τ 7→ g(f(τ) + τ) + f(τ) (meaning g “after” f). It can
be computed in O(|f |+ |g|) time and |g ∗ f | ∈ O(|f |+ |g|) holds. Linking is an
associative operation, i.e., f ∗ (g ∗h) = (f ∗ g)∗h for TTFs f, g, h. (3) Minimum:
Given two parallel edges e, e′ from u to v with TTFs f, f ′, we want to merge
these edges into one while preserving all shortest paths. The resulting single edge
e′′ from u to v gets the TTF min(f, f ′) defined by τ 7→ min{f(τ), f ′(τ)}. It can
be computed in O(|f |+ |f ′|) time and |min(f, f ′)| ∈ O(|f |+ |f ′|) holds.

In a time-dependent road network, shortest paths depend on the departure
time. For fixed start and destination nodes s and t and different departure times
there might be different shortest paths with different arrival times. The minimal
travel times from s to t for all departure times τ also form a TTF which we
call the travel time profile (TTP) from s to t. Each TTF f implicitly defines
an arrival time function arrf : τ 7→ f(τ) + τ that yields the arrival time for a
given departure time. Analogously, the departure time function depf := (arrf)−1

yields the departure time for a given arrival time – provided that arrf is a one-
to-one mapping. Otherwise, depf(τ) is the set of possible departure times.

2.2 Algorithmic Ingredients

In addition to TCHs three known modifications of Dijkstra’s algorithm are
crucial for this work: Time-dependent Dijkstra and and profile search are well
known. Interval search has already been used in the precomputation of TCHs [2].

Time-Dependent Dijkstra. The time-dependent version of Dijkstra’s algo-
rithm solves the EA problem. It works exactly like the original except for the
relaxation of edges (u, v) with TTFs fuv. Let the label of node u be ds(u). The
old label ds(v) of the node v is updated by min{ds(v), arrfuv(ds(u))}. The initial
node label of the start node is the departure time instead of 0.

2 Nodes represent junctions and edges represent road segments.
3 Here, all TTFs have period 24 h. Using non-periodic TTFs makes no real difference.
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Profile Search. A label correcting modification of Dijkstra’s algorithm. It com-
putes the TTPs of all reached nodes for a given start node. Thus, node labels are
TTPs. The initial node label of the start node is the TTP which is constant 0.
We relax an edge (u, v) with TTF fuv as follows: If fu is the label of node u, we
update the label fv of node v by computing the minimum TTP min(fv, fuv ∗fu).

Interval Search. Profile search is a very expensive algorithm. Interval search
runs much faster with a runtime similar to Dijkstra’s algorithm. Instead of TTPs
it computes intervals containing all possible arrival times. So, the labels are
intervals [a, b] ⊂ R≥0. The initial label of the start node is [0, 0]. We relax an
edge (u, v) with TTF fuv as follows: If [au, bu] is the label of node u, we update
the label [av, bv] of node v with [min{av, au + min fuv},min{bv, bu + max fuv}].

Corridors. Given a start node s and a destination node t. A subgraph C
of G containing s and t where t is reachable from s is a corridor. Corridors
help to speed up profile searches very much: The expensive profile search is
performed only in the previously computed corridor (as applied very successfully
in the precomputation of TCHs [2]). Corridors can also be used to enable exact
computations in the presence of approximated data (see Section 3).

TCHs. In a time-dependent contraction hierarchy [2] all nodes of G are or-
dered by increasing importance. The TCH (as a structure) is constructed by
contracting the nodes in the above order. Contracting a node v means remov-
ing v from the graph without changing shortest path distances between the
remaining (more important) nodes. The shortest path distances are preserved
by introducing shortcut edges when necessary. This way we construct the next
higher level of the hierarchy from the current one. The node ordering and the
construction of the TCH are performed in a precomputation.

EA Queries on TCHs. To answer EA queries given by users we first per-
form a bidirectional search in the TCH. The forward search is a time-dependent
Dijkstra, the backward search is an interval search. Both searches go upward –
meaning that only edges leading to more important nodes are used. The meeting
points of the searches are called candidate nodes. The final step is the downward
search: a time-dependent Dijkstra that only uses edges touched by the backward
search. It starts from the candidate nodes where the arrival times computed by
the forward search are used as initial node labels. During the bidirectional search
we perform stall-on-demand [4, 2]: The search stops at nodes when we already
found a better route coming from a higher level.

Unpacking Time-Dependent Shortcuts. A TCH contains two kinds of
edges: shortcut edges representing paths 〈u→ v → w〉 and original edges stem-
ming from the original road network. Usually a shortest path computed by TCHs
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contains shortcuts which have to be unpacked. As the path represented by a
shortcut may again contain shortcuts, we do this in a recursive manner. In time-
dependent case a shortcut might represent different paths for different departure
times. For some departure times it might even represent an original edge.

3 Applying Approximation

Approximation helps to save memory and to speed up computations. To save
memory we use an approximated version of the TCH structure.

Approximated TCHs. An approximated TCH (ATCH) with relative error
ε ∈ [0, 1] arises from a given TCH as follows: For all edges that represent an
original edge for at least one departure time nothing happens. For all other
edges the TTF f is replaced by an upper bound f↑ with ∀τ : f(τ) ≤ f↑(τ) ≤
(1 + ε)f(τ). Implicitly, f↑ also represents a lower bound f↓ : τ 7→ f↑(τ)/(1 +
ε). For edges e with exact TTF fe we have f↑e = f↓e = fe. Usually |f↑| is
considerably smaller than |f |. Thus, an ATCH needs considerably less memory
than the respective TCH (see Section 4). To compute f↑ from an exact TTF f
we use an implementation (see Neubauer [9]) of an efficient geometric algorithm
described by Imai and Iri [10]. It yields an f↑ of minimal |f↑| for ε in time O(|f |).

Min-Max-TCHs. An extreme case of an approximated TCH is a Min-Max-
TCH. For a shortcut, that never represents an original edge for any departure
time, we only store the pair of numbers (min f,max f) instead of the TTF f .
Min-Max-TCHs need even less memory than ATCHs (see Section 4).

3.1 Exact Earliest Arrival Queries with Approximated TCHs

Our method for exact EA queries with ATCHs uses the two following new algo-
rithmic ingredients. For their correctness the FIFO-property is required.

Arrival Interval Search. Is similar to interval search and computes an approx-
imated solution of the EA problem, i.e., an interval containing the exact value,
which is the best we can do for ATCHs. We relax an edge (u, v) with upper bound
f↑uv and lower bound f↓uv as follows: If [au, bu] is the label of u, we update the label
[av, bv] of v with [min{av, a},min{bv, b}] where [a, b] := [arrf↓uv(au), arrf↑uv(bu)].
The initial label of the start node is [τ0, τ0] for the departure time τ0.

Backward Travel Time Interval Search. Is dual to arrival interval search.
Given a destination node t and an interval [σ, σ′] it computes intervals containing
the possible times needed for traveling to t if the arrival time lies in [σ, σ′]. The
algorithm runs backward starting from t with [0, 0] as initial node label. Consider
the (backward) relaxation of an edge (u, v) with upper bound f↑uv and lower
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bound f↓uv. Let the label of node v be [pv, qv]. The old label [pu, qu] of node u is
updated with [min{pu, p},min{qu, q}] where [p, q] := [pv+min f↓|I , qv+max f↑|I ]
and I := [max depf↑uv(σ − qv),min depf↓uv(σ′ − pv)].

Queries. Having defined all necessary ingredients, we are able to specify an
algorithm for exact EA queries on ATCHs and Min-Max-TCHs: Given a start
node s, a destination node t, and a departure time τ0 proceed as follows:

– Phase 1 (bidirectional upward search). Perform a bidirectional search using
solely upward edges with stall-on-demand. The forward search is an arrival
interval search from s with initial label [τ0, τ0] that computes intervals con-
taining arrival times. The backward search is an interval search from t with
initial label [0, 0] that computes intervals containing travel times. The meet-
ing points of the searches are candidate nodes. For a candidate node c with
forward label [τ, τ ′] and backward label [σ, σ′] the interval [τ + σ, τ ′ + σ′]
contains an arrival time for traveling from s to t via c for departure time τ0.

– Phase 2 (forward/downward search). Perform a forward arrival interval search
starting from the candidates, that only uses edges touched by the backward
search of Phase 1. The initial node labels of the candidates are the arrival
time intervals computed by the forward search in Phase 1.

– Phase 3 (backward/upward search). Phase 2 yields an interval [at, bt] con-
taining the EA time for t. Now, we perform a backward travel time interval
search starting from t with initial label [at, bt]. The search runs backward and
uses only upward edges touched by Phase 2. When we reach a node, that
has also been reached by the forward search of Phase 1, the node is again a
candidate.

– Phase 4 (unpacking and Dijkstra). From the candidates provided by Phase 3
perform a forward and a backward BFS on the edges touched by Phases 3
and 1 respectively. Unpacking all shortcuts touched by these BFSs yields a
corridor C whose edges have only exact TTFs. A time-dependent Dijkstra in
C from s with departure time τ0 yields the sought-after exact arrival time.

As C contains rather few edges, the time-dependent Dijkstra in Phase 4 does
not need much time. As a result, the runtimes are only moderately worse than
with exact TCHs. Note, that we could perform Phase 4 directly after Phase 1.
But the Phases 2 to 3 help to reduce the candidate set and thus the corridor. An
improvement to Phase 4 is to unpack the shortcuts only when they are needed
by the time-dependent Dijkstra – this is to say “on demand”.

3.2 Exact Profile Queries with Exact TCHs

Computing TTPs using exact TCHs is straightforward: For a start node s and
a destination node t just perform a bidirectional profile search, that only uses
upward edges while using stall-on-demand based on global minima and maxima.
Again, the meeting points of the bidirectional search are candidate nodes, each
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of them representing a TTP (though not necessary an optimal one). Now, merge
all these TTPs using the minimum operation, which yields the sought-after TTP.

As this is quite time consuming, we propose a great improvement: Perform a
bidirectional upward interval search first. Again, the meeting points are candi-
date nodes. Similar to Phase 4 in Section 3.1 perform a forward and a backward
BFS starting from the candidates – but do not unpack the shortcuts (all edges
have exact TTFs this time). Now, perform the bidirectional upward profile search
only in the resulting corridor C, which makes the search strongly directed. Again,
merge the candidate TTPs, which yields the sought-after TTP.

3.3 Exact Profile Queries with ATCHs

Exact profile queries can also be answered using ATCHs. This is possible by
adapting the method described in Section 3.2 in a straightforward way: Unpack
all shortcuts in the corridor C and perform profile search in the resulting corridor
C ′. However, this takes some time. The reason is, that C ′ usually contains many
more edges than C. During a profile search the points of the TTFs of these
edges are processed again and again and again. Assume, for example, that C ′ is
a path of ` edges and that all TTFs have k points. Then, a profile search in C ′

processes Θ(k`2) points in the worst case. Here, we propose corridor contraction
– a much faster algorithm reducing this to Θ(k` log `) points. It exploits the fact
that linking is an associative operation on TTFs, which enables us to alter the
order of link operations without altering the result.

Corridor Contraction. Our algorithm uses a priority queue (PQ) to control
the order of performed operations. The elements of the PQ are nodes. As key we
use the estimated effort needed to contract each node. First, we insert all nodes
in C ′ except for s, t into the PQ. Then, we contract C ′: While the PQ is not
empty, we delete the minimal node v from the PQ and contract it completely.
That is, for all paths 〈u →f v →g w〉 we add an edge (u,w) to C ′ with TTF
h := g∗f and remove all edges incident to v from C ′. Also we update the keys of
u and w. If an edge (u,w) already exists in C ′, we merge its TTF with h. After
termination only an edge (s, t) is left in C ′. Its TTF is the sought-after TTP.

As an optimization we thin out C ′ by a preceding bidirectional approximate
upward profile search which computes approximate TTPs that are upper and
lower bounds of the exact ones. This makes our method even faster than the one
in Section 3.2. However, for Min-Max-TCHs this is not possible of course.

3.4 Inexact Earliest Arrival and Profile Queries

In practice exact results may be not necessary, or the accuracy of the TTFs may
be arguable. In such cases, small errors are allowed and all computations can be
performed using an inexact TCH, which can be obtained from an exact TCH by
replacing every TTF f by an inexact TTF fl with (1+ε)−1f(τ) ≤ fl(τ) ≤ (1+
ε)f(τ). Additionally, we store the conservative bounds min{min f,min fl} and
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Table 1. Behaviour of EA queries using different methods. ATCH with ε = ∞ denotes
Min-Max-TCHs. TCH with ε 6= 0 denotes inexact queries on inexact TCHs, cor.=
corridor, UoD= shortcut Unpacking-on-Demand, spd= speedup of time-dependent
Dijkstra, gro= growth of space usage compared to the original graph, max and avg
are maximum and average relative errors.

ε space time delMin edges evals error [%]
method [%] [B/n] gro [ms] spd # spd # spd # spd max avg

Germany midweek

TCH – 994 10.4 0.72 1 440 520 4 616 5 813 951 1 269 162 0.00 0.00

TCH

(cor.)

0.0 994 10.4 0.74 1 401 639 3 756 7 092 780 76 2 704 0.00 0.00
0.1 286 3.0 0.71 1 460 642 3 739 7 128 770 77 2 669 0.10 0.02
1.0 214 2.3 0.72 1 440 654 3 670 7 262 762 84 2 446 1.01 0.27

10.0 113 1.2 1.03 1 006 897 2 676 10 096 548 223 921 9.75 3.84

ATCH

(UoD)

0.1 308 3.2 1.10 942 554 4 332 7 734 715 3 080 67 0.00 0.00
1.0 239 2.5 1.27 816 582 4 124 8 338 664 3 347 61 0.00 0.00

10.0 163 1.7 2.40 432 824 2 913 21 036 263 7 486 27 0.00 0.00
∞ 118 1.2 1.45 714 698 3 439 20 116 275 3 153 65 0.00 0.00

Europe high traffic

TCH – 589 7.8 1.89 1 807 986 9 161 13 003 1 665 2 370 289 0.00 0.00

TCH

(cor.)

0.0 589 7.8 3.19 1 071 1 653 5 464 23 031 929 1 412 484 0.00 0.00
0.1 237 3.1 3.67 931 1 661 5 438 23 142 924 1 427 479 0.14 0.02
1.0 193 2.5 2.85 1 199 1 716 5 264 24 036 890 1 544 443 1.46 0.20

10.0 143 1.9 2.68 1 275 1 726 5 233 24 221 883 1 583 432 15.34 2.85

ATCH

(UoD)

0.1 256 3.4 2.25 1 518 1 032 8 752 17 894 1 195 5 382 127 0.00 0.00
1.0 207 2.7 2.47 1 396 1 104 8 152 22 683 943 6 362 108 0.00 0.00

10.0 164 2.2 7.37 463 1 771 5 100 137 221 156 23 949 29 0.00 0.00
∞ 99 1.3 15.43 221 2 196 4 113 448 360 48 42 939 16 0.00 0.00

max{max f,max fl} with every edge. Inexact TCHs save lots of memory. But
when we compute TTPs they even gain an enormous speedup. This is because
the processed TTFs have much less points.

To preserve correctness we always perform a preceding bidirectional upward
interval search that employs stall-on-demand using only the conservative bounds.
All further passes of any query avoid stall-on-demand and only relax edges
touched by this initial phase. For EA queries we have two further passes: the
forward and the downward search as described in Section 2.2 (without backward
search this time). In this way we get a corridor-based variant of the original TCH
query which also works with exact TCHs. For profile queries the only further
pass is a bidirectional upward profile search. So, we actually have the method
from Section 3.2, but this time applied to inexact TCHs.

4 Experiments

Inputs and Setup. As inputs we use two road networks of Germany and
Western Europe, both provided by PTV AG for scientific use. Germany has 4.7
million nodes, 10.8 million edges, and time-dependent edge weights reflecting
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Table 2. Profile queries using different methods. CC= corridor contraction, the rest
of the nomenclature is the same as in Table 1.

ε space time delMin edges points error [%]
method [%] [B/n] gro [ms] # # # max avg

Germany midweek

TCH – 994 10.4 1 112.02 570 6 796 20 623 155 0.00 0.00

TCH

(cor.)

0.0 994 10.4 88.87 646 7 170 1 437 892 0.00 0.00
0.1 286 3.0 6.13 650 7 208 86 391 0.10 0.02
1.0 214 2.3 2.94 662 7 348 35 769 1.03 0.27

10.0 113 1.2 2.48 923 10 361 23 010 9.69 3.84

ATCH

(CC)

0.1 308 3.2 36.22 650 29 551 576 099 0.00 0.00
1.0 239 2.5 32.75 675 32 131 531 795 0.00 0.00

10.0 163 1.7 105.45 889 92 740 1 731 359 0.00 0.00
∞ 118 1.2 76.58 578 59 368 1 278 095 0.00 0.00

Europe high traffic

TCH – 589 7.8 4182.43 1 090 17 234 70 937 950 0.00 0.00

TCH

(cor.)

0.0 589 7.8 2 016.86 1 797 25 486 30 734 960 0.00 0.00
0.1 237 3.1 198.00 1 813 25 655 3 371 555 0.13 0.02
1.0 193 2.5 105.72 1 882 26 796 1 741 315 1.27 0.20

10.0 143 1.9 36.75 1 889 26 977 755 646 14.65 2.85

ATCH

(CC)

0.1 256 3.4 565.28 1 806 169 378 8 200 162 0.00 0.00
1.0 207 2.7 382.12 1 887 199 551 5 448 190 0.00 0.00

10.0 164 2.2 2 306.11 2 429 1 259 891 35 330 837 0.00 0.00

the midweek (Tuesday till Thursday) traffic collected from historical data, i.e.,
a high traffic scenario with about 8 % time dependent edges. Western Europe
has about 18 million nodes and 42.6 million edges. It has been augmented with
synthetic time-dependent travel times as in [11] using a high amount of traffic
where all edges but local and rural roads have time-dependent edge weights.

The experimental evaluation was done on a machine with four Core i7 Quad-
Cores (2.67 Ghz) with 48 GiB of RAM running SUSE Linux 11.1. All programs
were compiled by GCC 4.3.2 with optimization level 3. Running times were
always measured using one single thread. All figures refer to the scenario that
only the EA times and the TTPs have to be determined, without outputting
complete path descriptions. However, when reporting memory consumption, we
include the space needed to allow fast path reporting. The memory usage is given
in terms of the average total space usage of a node (not the overhead) in byte per
node. We also report the growth factor of the memory usage compared to the
original graph, i.e., the graph used for time-dependent Dijkstra. For Germany
this graph needs 95 byte per node, for Europe 76 byte per node.

We measured the average performance of EA and profile queries for 1 000
randomly selected start and destination pairs. For EA queries the departure
time is randomly selected from [0h, 24h) each. To measure the errors we used
many more test cases: 1 000 000 EA queries and 10 000 profile queries, where the
error of profile queries was measured for 100 random departure times each.
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We also measured the machine-independent behaviour of our algorithms: In
all cases we count the number of deleteMin-Operations and touched edges (which
is identical to the number of relaxed edges for time-dependent Dijkstra). For EA
queries we also count how often TTFs are evaluated (including similar operations
like, e.g., computing max depf↑uv(σ − qv) in Section 3.1). For profile queries we
count the points of the TTFs processed by link and minimum operations.

Results. Table 1 evaluates EA queries for different approaches. Inexact TCHs
(Section 3.4) save space and are at most 2 times slower than exact TCHs. For
Germany there is no slow down for small ε. The maximum errors are small for
small ε, the average errors are even smaller. However, in theory one can easily
construct inputs where errors could get much larger than ε. ATCHs (Section 3.1)
run slower by a factor of 1.5–3.3 for Germany and 1.2–8.2 for Europe. However,
ATCHs save memory: 3.2–8.4 times less space than exact TCHs for Germany
and 2.3–6.0 for Europe. Note, that the speed difference would further decrease
when shortest paths were to be computed since this is done anyway for ATCHs.

For profile queries look at Table 2. Exact TCHs, using the straightforward
method (Section 3.2), take about 1.1 s for Germany and 4.2 s for Europe – far
too slow for a server scenario. Restricting profile search to a corridor (also Sec-
tion 3.2) helps, but ATCHs with corridor contraction (Section 3.3) work better.
For Germany Min-Max-TCHs also work well. For Europe they do not show ac-
ceptable running times. However, for really fast profile queries we need inexact
TCHs. This works especially well for Germany.

Figure 1 shows the distribution of running times of profile queries on Ger-
many: For i = 5..22 we look at 100 queries with the property that Dijkstra’s
Algorithm settles 2i nodes (2i is called the Dijkstra rank). A profile query in a
middle-sized German town (rank 212) needs less than 1 ms on ATCHs with cor-
ridor contraction. Plain profile search (Section 2.2) is much slower. We stopped
when the average running time exceeded 10 s. In Section 3.3 we claim that cor-
ridor contraction brings a considerable additional speedup. Indeed, when we
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Fig. 1. Profile query times over the Dijkstra rank for different methods. CC means
corridor contraction is used, otherwise a profile search in the corridor is performed.



Time-Dependent Contraction Hierarchies and Approximation 11

Table 3. Comparison of different algorithms for exact and inexact time-dependent EA
and profile (TTP) queries. Memory usage is given as overhead, errors are max. rel. er-
rors. rel= relative speed of profile queries compared to time-dependent Dijkstra, SH=
SHARC, inex= inexact, app= approximate, heu= heuristic, spc eff= space efficient.

ε prepro. ovh. EA TTP err. prepro. ovh. EA TTP err.
method [%] [h:m] [B/n] spd rel [%] [h:m] [B/n] spd rel [%]

Germany midweek Europe high traffic

TCH – 0:28+0:09 899 1 440 11.66 0.00 3:45+0:59 513 1 807 1.69 0.00
ATCH 1 0:28+0:09 144 816 31.65 0.00 3:45+0:59 131 1 396 9.94 0.00
ATCH ∞ 0:28+0:09 23 714 13.49 0.00 3:45+0:59 23 221 – 0.00

CALT – 0:09 50 280 – 0.00 1:00 61 47 – 0.00
SH – 1:16 155 60 0.02 0.00 6:44 134 70 – 0.00

L-SH – 1:18 219 238 – 0.00 6:49 198 150 – 0.00

inex TCH 1 0:28+0:09 119 1 440 352.59 1.03 3:45+0:59 117 1 199 32.31 1.46
inex TCH 10 0:28+0:09 18 1 006 417.99 9.75 3:45+0:59 67 1 275 92.95 15.34

app CALT – 0:09 50 804 – 13.84 1:00 61 624 – 8.69
heu SH – 3:26 137 2 164 1.40 0.61 22:12 127 1 958 – 1.60

heu L-SH – 3:28 201 3 915 – 0.61 22:17 191 2 703 – 1.60
spc eff SH – 3:48 68 1 177 – 0.61 – – – – –
spc eff SH – 3:48 14 491 – 0.61 – – – – –

replaced corridor contraction by a profile search in the precomputed corridor it
ran considerably slower (also Figure 1).

For the comparison with (the best) other techniques look at Table 3. For EA
queries we only compare speedups of time-dependent Dijkstra – absolute query
times would be unreliable as different machines are used. As plain profile search
takes too long, we are not able to report speedups for profile queries. Instead, we
also compare the running time of profile queries with time-dependent Dijkstra.
This way we get a relative speed. As our preprocessing works in two phases (node
ordering and contraction) there are preprocessing times like 0:28+0:09 for TCH
based techniques (28 min node ordering and 9 min contraction). Node orders can
be reused for different traffic scenarios, i.e., they need not to be recomputed.
However, this might slow down the query time a bit [2].

For exact queries ATCHs dominate TD-SHARC [7] in all respects. However,
TD-CALT [6, 7] has much better preprocessing time. For Europe the advantage
of TCH based techniques over TD-CALT with respect to query time becomes
much larger. This is an indication that TCH combined with ALT will not scale
well with the input size. For inexact EA queries approximate TD-CALT works
much better. But again, it is outperformed by inexact TCHs except for pre-
processing. Heuristic TD-SHARC has better speedups for EA queries but worse
memory usage and preprocessing times than inexact TCHs. For space efficient
TD-SHARC [8] the memory usage is very good but the speedups are worse than
for inexact TCHs. Regarding profile search, TCH based techniques come off as
a clear winner as they run up to three orders of magnitude faster in the exact
and about 250–300 times faster in the in the inexact setting.
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5 Conclusions and Future Work

We have demonstrated that using approximations of travel time functions greatly
reduces the space consumption of time-dependent contraction hierarchies. By
using these approximation only for obtaining a corridor of possibly useful roads,
we can still obtain exact results. We have also explained how travel time profiles
can be computed very efficiently – fast enough for current server systems.

The achieved space reduction by up to an order of magnitude may not be
the end of the story because we can possibly come up with much more com-
pact representations of the approximations than the piecewise linear functions
currently used. It might be possible to represent the TTFs with some tabulated
patterns and then just store references and scaling factors. This way (near exact)
time-dependent route planning may even be possible on mobile devices.

Future work will have to allow even more realistic modelling, in particular,
incorporating traffic jams, and allowing additional objective functions.

Acknowledgements. We thank Christian Vetter for important contributions
to the TCH code. There were many fruitful discussions with Daniel Delling.
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