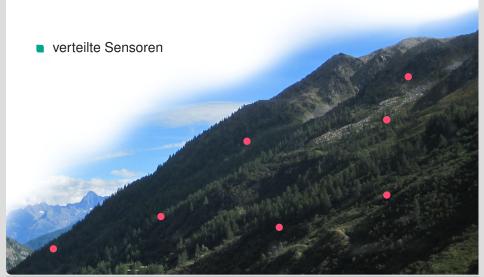


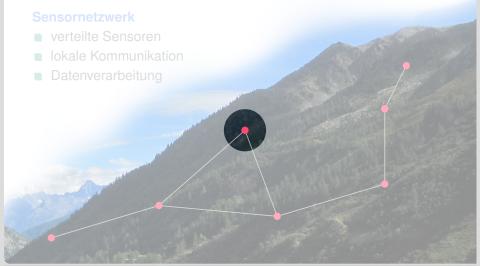
An Algorithmic View on Sensor Networks – Surveillance, Localization, and Communication

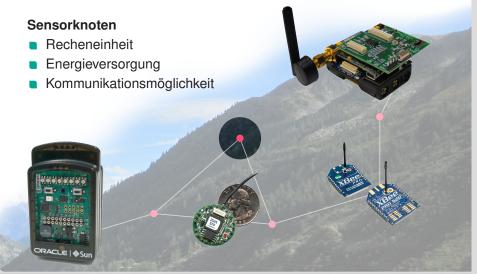
Dissertationsvortrag von Dipl.-Phys., Dipl.-Inform. Dennis Schieferdecker

Dennis Schieferdecker: Dissertationsvortrag

An Algorithmic View on Sensor Networks – Surveillance, Localization, and Communication

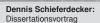


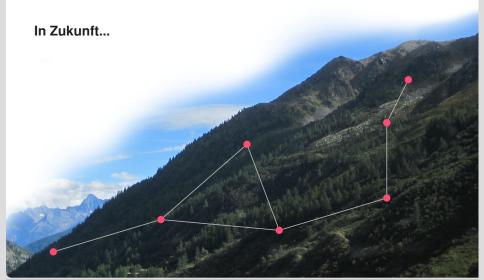


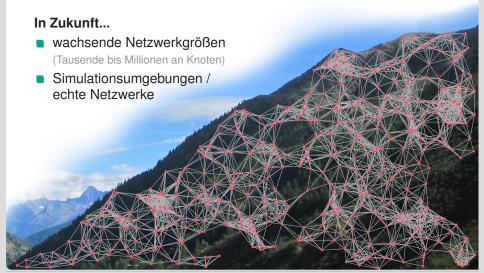


Sensorknoten

- Recheneinheit
- Energieversorgung
- Kommunikationsmöglichkeit







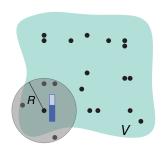
An Algorithmic View on Sensor Networks – Surveillance, Localization, and Communication

An Algorithmic View on Sensor Networks – Surveillance, Localization, and Communication

[ALGOSENSORS'10]

Problemstellung

- beschränktes Gebiet
- stationäre Sensorknoten
 - kreisförmiger Beobachtungsbereich
 - beschränkte Batteriekapazität
- → Sensoreinsatzplan maximaler Dauer bei vollständiger Abdeckung des Gebiets



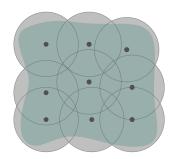
Anwendungen

- lückenlose Beobachtung (z.B. Studium von Wildtieren, Schutz vor Waldbränden)
- kontinuierliche Messungen mit garantierter minimaler Auflösung (z.B. Kontrolle von Schadstoffbelastungen)

[ALGOSENSORS'10]

Problemstellung

- beschränktes Gebiet
- stationäre Sensorknoten
 - kreisförmiger Beobachtungsbereich
 - beschränkte Batteriekapazität
- → Sensoreinsatzplan maximaler Dauer bei vollständiger Abdeckung des Gebiets



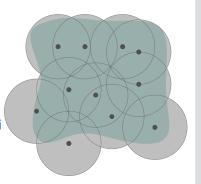
Anwendungen

- lückenlose Beobachtung (z.B. Studium von Wildtieren, Schutz vor Waldbränden)
- kontinuierliche Messungen mit garantierter minimaler Auflösung (z.B. Kontrolle von Schadstoffbelastungen)

[ALGOSENSORS'10]

Problemstellung

- beschränktes Gebiet
- stationäre Sensorknoten
 - kreisförmiger Beobachtungsbereich
 - beschränkte Batteriekapazität
- → Sensoreinsatzplan maximaler Dauer bei vollständiger Abdeckung des Gebiets



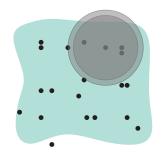
Anwendungen

- lückenlose Beobachtung (z.B. Studium von Wildtieren, Schutz vor Waldbränden)
- kontinuierliche Messungen mit garantierter minimaler Auflösung (z.B. Kontrolle von Schadstoffbelastungen)

[ALGOSENSORS'10]

Beiträge dieser Arbeit

- Beweis der NP-Vollständigkeit (über wMDS auf UDGs, Dualität von LPs)
- effizient polynomielles Approximationsschema (EPTAS) (lineare Laufzeit, zwei Relaxationen, zentralisiert)



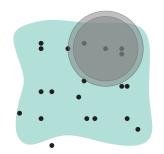
Frühere Arbeiten

- Verfahren auf Basis von ILPs (exakt / Approximationsschemata)
- superlineare Algorithmen (schlechtere / ohne Approximationsgüte)
- Beweis der NP-Vollständigkeit [CTLW'05]

[ALGOSENSORS'10]

Beiträge dieser Arbeit

- Beweis der \mathcal{NP} -Vollständigkeit (über wMDS auf UDGs, Dualität von LPs)
- effizient polynomielles Approximationsschema (EPTAS) (lineare Laufzeit, zwei Relaxationen, zentralisiert)



Frühere Arbeiten

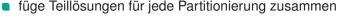
- Verfahren auf Basis von ILPs (exakt / Approximationsschemata)
- superlineare Algorithmen (schlechtere / ohne Approximationsgüte)
- Beweis der \mathcal{NP} -Vollständigkeit [CTLW'05] \rightarrow unvollständig (keine Beachtung von Geometrie, Batteriekapazitäten)

Approximationsalgorithmus

Eingabe: Instanz (V, 1), Algorithmus A

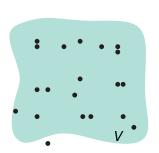
(Beobachtungsradien auf 1 normiert)

- partitioniere Gebiet $k = \lceil \frac{10}{6} \rceil$ mal
- löse Problem unabhängig für jede Zelle (mit Algorithmus A)



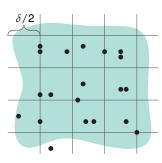
skaliere Aktivierungsdauern mit $\frac{1-\epsilon}{k}$

Ausgabe: approximierte Lösung für $(V, (1+\delta) \cdot 1)$



Approximationsalgorithmus

Eingabe: Instanz (V, 1), Algorithmus \mathcal{A} (Beobachtungsradien auf 1 normiert)

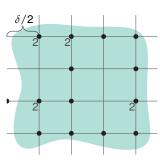


- bewege Knoten auf Gitterplätze
- lacksquare partitioniere Gebiet $k=\lceil rac{10}{\epsilon}
 ceil$ mal
- löse Problem unabhängig für jede Zelle (mit Algorithmus A)
- füge Teillösungen für jede Partitionierung zusammen
- skaliere Aktivierungsdauern mit $\frac{1-\epsilon}{k}$

Ausgabe: approximierte Lösung für $(V, (1 + \delta) \cdot 1)$

Approximationsalgorithmus

Eingabe: Instanz (V, 1), Algorithmus \mathcal{A} (Beobachtungsradien auf 1 normiert)

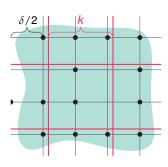


- bewege Knoten auf Gitterplätze
- lacksquare partitioniere Gebiet $k=\lceil rac{10}{\epsilon}
 ceil$ mal
- löse Problem unabhängig für jede Zelle (mit Algorithmus A)
- füge Teillösungen für jede Partitionierung zusammen
- skaliere Aktivierungsdauern mit $\frac{1-\epsilon}{k}$

Ausgabe: approximierte Lösung für $(V, (1 + \delta) \cdot 1)$

Approximationsalgorithmus

Eingabe: Instanz (V, 1), Algorithmus \mathcal{A} (Beobachtungsradien auf 1 normiert)

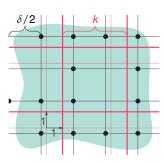


- bewege Knoten auf Gitterplätze
- **a** partitioniere Gebiet $k = \lceil \frac{10}{\epsilon} \rceil$ mal
- löse Problem unabhängig für jede Zelle (mit Algorithmus A)
- füge Teillösungen für jede Partitionierung zusammen
- skaliere Aktivierungsdauern mit $\frac{1-\epsilon}{k}$

Ausgabe: approximierte Lösung für $(V, (1 + \delta) \cdot 1)$

Approximationsalgorithmus

Eingabe: Instanz (V, 1), Algorithmus \mathcal{A} (Beobachtungsradien auf 1 normiert)

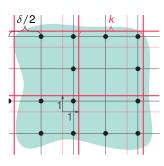


- bewege Knoten auf Gitterplätze
- lacksquare partitioniere Gebiet $k=\lceil rac{10}{\epsilon}
 ceil$ mal
- löse Problem unabhängig für jede Zelle (mit Algorithmus A)
- füge Teillösungen für jede Partitionierung zusammen
- skaliere Aktivierungsdauern mit $\frac{1-\epsilon}{k}$

Ausgabe: approximierte Lösung für $(V, (1 + \delta) \cdot 1)$

Approximationsalgorithmus

Eingabe: Instanz (V, 1), Algorithmus \mathcal{A} (Beobachtungsradien auf 1 normiert)

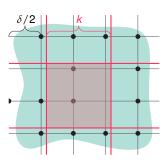


- bewege Knoten auf Gitterplätze
- partitioniere Gebiet $k = \lceil \frac{10}{\epsilon} \rceil$ mal
- löse Problem unabhängig für jede Zelle (mit Algorithmus A)
- füge Teillösungen für jede Partitionierung zusammen
- skaliere Aktivierungsdauern mit $\frac{1-\epsilon}{k}$

Ausgabe: approximierte Lösung für $(V, (1 + \delta) \cdot 1)$

Approximationsalgorithmus

Eingabe: Instanz (V, 1), Algorithmus \mathcal{A} (Beobachtungsradien auf 1 normiert)

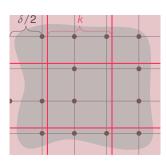


- bewege Knoten auf Gitterplätze
- **a** partitioniere Gebiet $k = \lceil \frac{10}{\epsilon} \rceil$ mal
- löse Problem unabhängig für jede Zelle (mit Algorithmus A)
- füge Teillösungen für jede Partitionierung zusammen
- skaliere Aktivierungsdauern mit $\frac{1-\epsilon}{k}$

Ausgabe: approximierte Lösung für $(V, (1 + \delta) \cdot 1)$

Approximationsalgorithmus

Eingabe: Instanz (V, 1), Algorithmus \mathcal{A} (Beobachtungsradien auf 1 normiert)



- bewege Knoten auf Gitterplätze
- lacksquare partitioniere Gebiet $k=\lceil rac{10}{\epsilon}
 ceil$ mal
- löse Problem unabhängig für jede Zelle (mit Algorithmus A)
- füge Teillösungen für jede Partitionierung zusammen
- skaliere Aktivierungsdauern mit $\frac{1-\epsilon}{k}$

Ausgabe: approximierte Lösung für $(V, (1 + \delta) \cdot 1)$

Approximationsalgorithmus

Eingabe: Instanz (V, 1), Algorithmus \mathcal{A} (Beobachtungsradien auf 1 normiert)

- bewege Knoten auf Gitterplätze
- **a** partitioniere Gebiet $k = \lceil \frac{10}{\epsilon} \rceil$ mal
- löse Problem unabhängig für jede Zelle (mit Algorithmus A)
- K Safaraher Irritians for Technologie
- füge Teillösungen für jede Partitionierung zusammen
- skaliere Aktivierungsdauern mit $\frac{1-\epsilon}{k}$

Ausgabe: approximierte Lösung für $(V, (1 + \delta) \cdot 1)$

Karlsruher Institut für Technologi

Approximationsalgorithmus

lineare Laufzeit

$$\mathcal{O}\Big(|V| + \frac{1}{\epsilon}|V| \cdot t_{\mathcal{A}}(\mathcal{O}(\frac{1}{\delta^2 \epsilon^2}))\Big) = \mathcal{O}(|V|)$$

Approximationsgüte

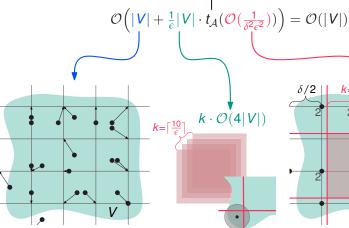
$$T\langle V, 1 + \delta \rangle \ge (1 - \epsilon) \cdot f \cdot T_{\text{opt}} \langle V, 1 \rangle$$

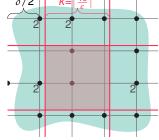
Korrektheit

Energieverbrauch kleiner als Batteriekapazität

Approximationsalgorithmus

lack Algorithmus ${\cal A}$





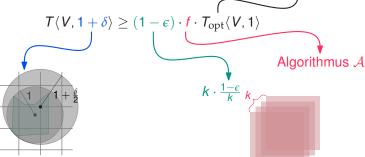
Approximationsalgorithmus

optimale Lösung

lineare Laufzeit

$$\mathcal{O}\left(|V| + \frac{1}{\epsilon}|V| \cdot t_{\mathcal{A}}(\mathcal{O}(\frac{1}{\delta^2 \epsilon^2}))\right) = \mathcal{O}(|V|)$$

Approximationsgüte



Karlsruher Institut für Technologi

Approximationsalgorithmus

lineare Laufzeit

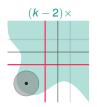
$$\mathcal{O}\Big(|V| + \frac{1}{\epsilon}|V| \cdot t_{\mathcal{A}}(\mathcal{O}(\frac{1}{\delta^2 \epsilon^2}))\Big) = \mathcal{O}(|V|)$$

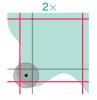
Approximationsgüte

$$T\langle V, 1+\delta \rangle \ge (1-\epsilon) \cdot f \cdot T_{\text{opt}} \langle V, 1 \rangle$$

Korrektheit

Energieverbrauch





Approximations algorithmus

lineare Laufzeit

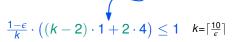
$$\mathcal{O}\Big(|V| + \frac{1}{\epsilon}|V| \cdot t_{\mathcal{A}}(\mathcal{O}(\frac{1}{\delta^2 \epsilon^2}))\Big) = \mathcal{O}(|V|)$$

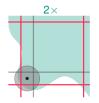
Approximationsgüte

$$T\langle V, 1+\delta \rangle \ge (1-\epsilon) \cdot f \cdot T_{\text{opt}} \langle V, 1 \rangle$$

Korrektheit

Energieverbrauch





Ergebnisse

Approximationsalgorithmus

lineare Laufzeit

$$\mathcal{O}\Big(|V| + \frac{1}{\epsilon}|V| \cdot t_{\mathcal{A}}(\mathcal{O}(\frac{1}{\delta^2 \epsilon^2}))\Big) = \mathcal{O}(|V|)$$

Approximationsgüte

$$T\langle V, 1 + \delta \rangle \ge (1 - \epsilon) \cdot f \cdot T_{\text{opt}} \langle V, 1 \rangle$$

Korrektheit

Energieverbrauch kleiner als Batteriekapazität

→ effizient polynomielles Approximationsschema (EPTAS)

Weitere Ergebnisse

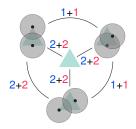
exakter Algorithmus

- Formulierung als lineares Programm [BCSZ'05]
 - verzögerte Spaltenerzeugung [DW'60]
 - Garg-Könemann Algorithmus [GK'07]
- effizient für kleinere Instanzen (≈ 1 000 Knoten)

$$\label{eq:maximize} \begin{split} & \underset{j=1}{\overset{m}{\sum}} t_j \,, \\ & \text{subject to} & \underset{j=1}{\overset{m}{\sum}} \mathcal{C}_{ij} t_j & \leq \mathbf{b}_i, \ i \in \{1,\dots,n\} \,, \\ & \quad \quad t & \geq \mathbf{0} \end{split}$$

Minimierung von Ein- und Ausschaltvorgängen

- Verfahren zur Nachoptimierung
- Formulierung als metrisches TSP



An Algorithmic View on Sensor Networks – Surveillance, Localization, and Communication

[SEA'11], [TR'11]

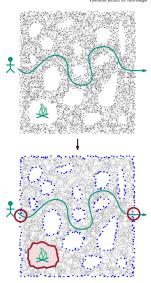
Karlsruher Institut für Technologi

Problemstellung

- großflächiges Sensornetzwerk
- → Klassifikation in Rand- und innere Knoten

Anwendungen

- Melden von Eindringlingen (z.B. Wilderer), sich verschiebender Ränder (z.B. Knotenausfall)
- Indikator f
 ür schlechte Überdeckung



[SEA'11], [TR'11]

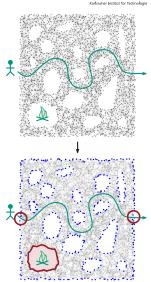
Karlsruher Institut für Technologi

Problemstellung

- großflächiges Sensornetzwerk
 - verteilte Berechnung
 - lokale Sicht auf das Netzwerk
 - nur Verbindungsinformation (kein GPS)
- → Klassifikation in Rand- und innere Knoten

Anwendungen

- Melden von Eindringlingen (z.B. Wilderer), sich verschiebender Ränder (z.B. Knotenausfall)
- Indikator f
 ür schlechte Überdeckung



[SEA'11], [TR'11]

geometrische Ansätze

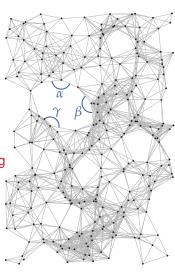
- Positionen, Distanzen, Winkel
- → Informationen oft nicht verfügbar

statistische Ansätze

- Knotengrad, Knotendichte
- → hoher Knotengrad, gleichförmige Verteilung

topologische Ansätze

- Struktur des Verbindungsgraphen
- → komplex, viel Kommunikation



[SEA'11], [TR'11]

geometrische Ansätze

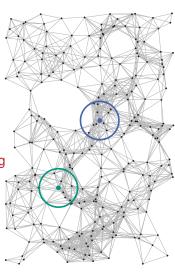
- Positionen, Distanzen, Winkel
- → Informationen oft nicht verfügbar

statistische Ansätze

- Knotengrad, Knotendichte
- → hoher Knotengrad, gleichförmige Verteilung

topologische Ansätze

- Struktur des Verbindungsgraphen
- → komplex, viel Kommunikation



[SEA'11], [TR'11]

geometrische Ansätze

- Positionen, Distanzen, Winkel
- → Informationen oft nicht verfügbar

statistische Ansätze

- Knotengrad, Knotendichte
- → hoher Knotengrad, gleichförmige Verteilung

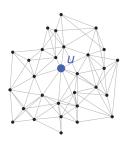
topologische Ansätze

- Struktur des Verbindungsgraphen
- → komplex, viel Kommunikation

[SEA'11], [TR'11]

Beitrag dieser Arbeit

- Multidimensional Scaling Boundary Recognition (MDS-BR)
 - (kombiniert topologische & geometrische Ansätze)
 - nur Verbindungsinformationen
 - geringer Ressourcenverbrauch (wenig Kommunikation, Rechenleistung)
 - verteilt, lokal (2-Hop Nachbarschaft)
 - sehr gute Klassifikationsleistung in Praxis



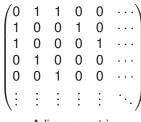
Einbettung der 2-Hop Nachbarschaft

- erfrage Verbindungsinformation
- schätze Distanzen
- berechne Einbettung



Test von Winkelbeziehungen

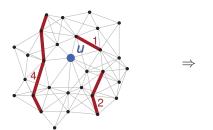
- 2-Hop Nachbarschaft
- 1-Hop Nachbarschaft
- Mikrolöcher



Adjazenzmatrix

Einbettung der 2-Hop Nachbarschaft

- erfrage Verbindungsinformation
- schätze Distanzen
- berechne Einbettung



Test von Winkelbeziehungen

- 2-Hop Nachbarschaft
- 1-Hop Nachbarschaft
- Mikrolöcher

$$\begin{pmatrix} 0 & 1 & 1 & 2 & 3 & \cdots \\ 1 & 0 & 3 & 1 & 2 & \cdots \\ 1 & 3 & 0 & 2 & 1 & \cdots \\ 2 & 1 & 2 & 0 & 4 & \cdots \\ 3 & 2 & 1 & 4 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Matrix mit Hop-Distanzen

Einbettung der 2-Hop Nachbarschaft

- erfrage Verbindungsinformation
- schätze Distanzen
- berechne Einbettung

Test von Winkelbeziehungen

- 2-Hop Nachbarschaft
- 1-Hop Nachbarschaft
- Mikrolöcher

paarweise Distanzen δ_{ii}

Einbettung $\{x_1, ..., x_n\}$



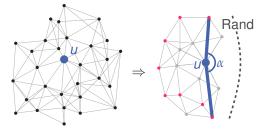
echte Positionen

Einbettung der 2-Hop Nachbarschaft

- erfrage Verbindungsinformation
- schätze Distanzen
- berechne Einbettung

Test von Winkelbeziehungen

- 2-Hop Nachbarschaft
- 1-Hop Nachbarschaft
- Mikrolöcher



geschätzte Positionen

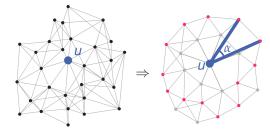
 $\alpha \geq \alpha_{min}$

Einbettung der 2-Hop Nachbarschaft

- erfrage Verbindungsinformation
- schätze Distanzen
- berechne Einbettung

Test von Winkelbeziehungen

- 2-Hop Nachbarschaft
- 1-Hop Nachbarschaft
- Mikrolöcher



geschätzte Positionen

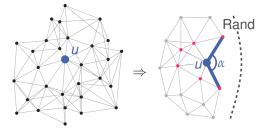
$$\alpha > \alpha_{min}$$

Einbettung der 2-Hop Nachbarschaft

- erfrage Verbindungsinformation
- schätze Distanzen
- berechne Einbettung

Test von Winkelbeziehungen

- 2-Hop Nachbarschaft
- 1-Hop Nachbarschaft
- Mikrolöcher



geschätzte Positionen

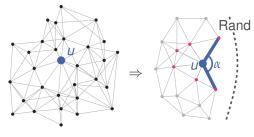
 $\alpha \geq \alpha_{min}$

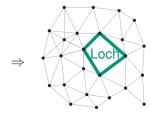
Einbettung der 2-Hop Nachbarschaft

- erfrage Verbindungsinformation
- schätze Distanzen
- berechne Einbettung

Test von Winkelbeziehungen

- 2-Hop Nachbarschaft
- 1-Hop Nachbarschaft
- Mikrolöcher





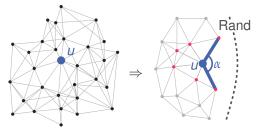
verhindere Mikrolöcher

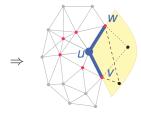
Einbettung der 2-Hop Nachbarschaft

- erfrage Verbindungsinformation
- schätze Distanzen
- berechne Einbettung

Test von Winkelbeziehungen

- 2-Hop Nachbarschaft
- 1-Hop Nachbarschaft
- Mikrolöcher

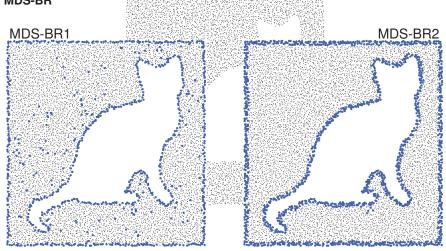




verbotener Bereich

Beispiel MDS-BR

Beispiel MDS-BR



Beispiel



potentiell ungewolltes Rauschen (z.B. Mikrolöcher)

Beispiel MDS-BR MDS-BR1 MDS-BR2

Nachoptimierung durch lokale Suche auf Randknoten

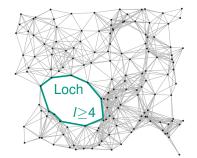
Ergebnisse

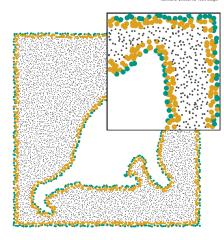
quantitative Auswertung

Salkruher Institut für Technolog

Loch- & Randdefinition

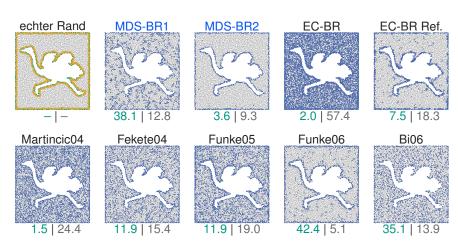
- echte Randknoten
- optionale Randknoten
- innere Knoten





Ergebnisse

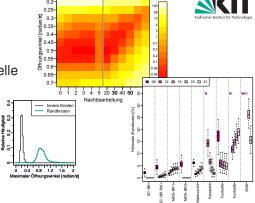
quantitative Auswertung - 0.25-QUDG



Weitere Ergebnisse

ausführliche Simulationen

- verschiedene Netzwerkmodelle
- Parameteranalysen
- algorithmische Varianten
 (z.B. Signalstärke, Sampling)



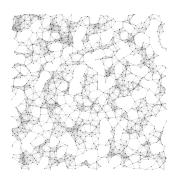
An Algorithmic View on Sensor Networks – Surveillance, Localization, and Communication

Effiziente Routingverfahren

[SOCS'10]

Problemstellung

- statisches Sensornetzwerk
 - Verbindungsinformation (kein GPS)
 - Verbindungskosten (z.B. Latenz, Energie)
- zentralisierte Verarbeitung
- → Bestimmung (fast) optimaler Routen in kurzer Zeit & großer Anzahl



Anwendungen

- Analysewerkzeuge (z.B. Bestimmung von Engstellen, Netzwerkkapazitäten)
- Simulationsumgebungen

Effiziente Routingverfahren

[SOCS'10]

Effiziente Verfahren für Straßennetzwerke

- basieren auf Dijkstras Algorithmus
 - zielgerichtet (ALT, Arc Flags)
 - hierarchisch (Contraction Hierarchies)
- zweistufiger Ansatz
 - Vorverarbeitung (Daten aggregieren)
 - Anfrageverarbeitung (Daten ausnutzen)

(nützlich für viele Anfragen auf der gleichen Instanz)

Problematisch auf Sensornetzwerkinstanzen [BDSSSW'10]

- dichte Graphen
- viele äguivalente/ähnliche Pfade

Effiziente Routingverfahren

[SOCS'10]

Karlsruher Institut für Technologi

Grundlage

- Contraction Hierarchies (CH) [GSSV'12]
 - zweistufiger Ansatz
 - lange Vorverarbeitung (auf Sensornetzwerkinstanzen)

Beiträge dieser Arbeit

- modifizierte Vorverarbeitung
 - Beschleunigung für dichte Graphen
- approximierte Contraction Hierarchies (CH)
 - lacktriangle Routen maximal Faktor $(1+\epsilon)$ länger als das Optimum
 - geringerer Platzbedarf, kürzere Vorverarbeitungs- und Anfragedauern

Ergebnisse

Simulation

Karlsruher Institut für Technologie

Netzwerkmodell

- "box", Latenzkosten
- 1 000 000 Knoten, mittlerer Knotengrad 10

	Vorverarbeitung		An	Anfrage	
	Dauer	Overhead	Dauer	Fehler Ø	
	[s]	[B/n]	[ms]	[%]	
exakt	1 071	-14	0.48	_	
exakt (lazy updates) apx $(\epsilon=1\%)$ apx $(\epsilon=10\%)$	254	−10	0.44	-	
	166	−17	0.38	0.2	
	116	−29	0.32	2.1	

Ergebnisse

Simulation

Karlsruher Institut für Technologie

Netzwerkmodell

- "box", Latenzkosten
- 1 000 000 Knoten, mittlerer Knotengrad 10

		Vorverarbeitung		Anfrage	
		Dauer [s]	Overhead [B/n]	Dauer [ms]	Fehler Ø [%]
	apx ($\epsilon=10\%$)	116	-29	0.32	2.1
Arc F	Bidir. Dijkstra	0	0	141.15	_
	Arc Flags	522	92	0.83	_
	Core-ALT	239	170	2.70	_
ALT	exakt	178	512	3.67	_
	apx ($\epsilon=10\%$)	178	512	2.35	1.1

Intel Core i7-920 @ 2.67 Ghz, 12 GB RAM

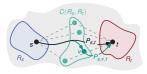
Weitere Ergebnisse

Approximierte CH [SOCS'10]

- Korrektheitsbeweise
- Kombinationen mit anderen Techniken
- weitere Netzwerkmodelle (Knotengrad, Graphtypen, Kostenfunktionen)

Alternativrouten [SEA'12], [JEA'14]

- Vorberechnung möglicher Zwischenknoten
- kann approximierte CH verwenden
- Onlineverfahren (lernt Zwischenknoten "on-the-fly")

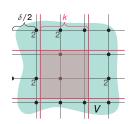


Zusammenfassung

"An Algorithmic View on Sensor Networks -

Surveillance,

EPTAS zur Sensoreinsatzplanung

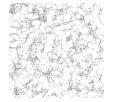


Localization, and

 verteilter, lokaler Algorithmus zur Randerkennung

Communication"

 Approximationsalgorithmus zur Berechnung optimaler Routen



Referenzen

Peter Sanders and Dennis Schieferdecker, Lifetime Maximization of Monitoring Sensor Networks, In International Workshop on Algorithms for Sensor Systems, Wireless Ad Hoc Networks, and Autonomous Mobile Entities (ALGOSENSORS'10), LNCS, vol. 6451, pp. 134-147, Springer, 2010.

Robert Geisberger and Dennis Schieferdecker, Heuristic Contraction Hierarchies with Approximation Guarantee. In International Symposium on Combinatorial Search (SoCS'10), pp. 31-38. AAAI Press, 2010.

Dennis Schieferdecker, Markus Völker, and Dorothea Wagner, Efficient Algorithms for Distributed Detection of Holes and Boundaries in Wireless Networks. In International Symposium on Experimental Algorithms (SEA'11), LNCS, vol. 6630, pp. 388-399. Springer, 2011.

Dennis Schieferdecker, Markus Völker, and Dorothea Wagner, Efficient Algorithms for Distributed Detection of Holes and Boundaries in Wireless Networks. Karlsruhe Reports in Informatics 2011,8, Karlsruhe Institute of Technology, 2011.

Dennis Luxen and Dennis Schieferdecker, Candidate Sets for Alternative Routes in Road Networks. In International Symposium on Experimental Algorithms (SEA'12), LNCS, vol. 7276, pp. 260-270. Springer, 2012.

Dennis Luxen and Dennis Schieferdecker, Candidate Sets for Alternative Routes in Road Networks, ACM Journal of Experimental Algorithmics, 2014. Accepted for publication.

Referenzen

IBCSZ'05

Piotr Berman, Gruia Calinescu, Chintan Shah, and Alexander Zelikovsky. *Efficient Energy Management in Sensor Networks*. In *Ad Hoc and Sensor Networks, Wireless Networks and Mobile Computing*, vol. 2, pp. 71—90. Nova Science Publishers, 2005.

[BDSSSW'10]

Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik Schultes, and Dorothea Wagner. *Combining Hierarchical and Goal-Directed Speed-Up Techniques for Dijkstra's Algorithm. ACM Journal of Experimental Algorithmics*, 15(2.3):1—31, 2010.

CTI W'05

Mihaela Cardei, My T. Thai, Yingshu Li, and Weili Wu. Energy-Efficient Target Coverage in Wireless Sensor Networks. In Joint Conference of the IEEE Computer and Communications Societies (INFOCOM'05), vol. 3, pp. 1976—1984. IEEE, 2005.

[DW'60]

George B. Dantzig and Philip Wolfe. *Decomposition Principle for Linear Programs. Operations Research*, 8(1):101—110, 1960.

[GK'07]

Naveen Garg and Jochen Könemann. Faster and Simpler Algorithms for Multicommodity Flow and Other Fractional Packing Problems. SIAM Journal on Computing, 37(2):630—652, 2007.

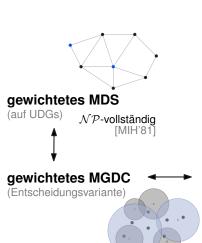
[GSSV'12]

Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. *Exact Routing in Large Road Networks Using Contraction Hierarchies. Transportation Science*, 46(3):388—404, 2012.

Zusatzfolien View on Sensor Networks –

Beweis

 $\mathcal{NP} ext{-Vollständigkeit}$



Problemstellung

 $\text{LP} \qquad \max \left\{ \mathbf{1}^\intercal \mathbf{t} \mid \mathcal{C} \mathbf{t} \leq \mathbf{b}, \ \mathbf{t} \geq \mathbf{0} \right\}$

 $\begin{array}{ll} \textbf{Duales LP} & \min \left\{ \textbf{b}^\intercal \textbf{w} \mid \mathcal{C}^\intercal \textbf{w} \geq \textbf{1}, \ \textbf{w} \geq \textbf{0} \right\} \\ & \text{[GLS'81]} \ \ \boldsymbol{\mathring{\textbf{1}}} \end{array}$

Separationsproblem zu dualem LP

(verifiziere Lösung/gib verletzte Bedingung an)

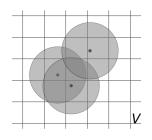
Behauptungen

Approximationsalgorithmus

Diskretisierung von Knotenpositionen

- $(\tilde{V}, 1 + \delta/2)$ deckt Bereich von (V, 1) ab
 - ightarrow Lösung für (V, 1) ist Lösung für $(\tilde{V}, 1 + \delta/2)$

$$ightarrow \ T_{
m opt}\langle ilde{ extsf{V}}, 1+\delta/2
angle \geq T_{
m opt}\langle extsf{V}, 1
angle$$



- Lösung für $(\tilde{V}, 1 + \delta/2)$ (berechnet mit Algorithmus A)
 - $\rightarrow T\langle \tilde{V}, 1 + \delta/2 \rangle \geq f \cdot T_{\text{opt}} \langle \tilde{V}, 1 + \delta/2 \rangle \geq f \cdot T_{\text{opt}} \langle V, 1 \rangle$
 - \rightarrow Lösung für (\tilde{V} , 1 + δ /2) ist Lösung für (V, 1 + δ) (mit den gleichen Argumenten wie oben)
 - $\rightarrow T\langle V, 1+\delta \rangle \geq f \cdot T_{\text{opt}}\langle V, 1 \rangle$

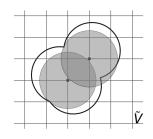
Behauptungen

Approximations algorithmus

Diskretisierung von Knotenpositionen

- $(\tilde{V}, 1 + \delta/2)$ deckt Bereich von (V, 1) ab
 - ightarrow Lösung für (V, 1) ist Lösung für $(\tilde{V}, 1 + \delta/2)$

$$ightarrow \ T_{
m opt}\langle ilde{ extsf{V}}, 1+\delta/2
angle \geq T_{
m opt}\langle extsf{V}, 1
angle$$



- Lösung für $(\tilde{V}, 1 + \delta/2)$ (berechnet mit Algorithmus A)
 - $\rightarrow \ T\langle \tilde{V}, 1 + \delta/2 \rangle \geq f \cdot T_{\text{opt}} \langle \tilde{V}, 1 + \delta/2 \rangle \geq f \cdot T_{\text{opt}} \langle V, 1 \rangle$
 - ightarrow Lösung für $(\tilde{V}, 1 + \delta/2)$ ist Lösung für $(V, 1 + \delta)$ (mit den gleichen Argumenten wie oben)
 - $\rightarrow T\langle V, 1+\delta \rangle \geq f \cdot T_{\text{opt}}\langle V, 1 \rangle$

Behauptungen

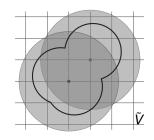
Karlsruher Institut für Technolog

Approximationsalgorithmus

Diskretisierung von Knotenpositionen

- $(\tilde{V}, 1 + \delta/2)$ deckt Bereich von (V, 1) ab
 - \rightarrow Lösung für (V, 1) ist Lösung für $(\tilde{V}, 1 + \delta/2)$

$$ightarrow \ T_{
m opt}\langle ilde{ extsf{V}}, 1+\delta/2
angle \geq T_{
m opt}\langle extsf{V}, 1
angle$$



- Lösung für $(\tilde{V}, 1 + \delta/2)$ (berechnet mit Algorithmus A)
 - $\rightarrow \ T\langle \tilde{V}, 1 + \delta/2 \rangle \geq f \cdot T_{\text{opt}} \langle \tilde{V}, 1 + \delta/2 \rangle \geq f \cdot T_{\text{opt}} \langle V, 1 \rangle$
 - ightarrow Lösung für (\tilde{V} , 1 + δ /2) ist Lösung für (V, 1 + δ) (mit den gleichen Argumenten wie oben)
 - $\rightarrow T\langle V, 1+\delta \rangle \geq f \cdot T_{\text{opt}}\langle V, 1 \rangle$

Überblick

Exakter Algorithmus

Grundlage

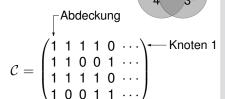
Formulierung des Problems als Lineares Programm [BCSZ'05]

$$\text{max}\left\{\mathbf{1}^{\intercal}t\mid\mathcal{C}t\leq\textbf{b},\;t\geq\textbf{0}\right\},\qquad t\in\mathbb{R}_{+}^{\textit{m}},\textbf{b}\in\mathbb{R}_{+}^{\textit{n}},\mathcal{C}\in\mathbb{Z}_{2}^{\textit{m}\times\textit{n}}$$

- jede Spalte von $\mathcal C$ ist eine mögliche Abdeckung (Knotenmenge, die gleichzeitig aktiviert wird und das Gebiet überdeckt)
 - $\rightarrow \ \ \text{exponentiell viele Spalten!}$

Ansätze

- verzögerte Spaltenerzeugung (Delayed Column Generation [DW'60])
- heuristische Verfahren (inexakte Lösungen)



Exakter Algorithmus

Ablauf

■ löse reduziertes Problem (LP)

$$\max\left\{\mathbf{1}^{\intercal}t\mid \mathbf{C}t\leq \mathbf{b},\ t\geq \mathbf{0}\right\}, \qquad t\in\mathbb{R}_{+}^{\textit{h}}, \mathbf{b}\in\mathbb{R}_{+}^{\textit{n}}, \mathbf{C}\in\mathbb{Z}_{2}^{\textit{k}\times\textit{n}}$$

(Matrix C durch Initialisierungsschritt berechnet)

löse Orakelproblem (ILP)

$$\max \left\{ 1 - \mathbf{c}^{\mathsf{T}} \mathbf{w} \mid \mathbf{c} \in \mathcal{C} \right\}, \qquad \mathbf{w} \in \mathbb{R}^{n}_{+}, \mathbf{c} \in \mathbb{Z}^{n}_{2}$$

(w ist duale Lösung zu reduziertem Problem)

- füge Abdeckung c zu Matrix C hinzu
- wiederhole bis Orakelproblem nicht-positive Lösung liefert

Exakter Algorithmus

- Initialisierungsschritt
- Lösungsverfahren für Orakelproblem
- Terminierungsbedingung (für inexakte Lösungen)

Exakter Algorithmus

- Initialisierungsschritt
 - einfache Ansätze (alle Knoten aktiv, zufällige Abdeckungen)
 - gierige Ansätze ([SP'01], [CTLW'05])
 - komplexere Ansätze (Garg-Könemann Verfahren [GK'07])
- Lösungsverfahren für Orakelproblem
- Terminierungsbedingung (für inexakte Lösungen)

Exakter Algorithmus

- Initialisierungsschritt
- Lösungsverfahren für Orakelproblem
 - exakt (ILP Solver)
 - heuristisch (inexakte Lösungen)
 - heuristisch+exakt
- Terminierungsbedingung (für inexakte Lösungen)

Exakter Algorithmus

- Initialisierungsschritt
- Lösungsverfahren für Orakelproblem
- Terminierungsbedingung (für inexakte Lösungen)
 - Verbesserung der Lösung je Schritt
 - obere Schranken
 - maximiale Zeitdauer

Exakter Algorithmus

- Initialisierungsschritt: Garg-Könemann Verfahren [GK'07]
- Lösungsverfahren für Orakelproblem: ILP Solver
- Terminierungsbedingung (für inexakte Lösungen)

Exakter Algorithmus

Freiheitsgrade

- Initialisierungsschritt: Garg-Könemann Verfahren [GK'07]
- Lösungsverfahren für Orakelproblem: ILP Solver
- Terminierungsbedingung (für inexakte Lösungen)

Erkentnisse

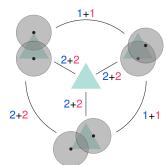
- gute Initialisierung
 (beschleunigt Konvergenz um Faktor 4)
- Minimierung von Abdeckung c vor Hinzufügen zu Matrix C (beschleunigt Konvergenz um Faktor 40)
- je zufälliger die Eingabe, desto einfacher zu lösen (weniger symmetrische Lösungen, die betrachtet werden müssen)

Nachoptimierung

Karlsruher Institut für Technologie

Minimierung von Ein- und Ausschaltevorgängen

- Sensoreinsatzplanung liefert Menge an Abdeckungen (Knotenmenge, die gleichzeitig aktiviert wird und das Gebiet überdeckt)
 - werden der Reihe nach aktiviert für berechnete Zeitdauer
- Ein-/Ausschaltvorgänge können energetisch teuer sein
 - minimiere Anzahl durch optimierte Reihenfolge der Abdeckungen
 - metrisches TSP Problem



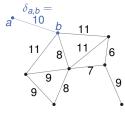
Multidimensionale Skalierung

Allgemeines

- Verfahren zur Visualisierung von Unterschieden
- klassische Skalierung [Tor52]
 (Speziallfall metrischer Skalierung, euklidisch)

gegeben

■ Distanzen $\delta_{i,j}$ zwischen allen Knoten $i,j \in V$ **gesucht**



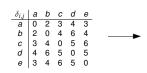
Einbettung p : $V \mapsto \mathbb{R}^k$ aller Knoten mit minimalem

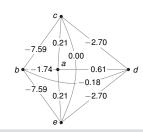
$$\sum_{i,j=1}^{n} (\delta_{i,j} - ||\mathbf{p}(i) - \mathbf{p}(j)||)^{2}$$

Multidimensionale Skalierung

Ablauf

- perfekte Einbettung entspricht $\delta_{i,j} = ||\mathbf{p}(i) \mathbf{p}(j)||$
 - $ightarrow \ \mathbf{B}_{\Delta} := -rac{1}{2}\mathbf{J}\Delta\mathbf{J} = \mathbf{E}\mathbf{E}^{\mathsf{T}}$ $\mathrm{mit}\ (\Delta_{i,j}) = \delta_{i,j}^2, \ \mathbf{J} = \mathbf{I} rac{1}{n}\mathbf{1}\mathbf{1}^{\mathsf{T}}, \ \mathrm{und}\ \mathbf{B}_{\Delta} = \mathbf{E}\mathbf{E}^{\mathsf{T}}$ (doppelte Zentrierung auf Zentroid der Punkte)
- diagonalisiere $\mathbf{B}_{\Delta} \to \mathbf{B}_{\Delta} = \mathbf{V} \Lambda \mathbf{V}^{\mathsf{T}}$ (\mathbf{B}_{Δ} ist orthogonal)
- Einbettung in k Dimensionen ist $\mathbf{E}_k = \mathbf{V}_k \Lambda_k^{\frac{1}{2}}$ (Verwendung der k dominanten Eigenpaare)



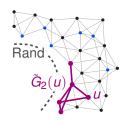


Nachoptimierung

Karlsruher Institut für Technologie

Ablauf

- Knoten u betrachtet 2-Hop Nachbarschaft
- existiert Pfad der Länge k über u
 - u bleibt Randknoten, sonst
 - klassifiziert sich u als innerer Knoten



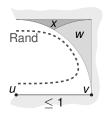
Aufwand

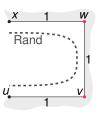
Ø 10 – 25 Knoten in k-Hop Nachbarschaft (UDG bzw. 0.05-QUDG)

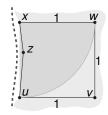
Fehlklassifikationen

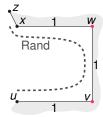
Randknoten

- MDS-BR1
 - maximal zwei aufeinanderfolgende Knoten falsch klassifiziert
- MDS-BR2
 - alle Knoten falsch klassifiziert
 - nicht in ausgedehnten Strukturen





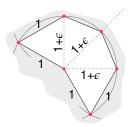


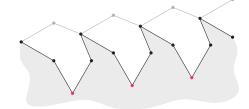


Fehlklassifikationen

Randknoten

- MDS-BR1
 - maximal zwei aufeinanderfolgende Knoten falsch klassifiziert
- MDS-BR2
 - alle Knoten falsch klassifiziert
 - nicht in ausgedehnten Strukturen





Fehlklassifikationen

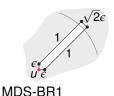
Innere Knoten

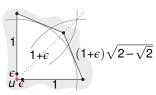
- am Rand von Mikrolöchern
- Untere Schranken

■
$$2 + \epsilon'$$
 (MDS-BR1)

$$2+2\sqrt{2-\sqrt{2}}+\epsilon'$$
 (MDS-BR2)

- Obere Schranken
 - nicht möglich (geballte / aufgereihte Mikrolöcher)





MDS-BR2

Fehlklassifikationen

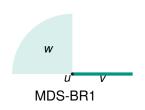
Innere Knoten

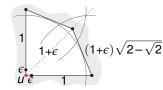
- am Rand von Mikrolöchern
- Untere Schranken

$$\mathbf{2} + \epsilon'$$
 (MDS-BR1)

■
$$2 + 2\sqrt{2 - \sqrt{2}} + \epsilon'$$
 (MDS-BR2)

- Obere Schranken
 - nicht möglich (geballte / aufgereihte Mikrolöcher)





Fehlklassifikationen

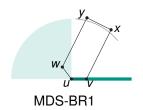
Innere Knoten

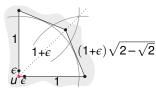
- am Rand von Mikrolöchern
- Untere Schranken

$$\mathbf{2} + \epsilon'$$
 (MDS-BR1)

■
$$2 + 2\sqrt{2 - \sqrt{2}} + \epsilon'$$
 (MDS-BR2)

- Obere Schranken
 - nicht möglich (geballte / aufgereihte Mikrolöcher)





Fehlklassifikationen

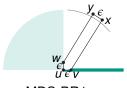
Innere Knoten

- am Rand von Mikrolöchern
- Untere Schranken

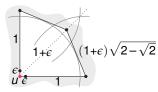
■
$$2 + \epsilon'$$
 (MDS-BR1)

■
$$2 + 2\sqrt{2 - \sqrt{2}} + \epsilon'$$
 (MDS-BR2)

nicht möglich (geballte / aufgereihte Mikrolöcher)

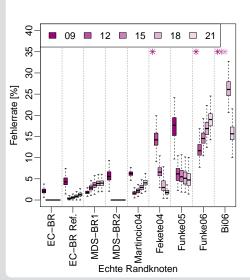


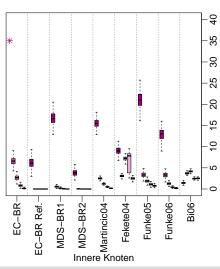
MDS-BR1



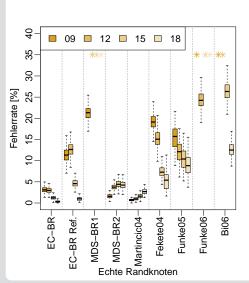
MDS-BR2

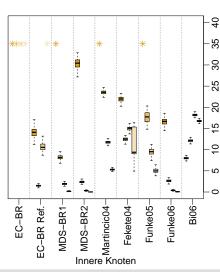
Klassifikationen - UDG





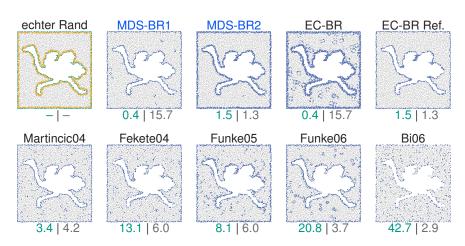
Klassifikationen - 0.25-QUDG





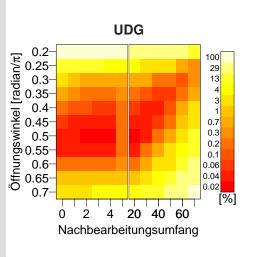
Ergebnisse

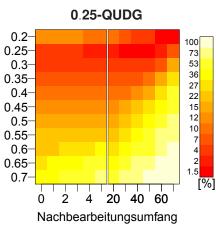
quantitative Auswertung - UDG



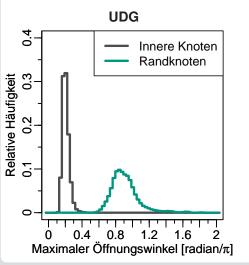
Fehlklassifikation von Randknoten und inneren Knoten [%]

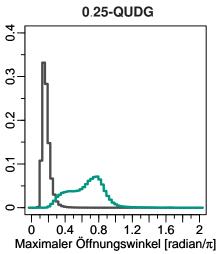
Parameteranalyse – Heatmaps ($d_{avq} = 12$)





Parameteranalyse – Winkelverteilungen ($d_{avg} = 12$)





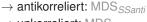
Einbettungsvarianten

MDS₃ Einbettung von 3-Hop Nachbarschaft

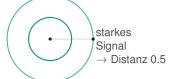
MDS_{opt} echte Positionen

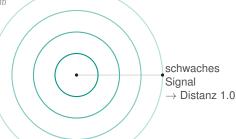
MDS_{SS} Signalstärken

- Einteilung in starke und schwache Signale
- Annahme: Signalstärke korreliert mit Distanz

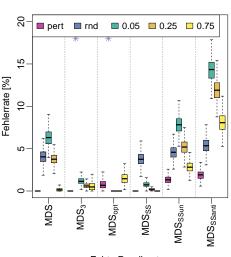


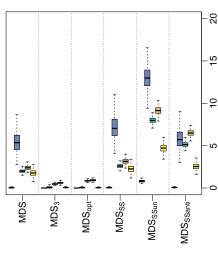
→ unkorreliert: MDS_{SSun}





Einbettungsvarianten ($d_{avq} = 12$)





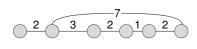
Echte Randknoten

Innere Knoten

zweistufiges Verfahren

Vorverarbeitung

- ordne Knoten nach "Wichtigkeit"
- kontrahiere in dieser Reihenfolge
 - entferne Knoten (temporär)
 - erhalte kürzeste Wege mit Shortcuts
- → Suchgraph = Netzwerk U Shortcuts

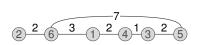


- bidirektionale Suche von s und t
- betrachte nur Kanten zu "wichtigeren" Knoten (abgewandelter Algorithmus von Dijkstra)

zweistufiges Verfahren

Vorverarbeitung

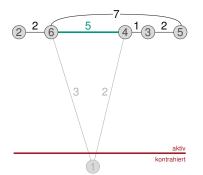
- ordne Knoten nach "Wichtigkeit"
- kontrahiere in dieser Reihenfolge
 - entferne Knoten (temporär)
 - erhalte kürzeste Wege mit Shortcuts



- bidirektionale Suche von s und t
- betrachte nur Kanten zu "wichtigeren" Knoten (abgewandelter Algorithmus von Dijkstra)

Vorverarbeitung

- ordne Knoten nach "Wichtigkeit"
- kontrahiere in dieser Reihenfolge
 - entferne Knoten (temporär)
 - erhalte kürzeste Wege mit Shortcuts
- → Suchgraph = Netzwerk U Shortcuts

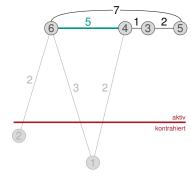


- bidirektionale Suche von s und t
- betrachte nur Kanten zu "wichtigeren" Knoten (abgewandelter Algorithmus von Dijkstra)

zweistufiges Verfahren

Vorverarbeitung

- ordne Knoten nach "Wichtigkeit"
- kontrahiere in dieser Reihenfolge
 - entferne Knoten (temporär)
 - erhalte kürzeste Wege mit Shortcuts
- → Suchgraph = Netzwerk U Shortcuts

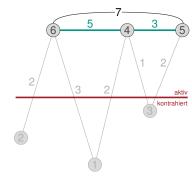


- bidirektionale Suche von s und t
- betrachte nur Kanten zu "wichtigeren" Knoten (abgewandelter Algorithmus von Dijkstra)

zweistufiges Verfahren

Vorverarbeitung

- ordne Knoten nach "Wichtigkeit"
- kontrahiere in dieser Reihenfolge
 - entferne Knoten (temporär)
 - erhalte kürzeste Wege mit Shortcuts
- → Suchgraph = Netzwerk ∪ Shortcuts

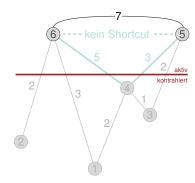


- bidirektionale Suche von s und t
- betrachte nur Kanten zu "wichtigeren" Knoten (abgewandelter Algorithmus von Dijkstra)

zweistufiges Verfahren

Vorverarbeitung

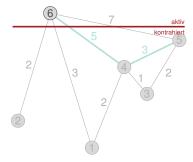
- ordne Knoten nach "Wichtigkeit"
- kontrahiere in dieser Reihenfolge
 - entferne Knoten (temporär)
 - erhalte kürzeste Wege mit Shortcuts
- → Suchgraph = Netzwerk U Shortcuts



- bidirektionale Suche von s und t
- betrachte nur Kanten zu "wichtigeren" Knoten (abgewandelter Algorithmus von Dijkstra)

Vorverarbeitung

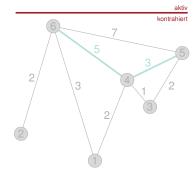
- ordne Knoten nach "Wichtigkeit"
- kontrahiere in dieser Reihenfolge
 - entferne Knoten (temporär)
 - erhalte kürzeste Wege mit Shortcuts
- → Suchgraph = Netzwerk ∪ Shortcuts



- bidirektionale Suche von s und t
- betrachte nur Kanten zu "wichtigeren" Knoten (abgewandelter Algorithmus von Dijkstra)

Vorverarbeitung

- ordne Knoten nach "Wichtigkeit"
- kontrahiere in dieser Reihenfolge
 - entferne Knoten (temporär)
 - erhalte kürzeste Wege mit Shortcuts
- → Suchgraph = Netzwerk ∪ Shortcuts

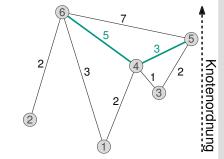


- bidirektionale Suche von s und t
- betrachte nur Kanten zu "wichtigeren" Knoten (abgewandelter Algorithmus von Dijkstra)

zweistufiges Verfahren

Vorverarbeitung

- ordne Knoten nach "Wichtigkeit"
- kontrahiere in dieser Reihenfolge
 - entferne Knoten (temporär)
 - erhalte kürzeste Wege mit Shortcuts
- → Suchgraph = Netzwerk ∪ Shortcuts

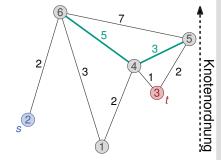


- bidirektionale Suche von s und t
- betrachte nur Kanten zu "wichtigeren" Knoten (abgewandelter Algorithmus von Dijkstra)

zweistufiges Verfahren

Vorverarbeitung

- ordne Knoten nach "Wichtigkeit"
- kontrahiere in dieser Reihenfolge
 - entferne Knoten (temporär)
 - erhalte kürzeste Wege mit Shortcuts
- → Suchgraph = Netzwerk ∪ Shortcuts



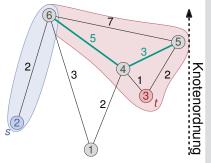
- bidirektionale Suche von s und t
- betrachte nur Kanten zu "wichtigeren" Knoten (abgewandelter Algorithmus von Dijkstra)

Contraction Hierarchies (CH)

zweistufiges Verfahren

Vorverarbeitung

- ordne Knoten nach "Wichtigkeit"
- kontrahiere in dieser Reihenfolge
 - entferne Knoten (temporär)
 - erhalte kürzeste Wege mit Shortcuts
- → Suchgraph = Netzwerk ∪ Shortcuts



Routinganfrage

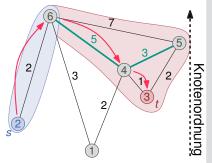
- bidirektionale Suche von s und t
- betrachte nur Kanten zu "wichtigeren" Knoten (abgewandelter Algorithmus von Dijkstra)

Contraction Hierarchies (CH)

zweistufiges Verfahren

Vorverarbeitung

- ordne Knoten nach "Wichtigkeit"
- kontrahiere in dieser Reihenfolge
 - entferne Knoten (temporär)
 - erhalte kürzeste Wege mit Shortcuts
- → Suchgraph = Netzwerk ∪ Shortcuts

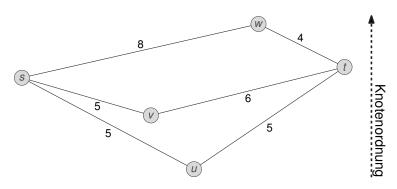


Routinganfrage

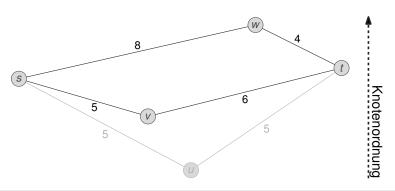
- bidirektionale Suche von s und t
- betrachte nur Kanten zu "wichtigeren" Knoten (abgewandelter Algorithmus von Dijkstra)

Approximierte CH (apxCH) grundlegende Idee...

 kein Shortcut, wenn Pfad existiert mit Kosten kleiner gleich den Kosten des entfernten Pfades



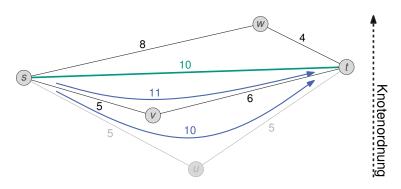
kein Shortcut, wenn Pfad existiert mit Kosten kleiner gleich den Kosten des entfernten Pfades



grundlegende Idee...

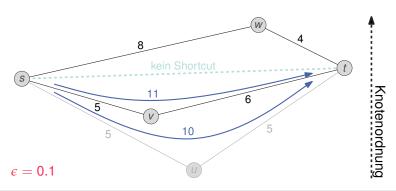
grundlegende Idee...

 kein Shortcut, wenn Pfad existiert mit Kosten kleiner gleich den Kosten des entfernten Pfades



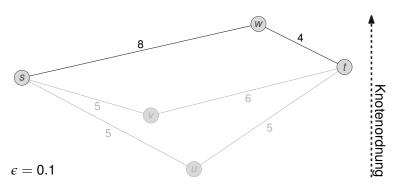
Approximierte CH (apxCH) grundlegende Idee...

kein Shortcut, wenn Pfad existiert mit Kosten kleiner gleich $(1 + \epsilon)$ den Kosten des entfernten Pfades



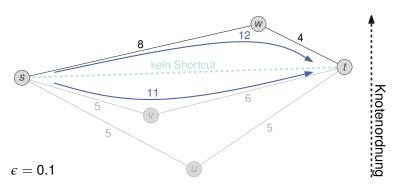
grundlegende Idee...

kein Shortcut, wenn Pfad existiert mit Kosten kleiner gleich $(1 + \epsilon)$. den Kosten des entfernten Pfades



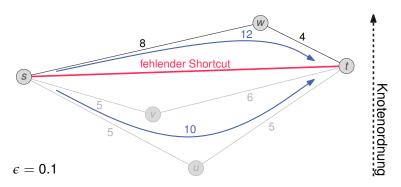
Approximierte CH (apxCH) grundlegende Idee...

kein Shortcut, wenn Pfad existiert mit Kosten kleiner gleich $(1 + \epsilon)$ den Kosten des entfernten Pfades

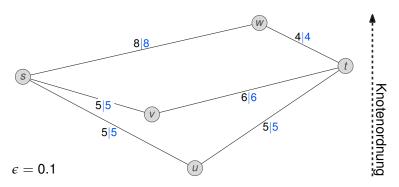


grundlegende Idee...

- kein Shortcut, wenn Pfad existiert mit Kosten kleiner gleich $(1+\epsilon)$. den Kosten des entfernten Pfades
- → führt zu sich aufschaukelnden Fehlern!

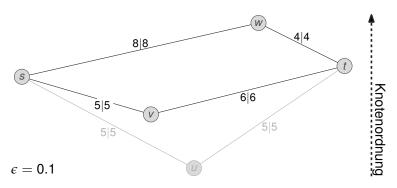


- kein Shortcut, wenn Pfad existiert mit Kosten kleiner gleich $(1 + \epsilon)$ den bezeugten Kosten des entfernten Pfades
- übernehme bezeugte Kosten des entfernten Pfades, falls geringer

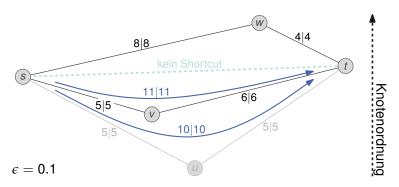


Karlsruher Institut für Technologie

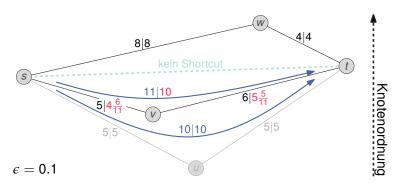
- kein Shortcut, wenn Pfad existiert mit Kosten kleiner gleich $(1 + \epsilon)$ den bezeugten Kosten des entfernten Pfades
- übernehme bezeugte Kosten des entfernten Pfades, falls geringer



- kein Shortcut, wenn Pfad existiert mit Kosten kleiner gleich $(1 + \epsilon)$ den bezeugten Kosten des entfernten Pfades
- übernehme bezeugte Kosten des entfernten Pfades, falls geringer

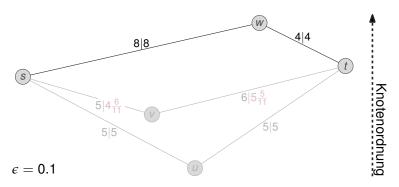


- kein Shortcut, wenn Pfad existiert mit Kosten kleiner gleich $(1 + \epsilon)$ den bezeugten Kosten des entfernten Pfades
- übernehme bezeugte Kosten des entfernten Pfades, falls geringer

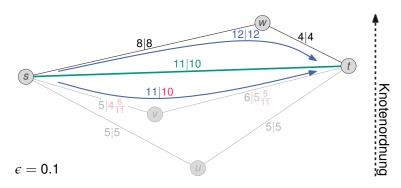


Karlsruher Institut für Technologie

- kein Shortcut, wenn Pfad existiert mit Kosten kleiner gleich $(1 + \epsilon)$ den bezeugten Kosten des entfernten Pfades
- übernehme bezeugte Kosten des entfernten Pfades, falls geringer



- kein Shortcut, wenn Pfad existiert mit Kosten kleiner gleich $(1 + \epsilon)$ den bezeugten Kosten des entfernten Pfades
- übernehme bezeugte Kosten des entfernten Pfades, falls geringer



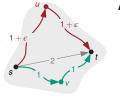
Kombinationen mit anderen Techniken

Vorgehen

- tausche Suchgraph von CH durch Suchgraph von apxCH
- keine weiteren Änderungen nötig

Bedingung

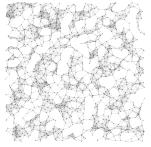
es wird nur Information von "Hoch-Runter" Pfaden ausgenutzt (sonst Inkonsistenzen möglich)



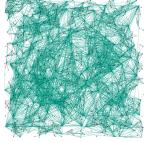
Ergebnisse Visualisierung

apxCH benötigt weniger Shortcuts

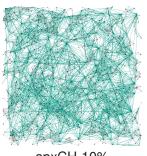
(→ Graph bleibt dünn, weniger Kanten zu speichern und zu scannen)



Netzwerk 1 000k Kanten



CH 500k Kanten 500k Shortcuts



apxCH-10% 500k Kanten 250k Shortcuts

Ergebnisse

Simulation – 1M Knoten, $d_{avg} = 10$, Latenzkosten

		Vorverarbeitung		Anfrage	
		Dauer [s]	Overhead [B/n]	Dauer [ms]	Fehler Ø [%]
HO	exact	5 4 1 5	-2	2.33	_
	exact (lazy updates)	895	1	2.48	_
	apx ($\epsilon = 1\%$)	400	-5	2.24	0.2
	apx ($\epsilon=10\%$)	177	-19	2.18	2.2
CHASE	exact (lazy updates)	6216	97	0.04	_
	apx ($\epsilon = 1\%$)	4878	86	0.04	0.2
	apx ($\epsilon=10\%$)	3 120	61	0.03	2.2
CHALT	exact (lazy updates)	927	26	0.42	_
	apx ($\epsilon = 1\%$)	427	20	0.35	0.2
	apx $(\epsilon = 10\%)$	198	7	0.29	2.2

Intel Core i7-920 @ 2.67 Ghz, 12 GB RAM

Karlsruher Institut für Technologie

Modellierung

Konkatenation von 2 optimalen Routen (über einen Viapunkt v)

Kriterien für sinnvolle Alternativrouten

- **nicht viel länger** (stretch ϵ)
- nicht zu ähnlich (overlap γ)
- sinnvoll (α-locally optimality)
- \rightarrow quantitatives Qualitätsmaß für Alternativrouten $f(\alpha, \gamma, \epsilon)$ (Alternativen werden nur akzeptiert, wenn jedes Kriterium erfüllt ist)

Modellierung

Konkatenation von 2 optimalen Routen (über einen Viapunkt v)

Kriterien für sinnvolle Alternativrouten

- nicht viel länger (stretch ϵ)
- nicht zu ähnlich (overlap γ)
- **sinnvoll** (α -locally optimality)

- quantitatives Qualitätsmaß für Alternativrouten $f(\alpha, \gamma, \epsilon)$
 - (Alternativen werden nur akzeptiert, wenn jedes Kriterium erfüllt ist)

Karlsruher Institut für Technologie

Modellierung

■ Konkatenation von 2 optimalen Routen (über einen Viapunkt *v*)

Kriterien für sinnvolle Alternativrouten

- **nicht viel länger** (stretch ϵ)
- nicht zu ähnlich (overlap γ)
- **sinnvoll** (α-locally optimality)



 \rightarrow quantitatives Qualitätsmaß für Alternativrouten $f(\alpha, \gamma, \epsilon)$ (Alternativen werden nur akzeptiert, wenn jedes Kriterium erfüllt ist)

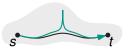
Karlsruher Institut für Technologi

Modellierung

Konkatenation von 2 optimalen Routen (über einen Viapunkt v)

Kriterien für sinnvolle Alternativrouten

- **nicht viel länger** (stretch ϵ)
- nicht zu ähnlich (overlap γ)
- **sinnvoll** (α-locally optimality)



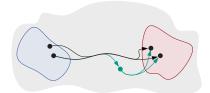
 \rightarrow quantitatives Qualitätsmaß für Alternativrouten $f(\alpha, \gamma, \epsilon)$ (Alternativen werden nur akzeptiert, wenn jedes Kriterium erfüllt ist)

Idee

Alternativrouten

Beobachtung

 Alternativrouten zwischen Gebieten haben viel gemeinsam



- bekannte Eigenschaft kürzester Wege
 - → kürzeste Wege, die eine Region betreten/verlassen, tun dies über wenige Knoten [AFGW'10]

Annahme

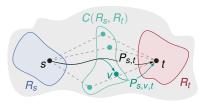
Falls es wenige kürzeste Pfade zwischen zwei Regionen gibt, dann ist auch die Anzahl an guten Alternativrouten gering.

→ mit wenigen Knoten abdeckbar → Viaknoten

Alternativrouten

Vorverarbeitung

- partitioniere Graph
- berechne für jedes Paar an Regionen Kandidaten für Viaknoten

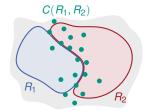


Anfrage

- teste Alternativroute über jeden Kandidaten
- verwende erste sinnvolle Alternativroute

Variante

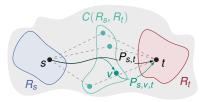
Multi-Level Partitionierung (weniger Kandidaten für benachbarte Regionen)



Alternativrouten

Vorverarbeitung

- partitioniere Graph
- berechne für jedes Paar an Regionen Kandidaten für Viaknoten

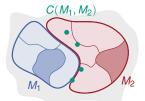


Anfrage

- teste Alternativroute über jeden Kandidaten
- verwende erste sinnvolle Alternativroute

Variante

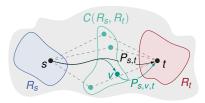
 Multi-Level Partitionierung (weniger Kandidaten für benachbarte Regionen)



Alternativrouten

Vorverarbeitung

- partitioniere Graph
- berechne für jedes Paar an Regionen Kandidaten für Viaknoten

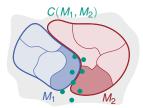


Anfrage

- teste Alternativroute über jeden Kandidaten
- verwende erste sinnvolle Alternativroute

Variante

Multi-Level Partitionierung (weniger Kandidaten für benachbarte Regionen)



Alternativrouten

- Suchraum aufbauen
- Knoten im Schnitt sind Kandidaten für Viaknoten

X-BDV

s

i

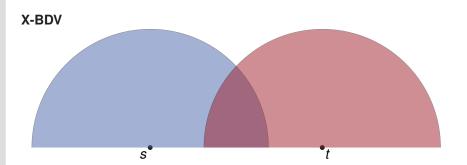
Alternativrouten

- Suchraum aufbauen
- Knoten im Schnitt sind Kandidaten für Viaknoten

X-BDV

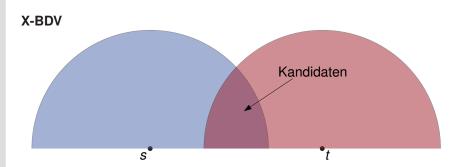
Alternativrouten

- Suchraum aufbauen
- Knoten im Schnitt sind Kandidaten für Viaknoten



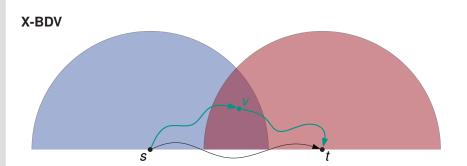
Alternativrouten

- Suchraum aufbauen
- Knoten im Schnitt sind Kandidaten für Viaknoten



Alternativrouten

- Suchraum aufbauen
- Knoten im Schnitt sind Kandidaten f
 ür Viaknoten



Alternativrouten

- Suchraum aufbauen
- Knoten im Schnitt sind Kandidaten für Viaknoten

X-CHV

s

t

Alternativrouten

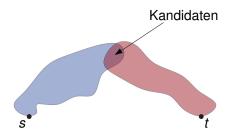
- Suchraum aufbauen
- Knoten im Schnitt sind Kandidaten f
 ür Viaknoten

X-CHV

Alternativrouten

- Suchraum aufbauen
- Knoten im Schnitt sind Kandidaten f
 ür Viaknoten

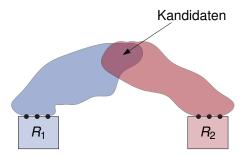
X-CHV



Alternativrouten

- Suchraum aufbauen
- Knoten im Schnitt sind Kandidaten f
 ür Viaknoten

Vorberechnung der Kandidatenmengen

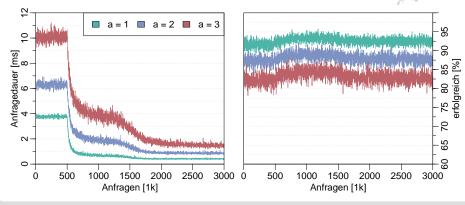


Onlineverfahren

Alternativrouten

Karlsruher Institut für Technologie

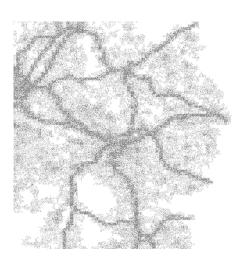
- lerne Viaknoten "on-the-fly"
- beende Lernen für Regionenpaar, wenn t-mal angefragt



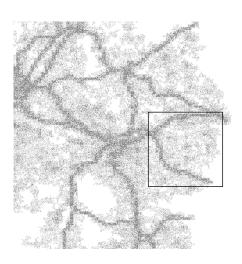
850 000 Knoten, $d_{avq} = 10$

850 000 Knoten, $d_{avq} = 10$

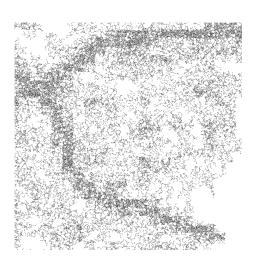
850 000 Knoten, $d_{avq} = 10$



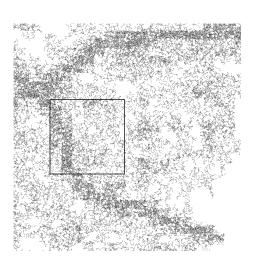
850 000 Knoten, $d_{avg} = 10$



850 000 Knoten, $d_{avg} = 10$



850 000 Knoten, $d_{avg} = 10$



 $850\,000\;Knoten,\,d_{avg}=10$

