Cache-Efficient Aggregation: Hashing Is Sorting

Ingo Muller, Peter Sanders, Arnaud Lacurie, Wolfgang Lehner, Franz Farber SIGMOD, June 3, 2015
Hash-Aggregation: Insert every row into hash map with grouping Start with Hashing until hash table full.
attributes as key and aggregate to existing intermediate result. If Hashing was “worth it”, i.e., if the input was aggregated
— In-cache processing of small number of groups. “enough”, thus reducing the amount of work for recursive
Sort-Aggregation: Sort input by grouping attributes, then processing, do Hashing again.
aggregate consecutive rows in a single pass. Otherwise do Partitioning for “some time”, then start over.
— Efficient external sort for large number of groups. The paper gives quantifications for “enough” and “some time”.
B M cache 256-cache
| | | |
| === HASHAGG Cammmmmmm-- 200 | | —®— HASHINGONLY

w 16| e SORTAGG ,/) —A— PARTITIONALWAY S (2 passes)

% — OPTAGG N O —4— PARTITIONALWAY S (3 passes)

(S ! > 5o |l| = — —=— ADAPTIVE

o 12| I . — 2 Xeon E7-8870 CPUs

= . 0 (each 10 cores),

o ' M = cache size — uniform distribution.

S ! B = block size T 3 levdls

§ 8 : N = input size » 100} -

© : proseassrasee st K = output size S T = runtime

_g ! i] 2 levels P = #cores (20)

S [g ll 8 1 Ievel Of recursion N = #input rows (232)

2 ' % 5 5T (17" | c=tcolumns ()

r N eTrr e
| | = v
020 24 28 212 216 220 224 228 232 oM

Number of groups (K)
Target output size (K)
Traditional approach: Optimizer selects physical operator based
on cardinality estimation = error prone. Without prior information, this mechanism adapts to the data by:

ending recursion with in-cache hashing as early as possible,
using the extremely fast partition routine (97% of the speed of
memcpy) as long as necessary.

Key observation: Hashing is the same as Sorting by hash value! 3 TL3 256-L3
\ N E X e
Idea: design an aggregation operator like a Divide’n’Conquer sort 200 HYBRID [1] i "
algorithm on the hash values of the grouping attributes.) -+—- PART.+AGGR. [2] :‘\ -'
3 ----INDEPENDENT [1] "
Use two subroutines in each level of recursion: Z 450| | PLAT [2] ; - 2 Xeon E7-8870 CPUs
. o _ . N —— ATOMIC [1] i (each 10 cores),
Hashing”: insert (and aggregate) into series of hash tables, each . = ADAPTIVE it uniform distribution.
of cache size 2 efficient (sort of). ! 100 "
e e : . : O
“Partitioning”: append (w/o aggregation) to hash-partitions (like = T T=runtime
radix sort) = only sequential access = efficient. - /" [
. N = #input rows (23?)
E 50 3 N C = #icolumns (1)
Example: L
input: (0100,b,3) (0010,a,7) (1110,c,2) (0100,b,4) (1100,e,3) (0100,b,6)
| I
(hash, group, value) (0100,b,2) (1001,d,6) (0100,b,5) ... 020 Y B o2 o6 o0 24 28
15t level of recursion Target output size (K)
Result:
hashtable 1: |(0010,a,7)|(0100,b,7) (1110,¢,2) Our algorithm (“Adaptive”) faster than all others [1,2] for K > 229,
Hashing b:3+4=7 Up to factor 3.7 speedup to second best.
hash table 2:
IR (0100,b,6) (1100,e,3) [1] John Cieslewicz, Kenneth A. Ross. Adaptive Aggregation on Chip Multiprocessors. In

PVLDB, 2007.

Partitioning partitions: | (0100,b,2) (0100,b,5) ... (1001,d,6) ... [2] Yang Ye, Kenneth A. Ross, Norases Vesdapunt. Scalable Aggregation on Multicore
Processors. In Proc. of DaMoN, 2011.

29 |evel of recursion
hash range “0*” | hash range “1*”

hash table (part): hash table (part):
_— (0010,](0100, (1001, (1100, {(1110,

| a,7) | b,20) d,6) e3) | ¢2) |

T b:7+46+2¢5=20 What else to expect in the paper?
The two routines produce a mix of hash tables and partitions. How to parallelize?
Some groups may still occur several times after the first pass 2 we How to integrate with JiT and column-wise processing?
recurse into hash ranges of all intermediate results combined How to tune hashing and sorting to modern hardware?
until every (sub)range of hash values is fully aggregated. How to determine thresholds?
Next question: when to use which routine? Why does it also work well in presence of skew?

TECHNI§CI_-I_E \‘(IT
N UNIVERSITAT
e 4 DRESDEN =\

Karlsruhe Institute of Technology

