
2. Our approach: Hashing and Sorting
mixed in a single operator

Key observation: Hashing is the same as Sorting by hash value!

Idea: design an aggregation operator like a Divide’n’Conquer sort
algorithm on the hash values of the grouping attributes.

Use two subroutines in each level of recursion:

 “Hashing”: insert (and aggregate) into series of hash tables, each
of cache size  efficient (sort of).

 “Partitioning”: append (w/o aggregation) to hash-partitions (like
radix sort)  only sequential access  efficient.

Example:

 The two routines produce a mix of hash tables and partitions.
 Some groups may still occur several times after the first pass  we

recurse into hash ranges of all intermediate results combined
until every (sub)range of hash values is fully aggregated.

 Next question: when to use which routine?

SAP HANA
Database Campus

Cache-Efficient Aggregation: Hashing Is Sorting
Ingo Müller, Peter Sanders, Arnaud Lacurie, Wolfgang Lehner, Franz Färber

5. Outlook
What else to expect in the paper?
 How to parallelize?
 How to integrate with JiT and column-wise processing?
 How to tune hashing and sorting to modern hardware?
 How to determine thresholds?
 Why does it also work well in presence of skew?

SIGMOD, June 3, 2015

1. Textbook aggregation algorithms
 Hash-Aggregation: Insert every row into hash map with grouping

attributes as key and aggregate to existing intermediate result.
 In-cache processing of small number of groups.

 Sort-Aggregation: Sort input by grouping attributes, then
aggregate consecutive rows in a single pass.

 Efficient external sort for large number of groups.

 Traditional approach: Optimizer selects physical operator based
on cardinality estimation  error prone.

M = cache size
B = block size
N = input size
K = output size

3. Our adaptation mechanism
 Start with Hashing until hash table full.
 If Hashing was “worth it”, i.e., if the input was aggregated

“enough”, thus reducing the amount of work for recursive
processing, do Hashing again.

 Otherwise do Partitioning for “some time”, then start over.
 The paper gives quantifications for “enough” and “some time”.

Without prior information, this mechanism adapts to the data by:
 ending recursion with in-cache hashing as early as possible,
 using the extremely fast partition routine (97% of the speed of

memcpy) as long as necessary.

4. Evaluation: Comparison with prior work

Result:
 Our algorithm (“Adaptive”) faster than all others [1,2] for K > 220.
 Up to factor 3.7 speedup to second best.

[1] John Cieslewicz, Kenneth A. Ross. Adaptive Aggregation on Chip Multiprocessors. In
PVLDB, 2007.
[2] Yang Ye, Kenneth A. Ross, Norases Vesdapunt. Scalable Aggregation on Multicore
Processors. In Proc. of DaMoN, 2011.

1 level of recursion
2 levels

3 levels

2 Xeon E7-8870 CPUs
(each 10 cores),

uniform distribution.

T = runtime
P = #cores (20)
N = #input rows (232)
C = #columns (1)

2 Xeon E7-8870 CPUs
(each 10 cores),

uniform distribution.

T = runtime
P = #cores (20)
N = #input rows (232)
C = #columns (1)

(0100,b,3) (0010,a,7) (1110,c,2) (0100,b,4) (1100,e,3) (0100,b,6)
(0100,b,2) (1001,d,6) (0100,b,5) …

(0010,a,7) (1110,c,2)

(0100,b,6) (1100,e,3)

hash table 1:

hash table 2:

(0100,b,2) (0100,b,5) … (1001,d,6) … partitions:

 input:
(hash, group, value)

1st level of recursion

(1100,
e,3)

(1110,
c,2)

(1001,
d,6)

hash table (part):

(0010,
a,7)

hash table (part):

2nd level of recursion

result:

(0100,b,7)

(0100,
b,20)

 b: 3+4 = 7

b: 7+6+2+5 = 20

hash range “0*” hash range “1*”

Hashing

Partitioning

