
Ingo Müller, Peter Sanders, Arnaud Lacurie, Wolfgang Lehner, Franz Färber

SIGMOD, June 3, 2015

Cache-Efficient Aggregation:

Hashing Is Sorting

© 2015 SAP SE or an SAP affiliate company. All rights reserved. 2 Public

Textbook Algorithms for Aggregation

Hash-Aggregation

 Insert every row into hash map with

grouping attributes as key

• Aggregate to existing intermediate result

Sort-Aggregation

 Sort input by grouping attributes

 Aggregate consecutive rows in a single

pass

Traditional approach

 Optimizer selects physical operator based

on cardinality estimation  error prone.
M = cache size B = block size

N = input size K = output size

Our goal: Hashing and Sorting in a single operator.

© 2015 SAP SE or an SAP affiliate company. All rights reserved. 3 Public

Mixing Hashing and Sorting (1/3): Idea

Key observation: Hashing is the same as Sorting by hash value.

General idea:

• design an aggregation operator like a Divide’n’Conquer sort algorithm on the

hash values of the grouping attributes.

Common technique:

• combine different sort routines into one algorithm.

© 2015 SAP SE or an SAP affiliate company. All rights reserved. 4 Public

Mixing Hashing and Sorting (2/3): Example Execution

(0100,b,3) (0010,a,7) (1110,c,2) (0100,b,4) (1100,e,3) (0100,b,6)

(0100,b,2) (1001,d,6) (0100,b,5)

(0010,a,7) (0100,b,3) (1110,c,2)

(0100,b,6) (1100,e,3)

hash table 1:

hash table 2:

(1001,d,6) partitions:

input:
(hash, group, value)

1st level of recursion

(1100,

e,3)

(1110,

c,2)

(1001,

d,6)

hash table (part):

(0010,

a,7)

(0100,

b,7)

hash table (part):

2nd level of recursion

result:

(0100,b,7)

(0100,b,5) (0100,b,2)

(0100,

b,13)

(0100,

b,15)

(0100,

b,20)

Hashing

Partitioning

© 2015 SAP SE or an SAP affiliate company. All rights reserved. 5 Public

Mixing Hashing and Sorting (3/3): Recap

Our approach: aggregation algorithm designed like a sort algorithm on hash values

with built-in aggregation.

Subroutine “Hashing”:

• Inserts into a series of hash tables (like insertion sort)

• Each of cache size  efficient (sort of)

• Does the actual aggregation

Subroutine “Partitioning”:

• Appends to hash partitions (like radix sort)

• Only sequential access  efficient

• Does no aggregation

Next question: when to use which routine?

© 2015 SAP SE or an SAP affiliate company. All rights reserved. 6 Public

Adaptation Mechanism (1/2)

“HashingOnly”: in cache for small output size, slow recursive processing otherwise

“PartitionAlways”:

 Much faster partitioning (97% of speed of memcpy thanks to “Radix-Partitioning”)

 No (early) aggregation  induced useless work for small output

Goal: use Hashing iff working set fits into cache.

© 2015 SAP SE or an SAP affiliate company. All rights reserved. 7 Public

Adaptation Mechanism (2/2)

Adaptive algorithm:

 Partitioning recurses when necessary

 Hashing ends recursion when possible efficiently

Our mechanism finds the right strategy adaptively.

© 2015 SAP SE or an SAP affiliate company. All rights reserved. 8 Public

Evaluation: Comparison with Prior Work

State of the art:

 Implementations of :

– Cieslewicz and Ross [1] & Ye et al. [2]

 1-pass algorithms:

– Hybrid

– Atomic

 2-pass algorithms:

– Partition and Aggregate

– Independent

– PLAT

Result:

 “Adaptive” faster for K > 220

 Up to factor 3.7 speedup

Recursive processing is crucial for large outputs.

2 Xeon E7-8870 CPUs (each 10 cores), N = 232, uniform distribution.

[1] J. Cieslewicz, K.A. Ross. Adaptive Aggregation on Chip Multiprocessors. In PVLDB, 2007. [2] Y. Ye, K.A. Ross, N. Vesdapunt. Scalable Aggregation on Multicore Processors. In DaMoN, 2011.

© 2015 SAP SE or an SAP affiliate company. All rights reserved. 9 Public

Summary and Outlook

 Observation: Hashing is Sorting by hash value.

 We can combine them in a single algorithm to combine their advantages.

 Adaptation mechanism provides robust, optimal performance up to factor 3.7

faster than prior work.

 What else to expect in the paper:

 How to parallelize? How to integrate with JiT and column-wise processing?

 How to tune hashing and sorting to modern hardware?

 How to determine thresholds?

 Why does it also work well in presence of skew?

Thank you

