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Hypergraphs

Hypergraph H = (V , E , c,ω)

Vertex set V = {1, ..., n}
Edge set E ⊆ P (V ) \ ∅
Node weights c : V → R≥1

Edge weights ω : E → R≥1

Graphs⇒ dyadic (2-ary) relationships

Hypergraphs⇒ (d-ary) relationships

Generalization of graphs
⇒ hyperedges connect ≥ 2 nodes
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Hypergraph Partitioning Problem

Partition hypergraph H = (V , E , c,ω) into k disjoint blocks
Π = {V1, . . . , Vk} such that:

V1

V2

blocks Vi are roughly equal-sized:

c(Vi) ≤ (1 + ε)
⌈c(V )

k

⌉
total weight of cut hyperedges is minimized
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Hypergraph Partitioning Problem

Partition hypergraph H = (V , E , c,ω) into k disjoint blocks
Π = {V1, . . . , Vk} such that:

hyperedge connecting
multiple blocks

imbalance
parameterblocks Vi are roughly equal-sized:

c(Vi) ≤ (1 + ε)
⌈c(V )

k

⌉
total weight of cut hyperedges is minimized
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Applications

Scientific ComputingVLSI Design

Application
Domain

Hypergraph
Model

Goal minimize
communication

facilitate
floorplanning & placement
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Multilevel Paradigm
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Multilevel Paradigm
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Taxonomy of Hypergraph Partitioning Tools

Direct k-wayRecursive Bisection
1998

1999

2005

2006

2008

2013

MLPart

hMetis-R hMetis-K

Zoltan

Parkway

PaToH

Mondriaan

VLSI
Sparse
Matrices

parallel

UMPa multi-objective
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Taxonomy of Hypergraph Partitioning Tools

Direct k-wayRecursive Bisection
1998

1999

2005

2006

2008

2013

2016

MLPart

hMetis-R hMetis-K

Zoltan

Parkway

PaToH

Mondriaan

VLSI
Sparse
Matrices

parallel

KaHyPar n-Level

UMPa multi-objective
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Why Yet Another Multilevel Algorithm?

contract uncontract

match / cluster local search

output partitioninput hypergraph

initial
partitioning

· · · · · ·

· · · · · ·
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Why Yet Another Multilevel Algorithm?

contract uncontract

match / cluster local search

output partitioninput hypergraph

initial
partitioning

contract uncontract

match / cluster local search

output partitioninput hypergraph

initial
partitioning

· · · · · ·

Tradeoff:
# levels↗:

+ quality
– running time· · · · · ·

Our Contribution:
evade tradeoff n levels
⇒ combine high quality with good performance

Motivation:
KaSPar – n-level graph partitioning
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Coarsening
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n-Level Coarsening Phase

contract only a single pair of vertices at each level
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compute rating r for all pairs of adjacent hypernodes
choose pair (u, v ) with highest rating (priority queue)
update ratings for neighbors of contracted pair

How to determine that pair?
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n-Level Coarsening Phase

contract only a single pair of vertices at each level

compute rating r for all pairs of adjacent hypernodes
choose pair (u, v ) with highest rating (priority queue)
update ratings for neighbors of contracted pair

r (u, v ) := 1
c(v )·c(u)

∑
hyperedge e

containing u,v

ω(e)
|e|−1

large number ...

of heavy hyperedges ...

... with small size

How to determine that pair?

8



Sebastian Schlag – k-way Hypergraph Partitioning via n-Level Recursive Bisection Institute of Theoretical Informatics
Algorithmics Group

n-Level Coarsening Phase

contract only a single pair of vertices at each level

compute rating r for all pairs of adjacent hypernodes
choose pair (u, v ) with highest rating (priority queue)
update ratings for neighbors of contracted pair

r (u, v ) := 1
c(v )·c(u)

∑
hyperedge e

containing u,v

ω(e)
|e|−1

large number ...

of heavy hyperedges ...

... with small size

prefer light hypernodes

How to determine that pair?
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n-Level Coarsening Phase

contract only a single pair of vertices at each level

compute rating r for all pairs of adjacent hypernodes
choose pair (u, v ) with highest rating (priority queue)
update ratings for neighbors of contracted pair

repeat until:
t hypernodes remain
no valid pair remains (size constraint on hypernodes)
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n-Level Coarsening Phase

contract only a single pair of vertices at each level

compute rating r for all pairs of adjacent hypernodes
choose pair (u, v ) with highest rating (priority queue)
update ratings for neighbors of contracted pair

repeat until:
t hypernodes remain
no valid pair remains (size constraint on hypernodes)

How to determine that pair?

⇒update can be expensive!

8



Sebastian Schlag – k-way Hypergraph Partitioning via n-Level Recursive Bisection Institute of Theoretical Informatics
Algorithmics Group

n-Level Coarsening Phase

Problem: # neighbors potentially large
high-degree hypernodes
large hyperedges

⇒, , , update all pins of all hyperedges incident to contracted pair⇒
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n-Level Coarsening Phase

Problem: # neighbors potentially large
high-degree hypernodes
large hyperedges

⇒, , , update all pins of all hyperedges incident to contracted pair

Solution: lazy updates
invalidate neighboring hypernodes
re-calculate rating on demand

⇒
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Initial Partitioning
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Initial Partitioning

use portfolio of algorithms diversification
random partitioning
breadth-first search
greedy hypergraph growing
size-constrained label propagation

not affected by n-level paradigm

⇒ try all algorithms multiple times
⇒ select partition with best cut & lowest imbalance as initial partition

initial partition
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Local Search
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Localized Local Search – Idea

limit search to constant # of moves per level
otherwise |V |2 local search steps in total
⇒ stop pass after x fruitless moves

n-level localized local search [KaSPar]
uncontract a single pair of nodes
 local search around 2 nodes
⇒ fine-grained optimization

traditional multilevel algorithms
uncontract one level
 local search around complete border
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Localized FM Local Search – Outline

hypernodes unmarked, active, marked
start around uncontracted vertex pair
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hypernodes unmarked, active, marked
start around uncontracted vertex pair

compute gain for move to other block:

g(v ) =
∑

hyperedge e
containing v

{
+ω(e) if # pins in source = 1

−ω(e) if # pins in target = 0

 border hypernodes become active
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Localized FM Local Search – Outline

hypernodes unmarked, active, marked
start around uncontracted vertex pair

compute gain for move to other block:

g(v ) =
∑

hyperedge e
containing v

{
+ω(e) if # pins in source = 1

−ω(e) if # pins in target = 0

 border hypernodes become active

move highest-gain node to opposite block
 node becomes marked

unmarked neighbors active (if border node)
active neighbors update gain

⇒update & activation can be expensive!
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Localized FM Local Search – Engineering

Problem: # neighbors potentially large
high-degree hypernodes
large hyperedges

⇒, , , large number of activations & updates on each level⇒
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high-degree hypernodes
large hyperedges

⇒, , , large number of activations & updates on each level

Known solutions for updates:
perform δ-gain updates [Papa, Markov]
exclude locked hyperedges from gain update [Krishnamurthy]

will remain cut
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Localized FM Local Search – Engineering

Problem: # neighbors potentially large
high-degree hypernodes
large hyperedges

⇒, , , large number of activations & updates on each level

Known solutions for updates:
perform δ-gain updates [Papa, Markov]
exclude locked hyperedges from gain update [Krishnamurthy]

New solution for activations:
cache gain values

compute gain g(v ) at most once along the n-level hierarchy

will remain cut

⇒
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Experiments – Benchmark Setup

Comparison with:
hMetis-R & hMetis-K
PaToH-Default & PaToH-Quality

System: 1 core of 2 Intel Xeon E5-2670 @ 2.6 Ghz, 64 GB RAM

2170 instances
imbalance: ε = 3%
250 min time limit

k ∈ {2, 4, 8, 16, 32, 64, 128}

# Hypergraphs: [publicly available]
-
-
-

UF Sparse Matrix Collection 192
SAT Competition 2014 Application Track 100
ISPD98 VLSI Circuit Benchmark Suite 18
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Experimental Results – Partitioning Quality
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Experimental Results – Partitioning Quality
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Experimental Results – Partitioning Quality
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Experimental Results – Partitioning Quality
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Experimental Results – Smaller Imbalance
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Experimental Results – Larger Imbalance
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Experimental Results – Running Time
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Future Work

improve running time:
ignore “large” hyperedges [PaToH]
stop local search if improvement becomes unlikely [KaSPar]

aaa
improve quality:

introduce V-cycles
evolutionary algorithm [KaHIP]

aaa
improve balancing:

optimize locally - rebalance globally
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Conclusion & Discussion
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evade running time / quality tradeoff of multilevel algorithms
 n-level hierarchy

engineered coarsening phase
portfolio-based approach to initial partitioning
highly tuned local search algorithm
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Coffee Break!
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Benchmark Set Details
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Benchmark Results – Partitioning Quality
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