

High Quality Hypergraph Partitioning

German-Israeli Winter School on Algorithms for Big Data · November 15, 2017 Robin Andre, Yaroslav Akhremtsev, Vitali Henne, Tobias Heuer, Henning Meyerhenke, Peter Sanders, Sebastian Schlag, Christian Schulz

INSTITUTE OF THEORETICAL INFORMATICS · ALGORITHMICS GROUP

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

www.kit.edu

Graphs and Hypergraphs

- Models relationships between objects
- Dyadic (2-ary) relationships

Hypergraph H = (V, E)

- Generalization of a graph
 - \Rightarrow hyperedges connect \ge 2 nodes
- Arbitrary (d-ary) relationships
- Edge set $\pmb{E} \subseteq \mathcal{P}$ (V) $\setminus \emptyset$

ϵ -Balanced Hypergraph Partitioning

Partition hypergraph $H = (V, E, c : V \to \mathbb{R}_{>0}, \omega : E \to \mathbb{R}_{>0})$ into **k** disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that

Blocks V_i are roughly equal-sized:

$$C(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

Objective function on hyperedges is minimized

Partition hypergraph $H = (V, E, c : V \to \mathbb{R}_{>0}, \omega : E \to \mathbb{R}_{>0})$ into **k** disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that

Blocks V_i are roughly equal-sized:

- imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

Objective function on hyperedges is minimized

Partition hypergraph $H = (V, E, c : V \to R_{>0}, \omega : E \to R_{>0})$ into **k** disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that

Blocks V_i are roughly equal-sized:

- imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

Objective function on hyperedges is minimized

Common Objectives:

• cut: $\sum_{e \in Cut} \omega(e)$

Partition hypergraph $H = (V, E, c : V \to \mathbb{R}_{>0}, \omega : E \to \mathbb{R}_{>0})$ into **k** disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that

Blocks V_i are roughly equal-sized:

- imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

Objective function on hyperedges is minimized

Common Objectives:

• cut:
$$\sum_{e \in Cut} \omega(e)$$

• Connectivity: $\sum_{e \in cut} (\lambda - 1) \omega(e)$

Partition hypergraph $H = (V, E, c : V \to R_{>0}, \omega : E \to R_{>0})$ into **k** disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that

Blocks V_i are roughly equal-sized:

- imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

Objective function on hyperedges is minimized

Common Objectives:

• cut:
$$\sum_{e \in Cut} \omega(e)$$

• Connectivity: $\sum_{e \in cut} (\lambda - 1) \omega(e)$
blocks connected by e

Applications

Warehouse Optimization

[Martin Grandjean, via Wikimedia Commons]

Complex Networks

Route Planning

Simulation

Scientific Computing

3 Sebastian Schlag – High Quality Hypergraph Partitioning

Institute of Theoretical Informatics Algorithmics Group

Applications

VLSI Design

Warehouse Optimization

[Martin Grandjean, via Wikimedia Commons]

Complex Networks

Route Planning

Simulation

Parallel Sparse-Matrix Vector Product (SpM×V)

[Catalyürek, Aykanat]

Setting:

- Repeated SpM×V on supercomputer
- A is large \Rightarrow distribute on multiple nodes
- Symmetric partitioning $\Rightarrow y \& b$ divided conformally with A

Parallel Sparse-Matrix Vector Product (SpM×V)

 $A \in \mathbf{R}^{16 imes 16}$

Institute of Theoretical Informatics Algorithmics Group

Commuication Volume?

Commuication Volume?

Commuication Volume? \Rightarrow 24 entries!

Commuication Volume? \Rightarrow 24 entries!

$$A \in \mathbf{R}^{16 \times 16} \Rightarrow H = (V_R, E_C)$$

One vertex per row:

$$\Rightarrow V_R = \{v_1, v_2, \ldots, v_{16}\}$$

• One hyperedge per column: $\Rightarrow E_C = \{e_1, e_2, \dots, e_{16}\}$

$$A \in \mathbf{R}^{16 imes 16} \Rightarrow H = (V_R, E_C)$$

One vertex per row:

$$\Rightarrow V_R = \{v_1, v_2, \ldots, v_{16}\}$$

• One hyperedge per column: $\Rightarrow E_C = \{e_1, e_2, \dots, e_{16}\}$

 $v_i \in V_R$:

Inner product of row i with b

 $rightarrow c(v_i) := \# nonzeros$

1 2 3 4 5 6 7 8 9 9 7 7 9 9 7 7 9 x x |X|2 X X X X 4 X X 5 6 X X X XX X X X X 8 X X X 9 Vg X X X X X X X 11 XX X X 12 XX Х 13 X X X XX 14 X X 15 X Χ X 16 X Х

$$A \in \mathbf{R}^{16 \times 16} \Rightarrow H = (V_R, E_C)$$

One vertex per row:

$$\Rightarrow V_R = \{v_1, v_2, \ldots, v_{16}\}$$

• One hyperedge per column: $\Rightarrow E_C = \{e_1, e_2, \dots, e_{16}\}$

 $v_i \in V_R$:

 $e_i \in E_C$:

Inner product of row i with b

 $rightarrow c(v_i) := \# nonzeros$

Set of vertices that need b_j

Load Balancing?

9 Sebastian Schlag – High Quality Hypergraph Partitioning

Institute of Theoretical Informatics Algorithmics Group

Where are the cut-hyperedges?

Commuication Volume?

Commulcation Volume? \Rightarrow 6 entries!

How does

Hypergraph Partitioning work?

10 Sebastian Schlag – High Quality Hypergraph Partitioning

Institute of Theoretical Informatics Algorithmics Group

How does

Bad News:

Hypergraph Partitioning is NP-hard

Even finding good approximate solutions for graphs is NP-hard

work?

Successful Heuristic: Multilevel Paradigm

Successful Heuristic: Multilevel Paradigm

Successful Heuristic: Multilevel Paradigm

11 Sebastian Schlag – High Quality Hypergraph Partitioning

Taxonomy of Hypergraph Partitioning Tools

Taxonomy of Hypergraph Partitioning Tools

Why Yet Another Multilevel Algorithm?

Why Yet Another Multilevel Algorithm?

14 Sebastian Schlag – High Quality Hypergraph Partitioning

14 Sebastian Schlag – High Quality Hypergraph Partitioning

Latest Experimental Results

KaHyPar

Objectives:

Cut

- Connectivity $(\lambda 1)$
- Partitioning Modes:
 - Recursive bisection
 - Direct k-way
- Upcoming Features:
 - Evolutionary algorithm
 - Flow-based refinement
 - Advanced local search algorithms
- http://www.kahypar.org

Karlsruhe Institute of

Schlag et. al (ALENEX'16): S. Schlag, V. Henne, T. Heuer, H. Meyerhenke, P. Sanders, Christian Schulz. *k*-way Hypergraph Partitioning via *n*-Level Recursive Bisection. In 18th Workshop on Algorithm Engineering and Experiments, (ALENEX), pages 53–67, 2016.

Schlag et. al (ALENEX'17): Y. Akhremtsev, T. Heuer, P. Sanders, and S. Schlag. Engineering a direct k-way hypergraph partitioning algorithm. In 19th Workshop on Algorithm Engineering and Experiments, (ALENEX), pages 28–42, 2017.

Heuer, Schlag (SEA'17): T. Heuer and S. Schlag. Improving Coarsening Schemes for Hypergraph Partitioning by Exploiting Community Structure. In 16th International Symposium on Experimental Algorithms, (SEA), page 21:121:19, 2017.

Andre, Schlag, Schulz (arXiv): R. Andre, S. Schlag, and C. Schulz. Memetic Multilevel Hypergraph Partitioning. arXiv preprint arXiv:1710.01968 (2017).