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Graphs and Hypergraphs AT
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Graph G = (V, E)
vertices—/‘ ‘\—edges

® Models relationships between objects <
® Dyadic (2-ary) relationships \/\\/ .
~

hyperedge

Hypergraph H = (V, E)
® Generalization of a graph
= hyperedges connect > 2 nodes
® Arbitrary (d-ary) relationships
m Edgeset EC P(V)\ 0
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¢-Balanced Hypergraph Partitioning A\‘(IT
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Partition hypergraph H=(V,E,c: V — Ryg,w : E — Ryy) into
k disjoint blocks TT = { V4, ..., Vi } such that

@ Blocks V; are roughly equal-sized:

c(V)) < (1 +¢) [22]

® Objective function on hyperedges is minimized
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Partition hypergraph H=(V,E,c: V — Ryg,w : E — Ryy) into
k disjoint blocks TT = { V4, ..., Vi } such that

® Blocks V; are roughly equal-sized.: /* imbalance parameter
V) < (1 elv)
c(Vi) < (1+¢) [ i —‘

® Objective function on hyperedges is minimized

Common Objectives:
B cut: ) oy w(e)
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Partition hypergraph H=(V,E,c: V — Ryg,w : E — Ryy) into
k disjoint blocks TT = { V4, ..., Vi } such that

® Blocks V; are roughly equal-sized.: /* imbalance parameter
V) < (1 elv)
c(Vi) < (1+¢) [ i —‘

® Objective function on hyperedges is minimized

Common Objectives:
B cut: ) oy w(e)
® Connectivity: » A — 1) w(e)
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Partition hypergraph H=(V,E,c: V — Ryg,w : E — Ryy) into
k disjoint blocks TT = { V4, ..., Vi } such that

® Blocks V; are roughly equal-sized.: '/~ imbalance parameter
V) < (1 elv)
c(Vi) < (1+¢) [ i —‘

® Objective function on hyperedges is minimized

Common Objectives:
B cut: ) oy w(e)
® Connectivity: » A — 1) w(e)

# blocks connected by e
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Applications

VLSI

Route Planning
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Applications ﬂ(".

Karlsruhe Institute of Technology

VLSI

R"™"> Ax=b e R"
Route Planning Simulation Scientific Computing
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Parallel Sparse-Matrix Vector Product (SpMx V) A\‘(IT

y=ADb

b, by
Yi = ajj + Ak

Setting:
® Repeated SpM xV on supercomputer
® Ais large = distribute on multiple nodes

® Symmetric partitioning = y & b divided conformally with A
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Parallel Sparse-Matrix Vector Product (SpMx V) A\‘(IT

titute of Technology

(Task: distribute A to nodes of supercomputer such that
® work is distributed evenly

_ @ communication overhead is minimized
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Naive Approach: Rowwise Decomposition QAT
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Ac R16><16
[bbbbbbbbbbbbbbbb]
_X X —
X X X
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Ac R16><16
bbbbbbbbbbbbbbbb
X X
P X X X
1 X X
X X
X X X
X X
X X X X
X X X
X X X
X X X X
X X X X
X X X
X X X
P X X X X
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Naive Approach: Rowwise Decomposition QAT
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bbbblbbbbbbbbbbbb LoadBalancing?
X X
X X X
P L =9
X X
X X X
X X
X X X X = 12
X X X
X X X
X X X X
X X X X = 14
X X X
X X X
X X X X
P 4 X . = 12
X X X
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X X
X X X
P X =9
X X
X X X
X X
X X X X = 12
X X X
X X X
X X X X
X X X X = 14
X X X
X X X
X X X X
P 4 X X = 12
X X X
Commuication Volume?
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Naive Approach: Rowwise Decomposition

A€R16><16
bbbbb\\bbbbbbbbbbb
X » X
P X X X
1 X X
X X
X X X
X X
X X X
X X X
X X X
X X X X
X X X X
X X X
xJ X X
P X X X X
4 X X
X X X

Commuication Volume?
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Naive Approach: Rowwise Decomposition QAT
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bbbblbbbbbbbbbbbb LoadBalancing?
X X
X X X
P X =9
X X
X X X
X X
X X X X = 12
X X X
X X X
X X X X
X X X X = 14
X X X
X X X
X X X X
P 4 X X = 12
X X X
Commuication Volume? = 24 entries!
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Naive Approach: Rowwise Decomposition QAT
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Ac R16><16

Can we do better?
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From SpMxV to Hypergraph Partitioning A\‘(IT
Ac R = H = (Vg, Ep)

m One vertex per row: [bbbbbbbbbbbbbbbb}

_X X —
:>VR={V1,V2,...,V16} X X X
X X
® One hyperedge per column: X X
X X X
#Ec={e1,92,...,e16} X X
X X X X
X X X
X X X
X X X X
X X X X
X X X
X X X
X X X X
X X
X X X
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From SpMxV to Hypergraph Partitioning A\‘(IT
Ac R = H=(Vg, E)

m One vertex per row: [bbbbbbbbbbbbbbbb}

:>V/:;={V1,V2,...,V16} X X X
X X
® One hyperedge per column: X X
X X X
#Ec={e1,92,...,e16} X X
X X X X
X X X
v, € Vg Vo X X X
o X X X X
® Inner product of row / with b X X X X
X X X
® = c(v;) := # nonzeros X X X
X X X X
X X
i X X X_
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From SpMxV to Hypergraph Partitioning A\‘(IT
Ac R = H = (Vg, Ep)

IOnevertexperrow: [bbbbbbbbbbbbbbbb}_
X X
:>VR={V1,V2,---,V16} X X X
X X
® One hyperedge per column: X X
X X X
$E0={e156255e16} X | X
X X X X
X X X
v, € Vg Vo X X X
o X X X X
® Inner product of row / with b X X X X
X X X
® = c(v;) := # nonzeros X| x X
X | X X X
X X
E i X X X_
W Set of vertices that need b;
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From SpMxV to Hypergraph Partitioning A\‘(IT

titute of Technology

Solution: ¢-balanced partition of H
® Balanced partition ~~ computational load balance

- Small (A — 1)-cutsize ~~ minimizing communication volume)
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From SpMxV to Hypergraph Partitioning A\‘(IT

titute of Technology
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From SpMxV to Hypergraph Partitioning QAT
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From Hypergraph Partitioning to SpM xV

bbbbbbbb

b bbb

x| | T
X X X||T
<

P

P

X
X
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From Hypergraph Partitioning to SpMxV AT
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Load Balancing?
X X X X
P X X X
1 X X X
X X
X X
X X X X
X X X X
X X
X X X
X X
X X X X
X X X
X X X
P X X X
4 X X X
X X X
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From Hypergraph Partitioning to SpM xV

<[

bbbbbbbb

b bbb

P

P

X X X||T
<

X
X
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From Hypergraph Partitioning to SpM xV

Where are the cut-hyperedges?

<[

bbbbbbbb

b bbb

X X X||T
>

P

P

X
X

Commuication Volume?
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From Hypergraph Partitioning to SpM xV

Where are the cut-hyperedges?
€5 €11 e7 €12

v v v v

bbbblbbbbbbbbbbbb
X X X X
P X X X
1 X X X
X X
X X
X X X X
X X X X
X X
X X X
X X
X X X X
X X X
X X X
P X X X
4 X X X
X X X

Commuication Volume? = 6 entries!
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Load Balancing?

= 12
= 12
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How does
Hypergraph Partitioning

work?
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Bad News:
® Hypergraph Partitioning is NP-hard

a Even finding good approximate solutions for graphs is NP-hard )
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Successful Heuristic: Multilevel Paradigm QAT

Input Hypergraph

Coarsening
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Successful Heuristic: Multilevel Paradigm ﬂ("'

Input Hypergraph

Coarsening

Ir.li-’tial-I O
Partltlonlng
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Successful Heuristic: Multilevel Paradigm QAT
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Input Hypergraph

a
e o o m
O) Za c
c local search =
[= )
D hn
(7)) P S
S g0
© O
O &)
o } uncontract ::)
I|_1| _tlal_
Partitioning
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Taxonomy of Hypergraph Partitioning Tools

Recursive Bisection ] ( Direct k-way
MLPart
VLSI

PaToH hMetis-R hMetis-K
Sparse

Matrices
Mondriaan

Zoltan parallel

Parkway
UMPa multi-objective
. J L J
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Taxonomy of Hypergraph Partitioning Tools
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Recursive Bisection ] (

Direct k-way

MLPart

PaToH
Sparse

Matrices
Mondriaan

hMetis-R

VLSI

hMetis-K

Zoltan

parallel

Parkway

UMPa multi-objective

KaHyPar-R

n-Level

\.

J |
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Why Yet Another Multilevel Algorithm?

Input Hypergraph

Coarsening

contract
©

O
v

h 4

O In-lt.lal : ‘
Partitioning
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Why Yet Another Multilevel Algorithm? AT
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é )

Tradeoff:
# levels

® + Quality
9 o a — Running time )
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Why Yet Another Multilevel Algorithm? AT
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Tradeoff:
# levels

® + Quality
e - Running time )

Karlsruhe Hypergraph Partitioning

—> Evade tradeoff ~~ n levels jaLenex1s
= Combine high quality with good performance
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KaHyPar: Novel Algorithmic Ingredients A\‘(IT
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Min-Hash Based
Sparsification

[ALENEX'17]
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Min-Hash Based

Sparsification
[ALENEX'17]
J
( )
'o'
Community-Aware
Coarsening
[SEA'17]
. J
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Min-Hash Based

Sparsification
[ALENEX'17]
J
( )
.
Community-Aware
Coarsening
[SEA’17]
. J
( )

5 Fast n-Level

Coarsening

v
.. [ALENEX'17]
oo 2

. J
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Min-Hash Based

Sparsification
[ALENEX'17]
J
( )
C
Community-Aware
Coarsening
[SEA'17]
. J
g B (7 (o) -j V2 Gain-Cache ofo: N
[)ﬁ P : |
O Fast n-Level 742\ AN AL T
= o "\ L\ —
v Coarsening PRI
ALENEX17] Engineered k-way FM
¢ p L [ALENEX'17] D
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Min-Hash Based

Sparsification
[ALENEX'17]
J
( )
~N
@ .
Community-Aware Max—F]!ow Min-Cut
: Refinement
Coa['SrESA?;]"ng [Heuer, Master’s Thesis (upcoming)]
. J )
g b (V5 -j Y2 Gain-Cache ofe: N
ot ) Fast n-Level 742 \\INS AL T
o Q_S \O ° L\ e ®
v Coarsening 7 V3
il =T Engineered k-way FM
\ y \ [ALENEX'17] )
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Min-Hash Based

Sparsification
[ALENEX'17]
g ( Config C
4 D Algorithm A <« { onng &1
Config Co
Algorithm Configuration
L [Ohl, Bachelor’s Thesis (upcoming)] )
f 4 )
U .
Community-Aware Max-Flow Min-Cut
Coarsening “Ij\“tj\{ Refinement
[SEA'17] [Heuer, Master’s Thesis (upcoming)]
. J k.) y
( a: N V15 -j Y2 Gain-Cache ofo: )
Cox 2 m ain-Cache ofo:
0 Fast n-Level 975 3\ Léif’ REE Al nE
. o
v Coarsening PRI
ALENEX17] Engineered k-way FM
L ) 9 [ALENEX'17] y
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) ~ B )
Min-Hash Based O+CW‘>
Sparsification Memetic Multilevel Algorithm
[ALENEX'17] 9 [arXiv] )
J r ;
( ) Algorithm A < {Conffg G
Config Co
Algorithm Configuration
(_ [Ohl, Bachelor's Thesis (upcoming)]
/" N
® .
Community-Aware MaX'FlfDW Min-Cut
. e1) (e2) €3
Coarsening [ 1AL Refinement
[SEA'17] .) [Heuer, Master’s Thesis (upcoming)]
. J \ y
[ a: b (7 (o) -j V2 Gain-Cache ofo: N
o) - .
oo Fast n-Level m ST T Epawer ]
o o7 Na L‘x ol
v Coarsening PRI
(T Engineered k-way FM
L y L [ALENEX’17] P
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Latest Experimental Results

Instance Subset
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infeasible solutions
e @ @ eeeee
1.00 AT \
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et °
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<
> 0.10 1
3}
& 0.05
—
0.01 7 Algorithm
® KaHyPar-F @ hMetis-K
@ KaHyPar-CA @ PaToH-Q
® hMetis-R ©® PaToH-D
000 = e e T A
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Algorithm t[S]
KaHyPar-CA 21.0
KaHyPar-F  46.8
hMetis-R 63.1
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® n-Level Partitioning Framework
® Obijectives:

® Cut
® Connectivity (A — 1) & L

@ Partitioning Modes: S s, =,

Community
Detection

Sparsification

input hypergraph
cl

KaHyPar

Evolutionar

-
. -7
£ match
c

Uncoarsening
Coarsening

Uncoarsening

® Recursive bisection

® Direct k-way |

O)
Rating Functions g k-Way FM
Interval FM

® Upcoming Features: |
® Evolutionary algorithm |

® Flow-based refinement

Communities [Respect] [ Ignore |

Stopping Rules ®
|__Simple ][ Adaptive |

Acceptance Criterion | best | [prefer unmatched |

___Initial Partitoner

® Advanced local search algorithms oy

Growing

Growing Strategies [ Global | [ Sequential | [ Round-Robin |

- http : //WWW . kahypar . Org | Gain Functions FM | [ Max-Net | [ Max-Net |
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