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Abstract

In recent years there has been an exponential increase in publicly available DNA data. This
data encodes a huge amount of information on the ancestry of organisms, their evolution,
and their abilities and properties. Until recently, it was not possible to search this data
in its entirety. Providing online search facilities would enable research into epidemiology,
basic science of disease, and antimicrobial resistance. Such search would be as enabling
for microbial genomics as natural text search engines are for many everyday tasks.

Recently the Bitsliced Genomic Signature Index (BIGSI) was introduced allow-
ing the search on all viral and bacterial genomic sequence reads in the European Nucleotide
Archive (ENA) [TAA*17]. As of December 2016, the data set consists of 447,833 genomes
using 170 TiB of space. However, longer queries can take up to half an hour on a high
performance machine.

In this thesis we introduce the Compact Bit-Sliced Signature Index (COBS), a new index
variant with significantly improved space and time requirements. In our empirical evalu-
ation we show that execution time is improved by two orders of magnitude while space
requirements are cut in half. For longer queries the execution time can be reduced from
half an hour to under five seconds. Additionally, we enrich the query results with quality
information which can be used for ranking the result set.

Several techniques are introduced which make these improvements possible. A compact
data structure layout is used to achieve large decreases in index size with only a marginal
increase in execution time. Additionally, algorithm engineering techniques are employed to
show why the choice of index parameters made by BIGSI was not optimal and how optimal
parameters can be chosen. This insight is used to significantly reduce execution time.
Next, a new set of equations is introduced to enrich the result with quality information
which gives the user more insight into the composition of the result and could be used
to increase effectiveness in the future. Lastly, we add several low-level optimizations,
exploiting modern hardware, which further lower execution time.

To evaluate the techniques, several experiments are conducted which give insight into index
construction, execution performance, space-time trade-offs, false positive distributions and
the impact of the engineering optimizations. Multiple areas where future work can be
conducted are introduced. Finally, the steps required for the creation of a dynamic online
index which supports sharding on multiple machines are described.

While COBS was constructed to address the challenges of searching large genomic collections,
the main findings can be applied to a wide range of problems.

COBS is written in C++17 and is available at https://github.com/devgg/cobs.


https://github.com/devgg/isi




Zusammenfassung

Die Menge an offentlich zugénglichen DNA Daten stieg in den letzten Jahren exponentiell.
Diese Daten enthalten Informationen zur Abstammung von Organismen und deren Evolu-
tion, Fahigkeiten und Eigenschaften. Bis vor kurzem konnten diese Datenmengen nicht in
ihrer Gesamtheit durchsucht werden. Auf dem Gebiet der Mikrobiellen Genomforschung
wiirden entsprechende Suchoptionen der Forschung neue Moglichkeiten bieten, z.B. im
Bereich der Epidemiologie, bei der Erforschung von Resistenzen gegen Antibiotika und der
Grundlagenforschung.

2017 wurde der Bitsliced Genomic Signature Index (BIGSI) vorgestellt, der es
ermoglicht, alle bakteriellen und viralen Gensequenzen (447.833 Genome, 170 TiB) des
European Nucleotide Archive zu indizieren. Allerdings haben ldngere Anfragen
Antwortzeiten von bis zu einer halben Stunde.

In dieser Arbeit stellen wir den Compact Bit-Sliced Signature Index (COBS) vor. In unser
empirischen Analyse zeigen wir, dass COBS die Ausfithrungszeit um zwei Gréflenordnungen
verringert und der Platzbedarf um die Hilfte reduziert wird. Dies bedeutet, dass ldngere
Anfragen weniger als fiinf Sekunden benétigen. Zusétzlich ergénzen wir die Ergebnisse der
Anfragen mit Qualtidtsinformationen, die zur Bestimmung der Reihenfolge der Ergebnisse
benutzt werden kénnen.

Diese Verbesserungen werden durch mehrere Techniken ermoglicht. Um den Index kom-
pakt zu speichern, wird ein neues Datenstruktur Layout vorgestellt. Dieses Layout wird
benutzt, um die Index Gréfle zu verringern, ohne dabei viel Ausfithrungszeit einzubiiflen.
Wir wenden Algorithm Engineering Techniken an um zu zeigen, welchen Einfluss die Index-
Parameter auf Groéfle und Performance haben. Diese Erkenntnisse werden verwendet, um
die Ausfiirungszeit zu verringern. Es werden Formeln vorgestellt, mit deren Hilfe die Ergeb-
nisse der Anfragen verbessert werden kénnen. Zusétzlich werden mehrere hardwarenahe
Optimierungen eingesetzt, um die Ausfiirungszeit weiter zu senken.

Um Methoden und Optimierungen zu evaluieren wurden mehrere Experimente durchge-
fihrt. Unter anderem wurden Index Konstruktion, Ausfiihrungszeit, verschiedenen Trade-
offs und Optimierungen der Implementierung evaluiert. Zuséatzlich werden mehrere Bere-
iche, in denen weiter Forschung notwendig ist, aufgezeigt, sowie die nétigen Schritte fiir
die Erstellung eines dynamischen Index dargelegt.

Obwohl COBS entwickelt wurde, um die Herausforderungen der unscharfen Suche auf
genomischen Daten zu losen, konnen die Erkenntnisse und der Index in vielen Bereichen
der Wissenschaft genutzt werden.

COBS wurde in C++17 geschrieben und ist unter https://github.com/devgg/cobs verfiig-
bar.
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1. Introduction

The ability to process and understand large collections of data is essential for many fields of
science. Example applications are large-scale physics experiments and autonomous driving.
Recent advances in genome sequencing technology have caused an exponential increase
in raw genomic sequence read data [CAAT12]. Projections expect the amount of data
contained in public sequencing databases such as the European Nucleotide Archive (ENA)
to double every 12 to 18 months [SLFE'15]. This data encodes a huge amount of information
on the ancestry of organisms, their evolution, and their abilities and properties. Providing
online search facilities for bacteria and viruses would enable research into epidemiology,
basic science of disease, and tracking of "mobile elements” that jump between genomes and
species. For example, the problem of antimicrobial resistance, where bacteria develop the
ability not to be killed by specific drugs, is a global threat to public health. This occurs
either through random mutations or by passing entire genes between different bacteria
on long mobile vectors called plasmids. It is therefore of huge value to be able to search
for these mutations, genes and plasmids. Indeed such search would be as enabling for

microbial genomics as natural text search engines are for many everyday tasks.

Nearly all current approaches (SBT, SSBT, A11SomeSBT, Mantis) are focussed on queries on
highly repetitive collections (such as human transcriptomes), which occupy a microscopic
corner of the billions of years of evolution (and therefore diversity) in the tree of life
. However, a large portion of the data available in the public genomic archives is
viral and bacterial data that, due to higher mutation rates, shorter generation times, and
billions of years of evolution, does have a significantly lower similarity. Genomic data can
be stored in two formats. In its raw format, it is stored in many small sequences generated
by an error-prone experimental procedure that oversamples from the genomes that are in
the physical sample under test. In its assembled format, the underlying genome is inferred
from these sequences - this data varies wildly in accuracy, and is lossy when raw input data
comes from more than one genome. Since assembly is a very costly process, most publicly
available data is unassembled. The ENA contains 170 TiB of raw viral and bacterial data
as of December 2016.
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One of the most widely-used tools in all of science is the Basic Local Alignment Search Tool
(BLAST) [AGM™90]. Tt first enabled sequence-level searches over genomic databases. Many
improvements have been made to the basic concept, resulting in numerous BLAST variants
that improve speed and sensitivity. While BLAST and its variants have been widely used,
they rely on the genomic data to be assembled. Additionally, BLAST and its extensions
do not scale well as the amount of data increases. Hence, the amount of data currently
present in public archives cannot be accessed using the traditional methods. As a result,
new tools had to be created to cope with the exponential influx of raw genomic sequence

reads.

Many of the existing information retrieval data structures do not function well due to
the nature of the dataset and the queries. Full-text indexing data structures such as
the Burrows-Wheeler transform or the FM-index currently are not able
to handle data of this scale. Indices known from web search such as the inverted index
are not suitable for the approximate nature of the queries and the lack of “words“ in
the data. Approximate queries are a necessity since the raw genomic reads can contain
sequencing errors and since some applications require the ability to search for similar
sequences. Furthermore, queries of tens of thousands of base pairs in length should be

supported. These challenges led to the creation of several novel tools.

In 2016 Solomon and Kingsford introduced the Sequence Bloom Tree (SBT) [SK16]. This
data structure and the associated algorithms solved the challenges and were used to enable
the search on 2652 human transcriptomic sequences. To allow for approximate pattern
matching a g-gram (also known as n-gram or k-mer) based approach was employed. This
also helps in reducing the original data by removing duplication generated by the sequencing
technique. Additionally, a hierarchy of compressed Bloom filters was used to reduce the
size of the data structure. Later the Split Sequence Bloom Tree (SSBT) [SK17] and the
AllSome Sequence Bloom Tree (A11SomeSBT) were introduced, improving on
the SBT.

Mantis is another large-scale sequence-search index [PABT17]. It follows a fundamentally
different approach than SBT or its variants. Mantis decreases the index construction time,
index size, and execution time. It uses a counting quotient filter to store a
mapping from ¢-gram to a document vector, resulting in various improvements over the
Sequence Bloom Tree and its variants. However, one challenge introduced by the nature
of viral and bacterial data is not addressed by any of these tools. The relatively low
similarity in the genomic sequences of viruses and bacteria results in rapid increases in
index size when new data is added. This is not the case for human sequence data since
these tools compress the index by utilizing similarities within the data set. Since both
problem domains, human genomes and viral and bacterial genomes, are of vital importance
to many research fields the creation of specialized tools is of value. Due to the rapid growth

of the data in both domains, this is especially important.

Recently, bit-sliced signatures were rediscovered as a viable approach to web search.
BitFunnel |[GHL™17|] is an index that addresses several of the challenges traditionally

associated with signature-based indices. Simultaneously, bit-sliced signatures were also
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used in the Bitsliced Genomic Signature Index (BIGSI) [BABR'17]. This index was created
for raw genomic data and does not rely on similarity within the data. BIGSI was used to
index the raw viral and bacterial genomic data available in the ENA. As such, BIGSI was

the first index that was viable for data with the properties described previously.

1.1 Contributions

We introduce the Compact Bit-Sliced Signature Index (COBS) which outperforms BIGSI
in build time, index size and query performance. We show how the index size can be
reduced by sacrificing query performance and how the result can be enriched with quality

information.

COBS solves the challenges of approximate pattern matching on large collections of genomic
data with relatively low similarity. Its implementation outperforms the implementation
of BIGSI by up to two orders of magnitude. Additionally, the space required to index
all the viral and bacterial raw sequence reads of the ENA is reduced by 58% (849 GiB).
COBS enables approximate search on millions of raw genomic sequences with queries of
tens of thousands of characters. Queries of these lengths have various applications such as
searching for a plasmid. Also, the contributions of this publication are applied to genomic
data specifically, they build upon the foundations laid by BitFunnel and can be used in

other scientific fields as well.

There are five main contributions. The index size is reduced by introducing a compact
data structure. It is shown how the variation of index parameters affects index size and
query performance. The result of a query is enriched and several practical engineering
improvements are presented. Lastly, several ideas are proposed to show how the index can

scale dynamically to multiple machines.

Compact Index BIGSI grows linearly with the largest document contained in the index
when new documents are added. This leads to a lot of wasted space when the size
of the documents in the dataset varies. COBS introduces a new data structure which
scales linearly with the mean document size. As a result, for very large collections each
document is stored in a compact way. This comes at a cost of performance. However,
the trade-off between index size and query performance can be made gradually. A
large portion of the index size reduction can be achieved with only a minor increase

in query time.

Algorithm Engineering In recent publications the choice of index parameters was made to
optimize for space usage . However, the performance impact that these
parameter choices have was not made clear. We show how the choice of parameters
influences both index size and query performance. Afterwards, we employ these
findings to construct the index on the ENA dataset.

Result Enrichement To decrease the index size BIGSI uses a set membership data struc-
ture. COBS uses the same underlying structure which leads to result sets that can
contain false positives. We provide a formula which can be used to mitigate the

influence of these false positives. By using this method the result can be enriched
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with quality information that could be used to increase the effectiveness of the index.

This formula can also be used to improve the results of BIGSI.

Optimizations The reference implementation of BIGSI is written in Python. We provide
a C++ implementation of COBS at https://github.com/devgg/cobs. This leads
to a performance increase over BIGSI of up to two orders of magnitude. Multiple
additional performance optimizations have been made. The disk is accessed with
raw direct 1/0, bypassing kernel space buffering. Additionally, Single Instruction
Multiple Data (SIMD) and Open Multi-Processing (OpenMP) are used to speed up

query processing.

Dynamic Index We propose multiple ideas on how to make the index dynamic. That is
to say, how to enable insertion, deletion, and modification. Additionally, we show
how the index can be efficiently sharded onto multiple machines. Further research is

needed to evaluate and build upon these ideas.


https://github.com/devgg/isi

2. Fundamentals

In this chapter, the fundamentals needed to understand the Compact Bit-Sliced Signature
Index are established. The notation used in this thesis is introduced in Section 2.1l Next,
the problem of approximate pattern matching is examined in Section Section
outlines related work in the areas of Information Retrieval (IR) and bioinformatics. We
finish this chapter by formulating the main problem which is solved in the remainder of

the thesis (Section [2.4)).

2.1 Notation

The notation used in the thesis is the common notation used in the field of Stringology,

which differs from notations used in bioinformatics.

A string S is a sequence of characters. The finite ordered set of all characters ¥ is called
alphabet. Since we will be focusing on genomic data our most used alphabet is defined as
the set of all base pairs ¥ = {A, C, G, T}. A g-gram (less commonly n-gram or k-mer) is a
substring of length g. Let G4(S) be the g-gram profile of S [Ukk92]. That is to say, G4(S)
is defined as the vector of all g-grams contained in S. Equation shows the relation
between |G4(S)| and S.

Gg(S)] =S| —gq+1 (2.1)

A document d is a vector of strings such as the contents of a website or the reads of
a genome. Multiple documents form a collection D. To formulate the problem further
notation is introduced in Section

2.2 Approximate Pattern Matching on Genomic Datasets

Understanding the properties of the dataset is the first step in deciding which approximate

pattern matching approach to take. Our goal is to index all viral and bacterial sequence
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reads available in the European Nucleotide Archive (ENA) [TAAT17]. This dataset was
first used in and contains 447,833 documents consisting of sequence reads of
lengths between 35 and 1000 characters. The total dataset has a size of over 170 TiB.
In contrast to the human pan-genome, the pan-genome of bacteria is much larger [LG09].
Additionally, the dataset consists of genomes of different species. As a consequence, the

similarity between genomes in the dataset is comparatively lower.

The raw data consists of genomic sequence reads. Therefore, each document contains
a great deal of duplication (generally substrings are oversampled at least 30 times). In
addition the sequences have an error rate of approximately 0.5% — 3% depending on the
sequencing technique . Assembling the genomes is not optimal for this application
as the input data is not guaranteed to be from one genome, and assembly programs are
heuristic, error-prone and slow. To clean the data, the built-in error-cleaning algorithm of
McCortex [ICTT12| ITMI12] was used.

The problem of approximate pattern matching has been the topic of many publications
[Krul6]. For large datasets a pre-calculated index structure is necessary. Due to the
properties of the dataset, we decided to create an index based on a ¢-gram vocabulary.
This is advantageous for several reasons. As discussed previously, the dataset contains a
lot of duplication which is eliminated by the use of ¢-grams. In other words, duplicate
g-grams can be discarded since it is very unlikely that the same ¢-gram is contained
multiple times in a genome (for sufficiently large ¢). Furthermore, the queries that the
index will need to handle might be several tens of thousands of characters long. As a
consequence, more complex approximate string matching measures like the edit distance are
not computationally feasible and, as was shown in [BABR™17], not necessary for real-world

applications.

For the above reasons, our problem is transformed from approximate pattern matching to
the problem of finding set intersections. That is to say, for each document we want to find
the number of ¢g-grams both contained in the document and the query. For this reason,
we transformed each of the 447,833 documents containing raw sequence reads into a set
of g-grams. This reduced the space requirements for our initial data from 170 TiB to 10
TiB. To reduce redundancy, each ¢g-gram was transformed into its canonical form. In other

words, we use the lexicographical smaller of the forward and the reverse complemented

g-gram sequence as described in [OTM™16].

To choose the g-gram size g, a trade-off must be made between uniqueness and sensitivity.
Longer g-grams are more likely to uniquely define a position in the genome and can be used
to identify a specific mutation. At the same time, identifying a single-base change using
very long ¢-grams is likely to fail due to other nearby mutations. We choose ¢ = 31 which
should result in sufficient uniqueness while still providing enough sensitivity for real-world
applications. Igbal et al. provide further insight into this trade-off.

2.3 Other Approaches

The problem of finding documents relevant to a query is important in many different areas

of scientific research. Traditionally documents were scanned sequentially. Knuth, Morris,
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and Pratt and Boyer and Moore [BM77] introduced algorithms to efficiently scan
text. Both these algorithms scale at least linearly with the length of the documents. For
larger datasets, this quickly becomes prohibitive in terms of time. As a result, precomputed
index structures were introduced [FO9§]. In this section we give an overview of existing
approaches related to the ¢-gram-based pattern matching described in Section First,
we examine the approaches already present in the field of bioinformatics. Afterwards, we

look at the indices classically used for Information Retrieval.

2.3.1 Genomic Sequence-Search Indices

Since the introduction of the Basic Local Alignment Search Tool (BLAST) in 1990
a wide range of tools has been created to manage and organize genomic data. BLAST was
the first tool that allowed efficient comparison of biologic sequence information. It is used
to search for a query sequence in one or multiple target sequences. In a first step, a
heuristic is used to find similar sub-sequences. This step is called seeding. Afterwards,
the similar sub-sequences created during seeding are extended in both directions. During
the extension a score is computed for each alignment. If this score becomes too low
the alignment is excluded from the result. Several improvements have been made to both
speed and sensitivity by tools such as DIAMOND or the BLAST-like Alignment Tool
(BLAT) [Ken02]. However all these tools require the collection to only contain assembled
genomic sequences. Since over 80% of sequences available in archives such as the ENA are

unassembled, new tools had to be created to make this data accessible.

In 2016 the Sequence Bloom Tree (SBT) was introduced by Solomon and Kingsford [SK16].
This data structure uses a binary tree of compressed Bloom filters to efficiently store the
g-grams of a collection. A Bloom filter is a set membership data structure which can be
used to store a set of terms. When querying, the filter might produce a false positive
but not a false negative. In other words, the filter might report that a term that was not

inserted is present but might not report that an element that was inserted is absent.

In the SBT each document is represented as one Bloom filter at a leaf of the binary tree.
An inner node contains all g-grams present in its subtree. When querying this index the
tree can be traversed from the root to find all documents containing at least a certain
percentage of the g-grams. A subtree can be excluded when this threshold of g-grams is
not present in the Bloom filter at its root. Due to its construction algorithm, where nodes
are combined from the leaves down until the root node is created, all Bloom filters have
to have the same size. This size depends on the number of unique ¢-grams present in the

collection.

For a small number of documents with high similarity the number of unique ¢-grams is
relatively small. However, for millions of documents containing viral and bacterial data
with comparatively low ¢-gram sharing, the size of the index would become prohibitive
[BABR*17]. The more recent Split Sequence Bloom Tree (SSBT) and AllSome
Sequence Bloom Tree (A11SomeSBT) [SHCM17] share the same limitation. These indices
improve on the SBT with a similar high-level approach. The main idea is to use two Bloom

filters for the internal nodes of the tree. The first Bloom filter only stores the ¢-grams
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big: 40, di, 42
data: d0, d1, d2

d0: is big data really big great: di1
dl: big data is great in: d2
d2: progress in big data is: dO, di

progress: 42

really: d0

Figure 2.1: The relation between the collection D = {d0,d1,d2} and an inverted index

built on this collection.

present in all children of the node. These ¢-grams do not need to be stored in any of
the children, thereby reducing redundancy. The second Bloom filter stores the rest of the
g-grams that only appear in some of the children. To reduce the total space requirements
both SSBT and A11SomeSBT cluster similar documents into the same subtree. Although
this technique reduces the space requirements when compared to the SBT, the index size
during construction would still remain prohibitive [BABR*17].

Mantis is another large-scale sequence-search index . It uses a counting quotient
filter to store a mapping from ¢-gram to a document vector, resulting in various
improvements over the Sequence Bloom Tree and its variants. A counting quotient filter is
a multiset membership data structure. Mantis uses this structure to store the locations of
compressed bit vectors. To query the index the location to the bit vector associated with
each g-gram is extracted from the counting quotient filter. Multiple g-grams can point to
same bit vector which stores the documents that contain these g-grams. This reduces both
index size and execution time. However, similar to the other approaches Mantis relies on
the high ¢-gram sharing of the human genome and scales superlinearly with the number of
unique terms. Therefore it is not suitable for the properties of the ENA dataset. To our

knowledge, the only index that can be built on a similar dataset and run on consumer grade
hardware is BIGSI [BABR™17|. An introduction to BIGSI is provided in Section m

2.3.2 Inverted Index

Inverted indices are one of the main tools for Information Retrieval in web search
BCC16]. An inverted index is a mapping from every term in a collection to a list of
documents containing it. This allows for quick lookups of documents containing specific
words. Today there exist highly engineered implementations with techniques such as early
termination and top-K retrieval [WMB99| [ZMOG]

1

A collection D can be seen as a mapping from documents to words. Given the document, it
is straightforward to get the list of words contained in it. To allow for the reverse operation,
the mapping needs to be inverted. That is to say, to find all documents which contain
some words one needs to have a mapping from word to document. This is the definition
of an inverted index and is illustrated in Figure
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On the left side a collection D = {d0,d1,d2} is shown. This mapping from document
to words is inverted and the resulting inverted index is shown on the right. An inverted
index can be used to efficiently find the documents containing a set of terms. For example,
the documents ({d0,d1}) containing both the terms big and is can be found quickly by
looking at the relevant rows in the inverted index. However, the properties of our dataset

make the inverted index a suboptimal choice.

The inverted index grows linearly with the number of unique words contained in the
documents of the collection. This is fine for web search where the number of terms is
relatively small compared to the number of documents. For example, 10'? documents
containing 10% unique terms for Google’s index [BABR*17, BP12]. This is not the case
for documents containing ¢-grams based on viral and bacterial sequence reads where the
pan-genome might be of essentially infinite size [LG09]. There, the number of possible
g-grams is 4" which for ¢ = 31 is on the order of 10'®. For the ENA dataset with less than

107 documents there are 10'2 unique g-grams. Therefore we consider other approaches

that do not scale linearly with the number of unique terms.

2.3.3 Signature Files

In the context of Information Retrieval a signature is a way to represent a document d,
typically by a bit pattern that can be created in various ways [FC84]. The most well-known
approach to implement signatures is via Bloom filters. Bloom filters were introduced by
Burton H. Bloom in 1970 and have found application in many areas of computer
science since then. A Bloom filter is a set membership data structure. We will introduce
Bloom filter-based signatures more thoroughly in Section Tarkoma et al. provide a
good overview of current Bloom filter variants in their survey from 2012 [TRL12].

Signature files were first introduced in 1984 by Faloutsos et al. [FC84]. Signature files can
be seen as an index containing signatures for each document in a collection. Signature files
have long been known as a method of Information Retrieval in large collections [FC84].

Zobel et al. deemed signature files inferior to inverted index based approaches in almost
every category measured [ZMRIS].

Originally, signature files stored the signatures of the documents sequentially. One early
improvement was to use signatures of the same size for each of the documents and to
transpose the resulting matrix [Won85]. The resulting index is called Bit-Sliced Signature
Files (BSSF) but can be seen as an inverted index based on signatures. This index,
which we call Bit-Sliced Signature Index, is described in Section

Recently the interest in signature files was reinvigorated by BitFunnel . In
this publication, a set of techniques was introduced to address the challenges classically
associated with signature files. The first technique is called frequency-conscious signatures.
It adjusts the number of hash functions for each term individually. The number of hash
functions is based on the frequency of the term’s occurrence in the collection. Terms that
appear less frequently are assigned more hash functions. This ensures that the number of

false positives is more consistent and also implies a smaller memory footprint.
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Higher rank rows are the second technique proposed. It builds upon the idea of blocked
signature files [SDKR&7, [KSDRI0, [ZMRI8] to reduce execution time. Each of the terms is

hashed into multiple signatures of different sizes. This allows for early pruning when one

of the higher (shorter) signatures reports a negative result. To automatically configure the
number of hash functions and the number and kind of blocks for each term, BitFunnel

uses a performance model. This model is used to perform a constrained optimization.

As described earlier, the signatures of all documents need to have the same size in the
Bit-Sliced Signature Index. Depending on the dataset, this can result in a lot of wasted
space and large differences in false positive rates. Solutions for this problem have been
proposed [ZMR98]. However, each of them comes with several drawbacks making them not
generally applicable. The third technique introduced in the BitFunnel paper is sharding
by document length. Each machine stores one index with documents of similar sizes.
Therefore, little space is wasted and the false positive rate is similar between any two
documents. When working on the scale of web search, sharding by document length is an
improvement at no additional cost since the index needs to be sharded on many machines
anyway. In Section we will introduce a solution that addresses this challenge on a

single machine, thereby creating a compact index.

Bradley et al. introduced BIGSI [BABR™17|, a BSSF-based search index enabling the
indexing of millions of viral and bacterial genome sequence reads. This index was the
first that applied the concept of bit-sliced signatures in the context of large-scale genomic

sequence-search.

2.4 Problem Definition

As discussed in Section the problem of approximate string matching can be solved in
multiple different ways [Krul6]. When taking into account the specific properties of viral
and bacterial genomic data, a g-gram based approach is the most viable. Note that we
ignore the frequency of g-grams in the original documents since ¢ was chosen in a way
that g-grams should be unique within documents. Therefore, the problem of approximate
sequence-search in genomic data is transformed to the problem of counting the number of
g-grams of the query that appear in a document. As a result, the original query string is
divided into its g-gram profile. Let Q = {t1,...,t|g|} be a bag of terms called a query, and
let m = |@| be the number of terms in a query. Then the g-gram genomic search problem
is defined in Problem

Problem 1. Return the number of terms of the query ) that are also contained in

document d, the result may contain false positives. Let r = R(d, Q) be the result, r, be

the number of true positives and r¢, be the number of false positives. Then:
r=ryptrp=[{teQ:tedt +ry

R(d,Q) =rand R(D,Q,¢) ={(i, R(d;,Q)) | di € D A R(d;,Q) > em} are the results of a
query on a document and a collection respectively. The boolean conjunction represented
by € is an optional term. The current index implementation does not contain optimizations

based on €. Therefore, we assume ¢ = 0 for the rest of this work. The Bitsliced Genomic

10
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Signature Index solves Problem (1| We introduce COBS which provides vast improvements

in build time, space requirements and query time.

11






3. Compact Bit-Sliced Signature Index

This chapter gives an in-depth explanation of the Compact Bit-Sliced Signature Index
(COBS). Section gives a thorough explanation of the index and the main scientific
improvements made in this thesis. The engineered implementation details are outlined
in Section Lastly, Section shows how the index can scale to multiple machines
to accommodate the rapid increase in genomic data caused by the advances in genome

sequencing.

3.1 Design

Although COBS was designed to enable large-scale interactive searching of viral and bacterial
data, the index excels in all scenarios where data with similar properties is used. For this
reason and for better comprehensibility, the introduction of the data structure is written in
terms of web search. We first give an overview of Bloom filter-based signatures. Afterwards,
we describe the index and its parameters. Finally, we introduce equations to help the user

understand the quality of the results.

3.1.1 Signatures

Inverted indices scale poorly when there are a lot more unique terms than documents.
This is the case for the ENA dataset since the length of the ¢-grams is chosen such that
g-grams are unique. Signatures are a way to remedy this problem. As discussed in
Section [2.3.3], we use Bloom filters to implement signatures. A Bloom filter-based signature
of a document is a bitstring of w bits. Each of the words of the document is hashed with &
hash functions and the corresponding bits are set to 1. Figure illustrates this process.
Note that v represents the number of unique terms in a document, as inserting the same

element multiple times does not change the signature.

Each of the v = 4 terms is hashed k& = 3 times and the corresponding bits in the signature
are set. Notably the number of set bits of a signature does only depend on the signature

size w, the number of hash functions %, and the number of unique terms v. To check

13



14 3. Compact Bit-Sliced Signature Index

A%

progress in big data

hash functions

w

Figure 3.1: Creation of a Bloom filter-based signature with £ = 3 and w = 16 of the

document d = {progess, in, big, data}.

whether a word is contained in the signature, the hashing process is repeated and the
corresponding bits are checked. The membership query returns true if all the bits are set
and false otherwise. It is easy to see that this can result in false positives but not in false

negatives.

Figure illustrates the different results of a membership query. The signature is the same
as in Figure 3.1l The first query checks whether progress is contained in the signature
and therefore the document. Since all the corresponding bits are set, a positive result is
reported. This is a true positive since the term was contained in the original document.
The second membership test illustrates a negative result. It also shows that multiple hash
functions can point to the same element. The third example illustrates a false positive
result. The word great is not part of the document but the membership test result is

positive.

3.1.2 Bit-Sliced Signature Index

An index can be built on the collection D by creating one signature for each of the
documents. These signatures have to have the same size so that a query always accesses
the same bits in each document. This property can be used to minimize the number of
random accesses by storing the arrays transposed (bit sliced) . The index described
in this section is very similar to BIGSI. To query the index, km rows need to be read. The

complete query process can be seen in

The process starts off by hashing each of the terms in Q = {data,is, great} with £k =3
hash functions. Afterwards, the respective rows are read from disk. Then the rows
corresponding to each of the query terms are combined using the logical AND operation. In
the resulting 3 x 3 matrix each row resembles one of the query terms and each column
one of the documents. A set bit signals that the term is contained in the document. The
result R(D, Q) = {2,3,1} is created by summing up the rows. Finally, we sort the result
so we can return a list of (document name, result)-pairs ordered by the number of matched

terms.

14
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progress

great

Figure 3.2: Three membership queries on the Bloom filter-based signature created in Fig-
ure The first query yields a true positive, the second a (true) negative and
the third a false positive.
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16
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Figure 3.3: Query process of the Bit-Sliced Signature Index.
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3.1. Design 17

3.1.3 Signature Parameters

The false positive rate p of a signature is determined by the number of (unique) inserted
elements v, the number of hash functions k and the size of the signature w [ZMR98]. After
v elements are inserted into the signature, the probability that a specific bit is not set is

(1— %)k” The equations to calculate the false positive rate and the ratio of w to v can be

seen in Equation TRL12|.
kv k
1
w

k
= p R (1 - e_k”/“’)
& 1 —pl/k ~ e hu/w (3.1)
& In(1-pY*) =~ v
w
o wo___ k
v " In(1 —pl/k)

The choice of signature parameters influences false positive rate, index size, and access
time. In previous work [BABR™17], the "optimal” signature parameters were calculated
with Equation BMO04].

vinp
(In2)2

Inp
" In2

(3.2)

This approach optimizes the index size for a given false positive rate. However, the access
time is not taken into account. Figure shows the relation between the false positive
rate and the ratio of w to v. The x-axis corresponds to the index size and the y-axis to
the false positive rate. The number of hash functions correlates to the access time. For
false positive rates greater than 0.39, using only one hash function is optimal in both query
time and space. For lower false positive rates, a trade-off needs to be made between the
ratio of w to v and the number of hash functions. The first four operations in Figure
scale linearly with the number of hash functions and therefore the total access time scales

linearly with k.

For the false positive rate, we follow the logic in [BABR™17], stating that 0.3 should be
sufficient for indexing all ENA datasets. However, since we do not use Equation but
instead consider the trade-off that is illustrated in Figure we choose k = 1, thereby

using 11% more space but cutting access time in half.

3.1.4 Compact Index

The Bit-Sliced Signature Index described previously relies on signatures of equal size for

all documents. This ensures that the input step only reads km rows, thereby minimizing

17
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Figure 3.4: The false positive rate p for different ratios of the signature size w to the
number of inserted elements v. Increasing the number of hash functions k

raises execution.
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Figure 3.5: Comparison between the actual and the optimal signature size for each of the
447,833 documents in the Bit-Sliced Signature Index.

the number of random accesses. However, depending on the dataset, this also creates vast
differences in false positive rate for the documents. Figure shows the optimal and the
actual signature size for each of the 447,833 documents in the Bit-Sliced Signature Index.

The optimal size is the size that corresponds to a false positive rate of 0.3 per document.

For the ENA dataset, this discrepancy results in the Bit-Sliced Signature Index index using
218% more space (1461 GiB) than optimal (459 GiB). To minimize the space required we
propose to use multiple subindices with different signature sizes instead of one index with
one signature size. The resulting signature sizes for 14 subindices can be seen in Figure
Notably, the actual signature size is very close to the optimal signature size for most of

the documents.

Let h be the number of subindices. For h = |D| each document has a signature of optimal
size so no additional space is needed (ignoring space needed to index the subindices). As a
result, the query @ would produce km|D| random disk accesses reading one bit each, which
is not feasible. By using two subindices and therefore doubling the number of random
accesses, the space overhead can already be reduced to 105%. For hard disk drives (HDD),
choosing the number of subindices is a trade-off between space required and disk-seek
overhead. The disk access pattern for h = 1 and h = 3 can be seen in Figure (3.7, When
only one subindex is used with & = 1 each query term produces one long disk read. By
using three subindices, the total index size can be reduced but the number of disk reads

triples. Furthermore, the length of the reads is reduced by two thirds. That is to say, by
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Figure 3.6: Comparison between the actual and the optimal signature size for each of the
447,833 documents in the Compact Bit-Sliced Signature Index.

using more subindices, the number of random reads increases and the length of these reads

decreases. Overall, the same amount of data is read.

We call this index with multiple subindices Compact Bit-Sliced Signature Index (COBS).
The index is compact since the number of subindices (h) increases as new documents are
added to the index. Therefore, by adding new elements, the percentage of the space that
is wasted is reduced. In contrast, the Bit-Sliced Signature Index uses the same amount
of space for each signature, regardless of the length of the document. As a result, the
required space does not depend on the size of the documents but only on the size of the

largest document supported.

In 2009 Chen et al. [CKZ09] showed that SSDs exhibit 31 times greater bandwidth for
small random reads (4 KiB) than HDDs. Two years later Chen et al. demonstrated
that for sufficient queue depth the bandwidth of 4 KiB random reads is more than half of
the bandwidth of 256 KiB sequential reads. Based on these findings and our measurements
in Section we propose a compact index optimized for solid-state drives (SSDs). We
use a subindex size of 8 KiB as a trade-off between index space and execution performance.
On the ENA dataset the space overhead is reduced from 1002 GiB to 153 GiB (85%) when
compared to the Bit-Sliced Signature Index. This comes with a 38% drop in performance.
Alternatively, a subindex size of 26 KiB can be used resulting in a 518 GiB (52%) reduction
in space overhead and only in a 3% drop in performance. Section provides more insight

into the trade-offs of different subindex sizes.
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Figure 3.7: Access pattern for indices with one and three subindices and a single hash

function.

Section describes how direct I/O is used to access the raw block device of the disk.
This requires the data to be read to be aligned at the SSD page boundaries. A page is
the smallest unit of an SSD and is typically 4 KiB in size. As a result, the subindex size
needs to be a multiple of the page size. Additionally, the last subindex which might not
be completely filled needs to be padded to the next page boundary. In Section this
padding is used to grow the index dynamically.

3.1.5 Result Enrichment

The result of a query on one document is the sum of the number of query terms that
are contained in the document (true positives) and the false positives introduced by the
Bloom filter-based signature. As a result, the user has no intuition as to the quality of the
returned result (i.e. how many of the reported g-gram matches were actually contained
in the document and how many were added due to the Bloom filter-based signature). In
this section, a set of equations is introduced to calculate the probability distribution for
the number of true positives actually contained in the original document. This greatly

increases the quality of the results.

We show how the probability distribution can be calculated for a document d when the
corresponding signature has a false positive rate of p, £ hash functions are used, and the
length of the query is m. Since we have no prior knowledge of the data and the queries,
we take a frequentist approach and assume that there is no randomness describing the
number of true positives r¢,. We are trying to find the maximum likelihood for r¢, given
p, k, m, and the result of a query r. To make the quality of the returned results visible,
we introduce Problem

Problem 2. Return the discrete probability distribution f(r¢p; 7, m,p, k) for the number
of true positives r¢, contained in the result r for a query of length m, a false positive rate

p, and k hash functions.

The query contains m terms, r¢, of which are contained in the original document. The

remaining m — 7y, terms are not contained in the document and may result in a negative

21



22 3. Compact Bit-Sliced Signature Index

or in a false positive. For a term to create a false positive, all k£ hash values need to point
to set bits in the signature. The most likely value for 7, can be calculated by examining
the ratio of (false) positive to negative membership test results of the remaining m — r,

terms.

Each of the membership tests of the terms not contained in the original document is an
independent Bernoulli trial, for which the probability of success (a false positive) is P
Let X; = {0,1} be the random variable describing the ith of these trials. Then the set
{Xi |1 <i<m-—ry}is mutually independent. Universal hashing ensures that two
g-grams that are close to each other in the query or the original document do not map to
the same hash value more frequently. Let X = Z;Z“p X, be the random variable for the

total number of false positives.

Since X is the number of successes of independent Bernoulli trials the probability distri-
bution for X is a binomial distribution. For a given r we can calculate the probability

distribution by using one value of the binomial distribution for each possible value of 7.

Let B(z1, 22, 23) be the probability mass function of the binomial distribution, where z; is
the number of successes, 2z is the number of trials, and zj3 is the success probability. Then
the formula for calculating the probability distribution for the number of true positives
can be seen in Equation

f(Ttp;Tymvpv k) X [’(Ttp | X = Tfp)

= B(rtp, m —rip, p*)

d:ef (m - Ttp) (pk;)rfp(l _ pk)m—'r

Tfp

(3.3)

The probability distribution for r¢, is proportional to the likelihood that r¢, has a certain
value given a fixed value for X. This likelihood can be described with the binomial
distribution. Figure illustrates the intuition behind this equation. The illustration
shows the possible results for a query on one document with m = 8 and r = 3. There are
four possible values for r¢;,. In the third row the likelihood of r, = 1 is displayed. For this
value to be true there must have been two false positives and five negatives. This result is
the most probable. Note that the values (0.17,0.30,0.32,025) are not normalized but are

proportional to each other. In other words, ¢, = 1 is almost twice as plausible as r¢, = 3.

The normalized likelihood is the probability distribution of Problem |2l The distribution is
illustrated in Figure

33  B(rip, m—rip, p¥)
. k) =
f(TtpaT7m7p7 ) ?lo B(T*Z', m—i, pk)

(3.4)

Figure shows the true positive distributions for p = 0.3, k = 1, m = 1000, and multiple
values of . Note that only very few documents in the index have the same false positive
probability. Nonetheless, we can still calculate the true positive probability for every result

since we can store the false positive rate for each document individually. The 95% and 99%
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Ty =3 |tp|tp|tp|n |n |n |n|n | B(0,503)~0.17

Tp=2 |tp|tp|fp(n |n |n |n |n | B(1,603)~0.30

rp=1 |tp|fp|fp|n |n |n |n | n | B(2,7,0.3) ~0.32

rp=0 |fp|fp|fp|n |n |n |n | n | B(3,803)~0.25

Figure 3.8: Illustration of the intuition behind the probability distribution of 7¢,. For
m = 8 and r = 3 there are four possible values for ry,. The most likely value,
in this case 1, is determined by the binomial distribution. In other words, the

most likely value for r¢, given m =8, r =3, k=1 and p= 0.3 is 1.

T 300 450 975 700 825 950

rip - mean 2 216 394 575 752 930
rep - 95% CI[1,41] [180, 252] [362, 426] [548, 602] [732, 772] [919, 941]
rep - 99% CI[1,52] [168, 264] [352, 436] [540, 610] [725, 779] [915, 945]

Table 3.1: Confidence intervals for the number of true positives contained in a query result
for p=0.3, k =1, m = 1000 and r € {300, 450, 575, 700, 825, 950}.

confidence intervals are depicted in Table As expected, the higher r is, the smaller

the confidence interval.

3.1.6 Computational Complexity

Let @ be a query of length m. Then the time and I/O complexity of the index query process
can be determined by analysing the individual steps. Each of the query terms is processed
k times in the hash-step. During the input-step each of the hash values is converted into
h 1/0 requests of length |D|/h (|D|/h will never be smaller than the disks block size). The
and-step aggregates the data that has been read from disk. The aggregation is only needed
when k£ > 1. Afterwards, each of the resulting columns is summed once during the add
step. Finally, the sort-step reorders the result set. The number of I/Os can be derived by
analysing the input-step. Let B be the disk block size then the number of 1/Os can be

seen below.

1Dl

2
Mg

Each of the m terms is hashed k times. For each of these hashes |D|/B disk blocks are
read. The computational complexity can be deduced by summing up the computational
complexity of each of the steps of the query process. The and-step is not executed for
kE=1.
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Figure 3.9: Discrete probability distribution of the number of true positives contained
in a query result for fixed values of the false positive rate (p = 0.3), the
number of hash functions (k = 1), the query length (m = 1000) and the result
(r € {300,450, 575,700, 825,950}).
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hash input and sort
-1

O(mik) + O(mk| D)) + O(m(k = 1)|D]) + O(m|D]) + O(|1D|log | D))
— O(mk|D]| + D|log D))

In Section [4.8 we show that for small queries the execution time is dominated by the sorting
term. As expected, for larger queries the other terms dominate the query time. The sort
step currently sorts the whole result set. To enable faster processing of small queries
the reference implementation provides the option to use partial sorting. This drastically

reduces the execution time of smaller queries.

3.2 Engineering Implementation Details

In this section, we outline some of the optimizations that result in a performance increase
of two orders of magnitude over BIGSI. These were used to create a highly optimized C++
implementation that is available at https://github.com/devgg/cobs. The optimizations

can be selectively disabled during compile time.

3.2.1 Linux AIO

Chen et al. showed that exploiting internal parallelism greatly increases the
bandwidth of SSDs. For example, the bandwidth for 4 KiB random reads could be
increased 7.2-fold by increasing the queue depth from 1 to 32. Since a query requires hkm
random disk accesses increasing the queue depth significantly improves I/O performance.
For example, for h = 14, k = 1, and Q) = 65,536, which resembles real-world parameters,

917,504 random reads are necessary.

To achieve optimal I/O performance we use Linux AIO (Asynchronous Input/Output).
Additionally, direct I/O is used to access the raw block device and bypass kernel space
buffering. To maximize queue depth all I/O requests are passed to the kernel with one call

to/io_submit.

3.2.2 SIMD

In the add step of the query process (Figure , the rows are summed up to create the
query result. In this illustration we hid the fact that the rows that are output from the
and step are bitpacked. That is to say, each cell is represented by one bit. In the output
of the add step, however, each document is represented by a 16-bit integer specifying the
number of matched query terms. This poses a problem since the bits need to be unpacked
before they can be processed. Ideally we would like to unpack and process multiple bits at

once.

We use a mapping to expand 8 bits output by the and step to the 128 bits needed by the
add step. This expansion can be seen in Figure

The two-dimensional array on the left represents the bitpacked rows that are output by
the and step. One byte, which corresponds to 8 documents, is used to access the expansion

array. This array has 255 entries with a length of 128 bit each. That is to say, each of the
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|D| bit 128 bit
0: 00000000 65,536
10000010 57— | —=128: 10000000 65,536
m .. 10000000 5— - | 129: | 10000001 5 536
11111111 5 \»130: 10000010 g5 536
255: | 1111111145536

Figure 3.10: The expansion of the bitpacked rows during the add step.

documents is mapped to 16 bits. This is represented in the figure by an eight digit number
with base 65,536. With these 16 bits, the final result can now be calculated by summing
up the expanded values for each document. This is done, for 8 documents at once, with a

single SIMD instruction to reduce the processing time of this expansion by almost 50%.

3.2.3 OpenMP

OpenMP is used in all steps of the query process to make use of the available processing
cores. Most parts of the query algorithm can be trivially parallelized. OpenMP automatically
parallelizes these steps at compile time. The main loop of the hash step is parallelized by
splitting the g-grams equally among the threads. During the following input step only the
creation of the I/O control block (IOCB) structures is parallelized. Again the creation of

the km IOCB structures is equally distributed among threads.

The selected rows returned by the input step are processed in parallel by both the and as
well as the add step. For each of the m g-grams, the and step combines k rows. These m
tasks are again parallelized. Similarly, the add step is parallelized by not summing up all
the expanded rows at once but rather creating as many sub sums as there are threads and
then combining these sums. In other words, the add step requires a reduction to produce

the final sum. The sort step also uses parallelization for the creation of the result pairs.

As can be seen in Section[4.9/not all of these optimizations lead to the expected performance

benefit. Further research is needed to determine the reasons for this behaviour.

3.3 Dynamic Scaling

Most of today’s collections are constantly changing. New web pages are published and
genomes sequenced. As a result, an index needs to be able to dynamically insert, modify
and remove documents. Furthermore, most indices need to support sharding on multiple
machines to accommodate the exponential growth of modern collections. For example,
the raw sequencing data in the European Nucleotide Archive doubles every 10 months
CAAT12].
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To support insertion, modification, and deletion, the padding discussed in Section is
used. Additionally, the rest of the available disk space is utilized by allocating multiple
empty subindices of different sizes. This allows new documents to be inserted into signatures
of smaller size. One drawback of this approach is that each of these subindices needs to
be accessed during the query process. Currently there is no approach that allows the
index to grow dynamically without an increase in space overhead. Therefore the index
should be rebuilt periodically. By modifying the mapping from index column to document
identifier deletion can be supported. A document can be modified by combining deletion

and insertion.

To accommodate for the exponential growth in genomic data and to reduce hardware cost,
the index can be sharded to multiple machines. Naturally, the index is sharded by dis-
tributing its subindices. To evenly distribute both space and computational requirements,
each machine should have an equal amount of subindices with a similar total size. In other

words, the number of subindices determines the execution time.
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4. Evaluation

Currently there are very few indices which operate on a similar dataset. Most existing
indices were built for sequence data with high g-gram sharing across documents. As such,
the existing benchmarks rely on such datasets. Probably the most popular benchmark
for sequence-search was introduced by Solomon and Kingsford [SK16]. In this experiment
2,652 human RNA-sequence reads are indexed and then searched on. This experiment has
been used for performance comparison by [SK17], [SHCM17], [PABT17] and [BABR*17].

While COBS is optimized for millions of relatively small (10 million g-grams) documents with

little g-gram sharing, SBT, SSBT and Mantis perform best on documents with high ¢-gram
similarity. This is demonstrated in [BABR™17] by simulating the storage requirements of
SBT with a growing number of documents. For documents with low g-gram sharing the

size of an SBT with 250,000 documents would exceed one pebibyte.

COBS does not rely on g-gram similarity and therefore can be efficiently used for viral and
bacterial data. SBT, SSBT and Mantis are meant to be used for genomes with high ¢-gram
sharing. As a result, they scale super-linearly with the number of documents for datasets
where g-gram sharing is low. Therefore a comparison between COBS and these tools would
not be of much value. Since BIGSI is meant to operate under similar conditions, we will
compare ourselves to it. BIGSI can be seen as COBS with one subindex (also we add padding
for faster disk access). Therefore we evaluate the relation between subindex size and index

construction time, false positive rate and execution time.

4.1 Procedure

We performed our experiments on an Amazon Web Service i3.8xlarge instance with 32
vCPUs, 244 GiB of memory and 1.9 TB non-volatile SSD-backed instance storage. Despite
these beefy specifications the index can easily be constructed and queried on commodity
hardware, the only requirement being an SSD drive to store the index. Our experiments are
based on all the bacterial and viral genome sequences available in the European Nucleotide
Archive (ENA) as of December 2016. This microbial dataset was first used in [BABR*17].

The 447,833 sequence files were first converted from the raw read format to the intermediate
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McCortex format [ICTT12]. This format was used to remove duplication by converting the
reads to 31-grams. Additionally, the built-in cleaning feature was used to remove erroneous
sequences. Lastly, the McCortex files were converted to a custom format containing just
the unique 31-grams of each document. Since the alphabet of the 31-grams is made up of
the four characters introduced in Section 8 bytes are needed to store one 31-gram. In
other words, each character can be stored in 2 bits and as a result 7 bytes and 6 bits are

required to store one 31-gram.

We build multiple indices to compare the performance implications of different subindex
sizes. The subindex sizes are 2, 4, 8, 12, 16, 28 and 56 kibibytes, respectively. The biggest
index contains all 447,833 documents of the ENA corpus in one subindex. Therefore, it
can be seen as a reimplementation of BIGSI with added padding. Only documents with

less than 10,000,000 unique ¢-grams were included in the indices.

4.2 Index Construction

The indices were constructed on the Research Computing Core of the Wellcome Trust
Centre for Human Genetics at the University of Oxford. Each of the cluster nodes has
16 GiB of memory and a single CPU. However, the index can be built on a single con-
sumer grade machine with less memory. All the indices have been constructed on 447,833
documents containing all bacterial and viral genomic sequences available in the European
Nucleotide Archive as of December 2016. The total size of these documents containing
only the unique ¢g-grams is 10.25 TiB. These files were created from the cleaned McCortex
files in under 170 hours. Each index is constructed in 4 recursive steps, each of which
combines 32 documents/indices (logs, 447,833 = 4, where log* is the iterated logarithm).
Index size, build time and build I/O can be seen in Figure Fluctuations in cluster
load explain the inconsistent build times. As expected smaller subindex sizes improve all

measured metrics.

4.3 Real versus Synthetic Query

Both synthetic and real queries were used to gauge performance. 2,147 DNA sequences
from the Comprehensive Antibiotic Resistance Database (CARD) [MWN™13| were used
to measure real-world performance. The mean length of these queries is 937 base pairs.
For this measurement caching was enabled to better reflect the real-world performance
differences. We speculate that there is no significant difference in execution time between

the two query types.

To confirm this hypothesis we compared the performance of the 2,147 CARD queries with
2,147 synthetic queries of equal length. We repeated the experiment three times and the
results can be seen in Table The execution time is split into the different processing
steps introduced in Section

There are consistent differences in the input and sort step. CARD queries exhibit much
higher similarity, therefore the input step should be faster due to caching effects. For the
sort step we suspect that the different distributions produced by the CARD queries take
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Figure 4.1: Index size, build time and build disk I/O for different subindex sizes

16

28

subindex size [KiB]|

hash input add sort by

CARD 1 s8] 61.37 132.20 32.26 164.76  391.99

CARD 2 [s] 61.51 13231 32.22 164.94  392.26

CARD 3 [s] 61.41 132,79 32.20 163.79  391.47

synthetic 1 [s]  60.87 137.55 32.27 155.12  386.82
synthetic 2 [s]  60.90 136.56 32.25 153.59  384.16
synthetic 3 [s]  61.23 136.83 32.22 157.06 388.34
CARD X [s] 184.29 397.31 96.69 493.49 1175.72

synthetic ¥ [s] 183.00 410.95 96.73 465.77 1159.31
difference [s] -1.29  13.64 0.05 -27.72 -16.41

difference [%)] -0.70 332 0.05 -5.62 -1.40

Table 4.1: Performance difference between CARD and synthetic queries.
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Figure 4.2: Slowdown of the Python implementation over our C++ implementation.

longer to sort than the distributions produced by the synthetic queries. Since sorting is
not the focus of this thesis, no further investigation has been done. Performance of the
other processing steps remains unaffected. This makes sense for hash and and since the
same work needs to be done for these steps regardless of the input. Since there are many
different types of real-world queries that vary greatly in length and similarity, we opted to
continue our measurements with purely synthetic queries that should offer more consistent
results. At the same time the performance of a synthetic query should not differ much

from a real-world counterpart of equal length.

4.4 Practical Benefits of COBS over BIGSI

BIGSI is implemented in Python with an index stored in a Berkeley DB key-value storage.
This results in performance that cannot be compared fairly to our C++ implementation with
direct, aligned device access (Linux aio with 0_DIRECT). To show the practical implications
of using COBS over BIGSI we still decided to do a comparison. For the experiment we query
both indices with synthetic queries of various lengths. Let T be the threshold parameter
of BIGSI which corresponds to € in Problem Furthermore, let K be the parameter
that defines how many of the documents should be returned (top-K) by COBS. Then the
multiplicative slowdown of the BIGSI Python implementation over our C++ implementation
of COBS can be seen in Figure For K = 0 all results are returned.

This figure should give a good idea of the practical benefits of using COBS over BIGSI.
For T = 100% BIGSI uses an exact matching algorithm which is outperformed by our

approximate solution by an order of magnitude. For T' = 0% and T' = 90% the performance
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advantage increases to two orders of magnitudes. Since synthetic random queries are used
a threshold value of T = 90% should result in a very small result set. This early pruning
increases performance for smaller queries but does not impact the performance of bigger

queries significantly.

In practice the performance differences would mean an execution time for a query with
65536 g-grams of under 5 seconds compared to over 27 minutes. To fairly compare the
scientific ideas behind COBS and BIGSI, the rest of our experiments will include an COBS
index with only one subindex which can be seen as an improved version of BIGSI. However,
many of our improvements such as not using a key-value store and padding the data are

applied. Therefore, a pure reimplementation of BIGSI would perform worse.

4.5 False Positive Distribution

One of the challenges recognized by Zobel et al. is the varying false positive
rate within the index. The variance stems from the differences in document lengths. In
other words, documents of different sizes are inserted into Bloom filters of equal size. We
introduced COBS which mitigates this problem by having multiple subindices. COBS groups
documents of similar lengths which results in lower variance in false positive rate and a

smaller memory footprint.

For this experiment, we queried each index 100 times with synthetic random queries that
did not contain g-grams of the original documents. That is to say, the results only consist
of false positives. A histogram was created for each of the indices. Figure shows a
relative histogram of the number of false positives for m = 1000, p = 0.3 and different
subindex sizes. The y-axis shows the percentage of results that had a certain value. Each
result only contains false positives since the queries were constructed to not contain any

of the document’s g-grams.

For a subindex size of 1 bit, each document has a signature with a false positive rate
of exactly 0.3. As a result, the histogram resembles the probability mass function of
the binomial distribution with 1000 tries, 300 successes and a success rate of 0.3. The
histogram for 1 bit was calculated to illustrate what an optimal distribution would look
like. The histograms of the other indices reflect the document size distribution of the ENA
dataset. As expected, smaller subindex sizes resulted in false positive distributions that
are closer to the optimal distribution. That is to say, the distribution for a subindex size
of 1 bit. Notably, the largest index, which corresponds to BIGSI, has very few documents

with the desired number of false positives.

4.6 Execution Performance

The execution time has been measured for the different indices and various query lengths.
A test run consists of 1000 synthetic queries. Fach test run was preceded by 200 warm-up
queries. Figure shows the total execution time for queries of different lengths. For
smaller queries, the execution time is dominated by the sort step. Since the performance

of this step only depends on the number of documents in the index, this step takes constant
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Figure 4.4: Total execution time of queries of different lengths.

time for a given index. For larger queries, the execution time scales linearly with the length

of the query.

Figure illustrates this scaling more clearly. All indices except the 4 KiB index scale
as expected. That is to say, the sort step has a large influence on the execution time of
small queries and the execution time of larger queries increases linearly with the size of the
query. It is not quite clear what causes the decrease of performance for the 4 KiB index

and queries of 256-1024 ¢-grams.

4.7 Space-Time Trade-Off

When creating a COBS two parameters need to be considered. By adjusting the number
of hash functions the false positive rate can be controlled. For the viral and bacterial
dataset a false positive rate of 0.3 is sufficient. For the reasons outlined in Section
using one hash function is enough to achieve this rate. The other parameter that can be
adjusted is the number of subindices. By using more subindices the mean signature size
decreases and the mean false positive rate increases. The values of the increases depend
on the distribution of the document lengths. In Section it was shown that the same
amount of data needs to be read from disk regardless of the subindex size. However, smaller
subindices result in more random disk accesses which, while not prohibitively slow on SSDs,
negatively impacts execution time. While SSDs do not incur as much as a penalty for small
random reads as HDDs, the performance impact of using more subindices is substantial.
Figure illustrates the trade-off between index size and execution time slowdown for the
ENA dataset.
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Figure 4.5: Execution time per g-gram of queries of different lengths.

Each of the plots shows the trade-off between index size and query performance for one
query length. The performance benefit of increasing the index size diminishes for indices
over 28 KiB. These measurements can be used to determine the optimal index parameters
for the experimental machine and the ENA dataset. For the real world index, a subindex
size of 8 KiB was chosen as a reasonable trade-off between the available disk space and
the execution time slowdown of any query. Generally, multiple additional factors influence

the choice of parameters.

Maximum Document Size The maximum document size linearly influences the signature
size of the last subindex. By excluding unusually large documents, the total index
size can be reduced (especially when using a small number of subindices). These
large documents could be indexed in a different fashion. For example, they could be

split up and then inserted into the index.

False Positive Rate The false positive rate can be changed by adjusting the number of
hash functions and/or changing the number of subindices. Its value depends on the
expected query lengths and the desired false discovery rate . For longer
queries a significantly higher false positive rate can be chosen. Although the disk

space reduction is diminishing as the false positive rate approaches 1.

Document Length Distribution The document length distribution directly influences the
effectiveness of increasing the number of subindices. For some distributions it is even
possible that the index size increases when using more subindices (a solution to this
problem is proposed in Section . For example, when all documents have similar
lengths the disk footprint can only be decreased by adjusting the number of hash
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functions.

Disk Space The available disk space constrains the false positive rate and the execution
time. The index size can be decreased by adjusting the number of hash functions
and the number of subindices. Notably for certain false positive rates, decreasing the

number of hash functions can decrease the required disk space.

Execution Time The execution time can be decreased by lowering the number of hash
functions and/or the number of subindices. The effectiveness of increasing the size

of the subindices diminishes.

Space and execution time are dependent on the multitude of factors described above.
Nevertheless, it is reasonable to assume that a subindex size of 8 KiB will result in a good
trade-off between disk space and execution time. The trade-off of the index with 4 KiB is
less consistent, and, for the most relevant query lengths, inferior. Therefore, we choose a

subindex size of 8 KiB to be used as the real world index.

4.8 Execution Time Breakdown

In this experiment we look at the breakdown of the execution time for our chosen subindex
size of 8 KiB. For each of the different query lengths 400 warm-up queries were executed
followed by 800 measurement queries. This experiment was repeated three times. For each
of the individual steps outlined in Section the mean execution time can be seen in
Figure[4.7] As previously explained, the and step is not represented since k = 1.

The first chart shows the breakdown of the absolute execution time, while the second shows
the percentage breakdown. The results are in line with our previous analysis. The sort
step dominates the performance of smaller queries. This can, however, be mitigated by
only doing a partial sort. The C++ implementation of COBS supports partial sorting of the
result set. By using partial sorting the execution time of smaller queries can be reduced
significantly. For the longest queries, the execution time is equally split between CPU time
and I/O time.

The hash step takes approximately 29us for each ¢g-gram. The rest of the measurements
confirm the hypothesis that constant work is performed to hash each ¢-gram. The input
step is one of the two main factors in deciding which subindex size to use, therefore its
execution time per g-gram is shown in Figure There is about a twofold increase in
I/O time when comparing the smallest subindex size to the largest. The only index that
does not perform as expected is the index with a subindex size of 4 KiB. For this index the
I/O time per g-gram increases for queries of lengths between 128 and 1024. We suspect
that this is due to the properties of the specific SSD used in the experiment.

In the sort step the findings from Section are repeated. This step, in theory, only
depends on the number of documents in the index and should be independent of the
number of g-grams. Again, we suspect that caching effects lead to a better execution time
for smaller queries since the construction of the result pairs requires less reordering. In
other words, when constructing the result set fewer elements have to be reordered and

thereby the array access becomes more sequential.
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Figure 4.8: Time taken by the input step for different query lengths and subindex sizes.

4.9 Engineering Optimizations

In Section several engineering optimizations were introduced. The impact of the SIMD
and OpenMP improvements is illustrated in this section. As previously described, we used
the index with a subindex size of 8 KiB. For each of the different query lengths, 400
warm-up queries were executed, followed by 800 measurement queries. Figure shows

the speedup of the optimizations for different query lengths.

The four plots represent the four relevant processing steps introduced in Section
OpenMP is used in every step of the algorithm while SIMD instructions are only used in the
add step. During the hash step, OpenMP is used to parallelize the generation of hashes. The
number of hashes that need to be generated is the product of the number of hash functions
(k) and the query length (m). Surprisingly, using OpenMP does not improve performance.
On the contrary, for smaller queries not using OpenMP results in a significant speedup. We
suspect that the very fast hash algorithm (xxHash) is limited by memory speed. Further
investigation is needed to determine what exactly causes this behaviour. During the input
step the creation of the I/O control block (IOCB) structures is parallelized. This does not
result in a significant performance impact. One I0OCB structure must be created for each
of the km disk reads.

The performance of the add step can be significantly improved by using SIMD and OpenMP.
By using 128-bit SIMD instructions to expand the bitpacked rows, the performance of the
64-bit base implementation can be increased almost exactly twofold. In the future, the
execution speed could be further improved by using 256-bit or 512-bit SIMD instructions.

Furthermore, the expansion is parallelized by OpenMP. Since a reduction is used to calculate
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the sum in a memory-friendly way, using OpenMP results in better performance for longer
queries. Parallelization is used during the sort step to construct the result pairs. Since
sorting only accounts for a small portion of total execution time for longer queries the drop
at m = 213 does not significantly change the total execution time. As a result, the drop
in speedup does not warrant further investigation. The implementation of COBS supports

partial sorting to greatly increase the total execution time of smaller queries.

42



5. Conclusion

This work builds on the ideas of BitFunnel and provides multiple techniques to solve
the challenges of approximate pattern matching on genomic data. We first examine
the specific properties of viral and bacterial genomic data and its implications on the
pattern matching and indexing approach. As a result, a ¢-gram-based approximate pattern
matching approach is chosen. Next, related genomic sequence-search indices are explored.
Most of them are ruled out since they rely on the similarity of the genomic sequences
which is lower for viral and bacterial data. The applicability of classic information retrieval
indices is evaluated. Inverted index-based approaches are not considered further since
the number of unique terms greatly exceeds the number of documents for the viral and
bacterial dataset. Lastly, signature-based indices are shown to be a promising foundation

for our index since they do not scale with the number of unique terms across documents.

The Bit-Sliced Signature Index is introduced which uses Bloom filter-based signatures. This
index is similar to the Bitsliced Genomic Signature Index but has practical
improvements such as not using a key-value storage and padding the rows to the disk block
size. To help with the choice of parameters for this index, the trade-off between using more
hash functions and using more space is examined. We come to the conclusion that the
parameter choice made in is not optimal since the parameters were chosen with
an equation that only minimizes space. Next, the Compact Bit-Sliced Signature Index is
introduced, which uses multiple subindices to store the documents compactly. The second
trade-off between space and execution performance is illustrated, which depends on the

distribution of the document lengths.

The quality of the result is improved by introducing Problem 2| Instead of returning a result
which consists of an unknown number of true and false positives, the probability distribution
for the number of true positives should be returned. The provided equations solve the
problem and thereby increase the confidence of the user in any returned result. Next, the
computational complexity and the engineering implementation details are explored. SIMD
is used to reduce the processing time of the add step by almost 50%. Lastly, ideas are

introduced to outline how the index can scale dynamically and how it can support sharding
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on multiple machines.

To evaluate the impact of the new techniques several experiments are conducted. It is
shown how an index containing 447,833 viral and bacterial datasets can be constructed
in under 140 CPU hours. The difference in performance between synthetic queries and
queries based on the Comprehensive Antibiotic Resistance Database is shown to be below
1.5%. This confirms the hypothesis that the execution time is largely independent of the
type of query used. Next, the practical benefits of using COBS over BIGSI are explored.
For the ENA dataset COBS is up to two orders of magnitude faster and 59% smaller.

As an indicator for the amount of space wasted by the index, the false positive distribution
is examined. As expected, indices with more subindices waste less space and therefore
have more consistent false positives rates. The computational complexity is confirmed
experimentally by looking at the execution time of queries of varying lengths. The execution
time of small queries is dominated by the sort step and longer queries scale linearly with
the number of ¢g-grams. The space-time trade-off of different subindex sizes is examined
and a subindex size of 8 KiB is chosen for the ENA dataset. To show where future research
and engineering efforts are most useful, the total execution time is broken down into
the different processing steps. This confirms the dominance of the sort step for smaller
queries which can be reduced by using the partial sorting capabilities of the provided
C++ implementation. Lastly, the engineering improvements are evaluated for each of the
processing steps. Surprisingly, OpenMP does not increase the performance of the hash
step. Nevertheless, the engineering optimizations decrease the execution time of a query

of average length by a factor of two.

5.1 Future Work

With COBS we have provided an index which substantially improves on the current state of
the art genomic index BIGSI. Furthermore, this work provides insight into space-time trade-
off, engineering optimizations, true positive distributions and the computational complexity
of the index. In the process, new areas of interest in research and implementation have

been uncovered.

While the current index can already scale to millions of documents, its C++ implementation
does not yet support dynamic scaling or sharding across machines. We outline the basic
ideas in Section but further research is necessary to evaluate these ideas or to suggest

better alternatives.

Currently, only the core of the application is implemented. To make the index accessible
to researchers everywhere an online version needs to be deployed. This underlines the need
for the creation of both a web server and a suitable front end. Additionally, an integration

with the big genomic archives would enable the creation of a dynamic online index.

Further research is needed to explore the possibility of improving the execution time
by ending execution early for documents which do not meet the required e-threshold
(Problem [1). By pruning early, the execution time of the add step could be reduced

significantly for high values of €. Furthermore, the performance of the hash step might be
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improved by using a different hashing implementation that benefits from parallelization.

Lastly, a parallel sorting algorithm could further improve the performance of small queries.

Another promising research direction is the trade-off between subindex size/index size
and execution performance. This largely depends on the distribution of lengths of the
documents. For collections with documents of similar lengths, using more subindices, will
not result in a big reduction in space but will reduce the execution time significantly. On
the contrary, for collections containing documents of varying lengths, large amounts of

space can be saved for only a small loss in performance.

Therefore, one could use subindices of varying sizes that fit the document size distribution
more closely. For example, for a corpus of 98,304 documents where two-thirds of the
documents are small and one-third of the documents are large, two subindices of 4 KiB and
8 KiB could be used to minimize both index size and execution performance (4096+8192 =
98,304/8). In the current implementation three subindices with 4 KiB each would be used
which results in three random accesses per ¢-gram and hash function. By using two
subindices of 4 KiB and 8 KiB the space requirements should stay nearly identical but
only two random accesses per g-gram and hash function would be necessary. As we have
shown in Chapter [4] this significantly reduces the execution time of the input step which

accounts for roughly half of the execution time of long queries.
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Acronyms

ASBT AllSome Sequence Bloom Tree.

BIGSI Bitsliced Genomic Signature Index.
BLAST Basic Local Alignment Search Tool.
BLAT BLAST-like Alignment Tool.

BSSF Bit-Sliced Signature Files.

CARD Comprehensive Antibiotic Resistance Database.

COBS Compact Bit-Sliced Signature Index.
ENA European Nucleotide Archive.

I0CB 1/0 control block.

IR Information Retrieval.
OpenMP Open Multi-Processing.

SBT Sequence Bloom Tree.
SIMD Single Instruction Multiple Data.
SSBT Split Sequence Bloom Tree.
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