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Graphs and Hypergraphs A\‘(IT

Graph G = (V, E)
vertices—/‘ kedges

® models relationships between objects
® dyadic (2-ary) relationships
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Graph G = (V, E)
vertices—/‘ Kedges

® models relationships between objects
® dyadic (2-ary) relationships

hyperedge

Hypergraph H = (V, E)
® generalization of a graph
= hyperedges connect > 2 nodes
® arbitrary (d-ary) relationships
m edgeset EC P(V)\ 0
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¢-Balanced Graph and Hypergraph Partitioning A\‘(IT
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Partition (hyper)graph G=(V,E,c:V — Ryg,w : E — Ryy)
into k disjoint blocks V4, ..., Vi s.t.

® blocks V; are roughly equal-sized:

c(Vi) < (1+¢) [22]

® objective function on edges is minimized
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Partition (hyper)graph G=(V,E,c:V — Ryg,w : E — Ryy)
into k disjoint blocks V4, ..., Vi s.t.

® blocks V; are roughly equal-sized: '/- imbalance parameter

V
c(V)) < (1+¢) [%]
® objective function on edges is minimized
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Partition (hyper)graph G=(V,E,c:V — Ryg,w : E — Ryy)
into k disjoint blocks V4, ..., Vi s.t.

® blocks V; are roughly equal-sized: ﬁ imbalance parameter
V) < (1 elv)
c(Vi) < (1+¢) [ i —‘

® objective function on edges is minimized

Common Objectives:
® Graphs:

®ocut: ) (e
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Partition (hyper)graph G=(V,E,c:V — Ryg,w : E — Ryy)
into k disjoint blocks V4, ..., Vi s.t.

® blocks V; are roughly equal-sized: '/— imbalance parameter
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® objective function on edges is minimized
Common Objectives:
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Partition (hyper)graph G=(V,E,c:V — Ryg,w : E — Ryy)
into k disjoint blocks V4, ..., Vi s.t.

® blocks V; are roughly equal-sized: '/— imbalance parameter
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Partition (hyper)graph G=(V,E,c:V — Ryg,w : E — Ryy)
into k disjoint blocks V4, ..., Vi s.t.

® blocks V; are roughly equal-sized: '/— imbalance parameter

c(V) < (1 +¢) [22]

® objective function on edges is minimized
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Partition (hyper)graph G=(V,E,c:V — Ryg,w : E — Ryy)
into k disjoint blocks V4, ..., Vi s.t.

® blocks V; are roughly equal-sized: '/ imbalance parameter
c(V)
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Partition (hyper)graph G=(V,E,c:V — Ryg,w : E — Ryy)
into k disjoint blocks V4, ..., Vi s.t.

® blocks V; are roughly equal-sized: '/— imbalance parameter

c(V) < (1+¢) [F]

® objective function on edges is minimized
Common Objectives:
® Graphs:

B ocut: ) o w(e) =17
® Hypergraphs:

B cut: ) o w(e) =10

® connectivity: > A—1) w(e)

eEcut(

# blocks connected by e
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Variants of Standard Hypergraph Partitioning QAT
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Possibly relevant/interesting variants:

Partitioning with Fixed Vertices:
® some vertices are preassigned to blocks

@ fixed vertices must remain in their block

Partitioning with Variable Block Weights:
® individual block weights U := {U;, ..., U} &\

vy (V)< U a

U:={12,8,11,6}
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Applications

VLSI

Route Planning
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Applications ﬂ(".

Karlsruhe Institute of Technology

VLSI

R"™"> Ax=b e R"
Route Planning Simulation Scientific Computing
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Parallel Sparse-Matrix Vector Product (SpMx V) A\‘(IT

y=ADb

b, by
Yi = ajj + Ak

Setting:
B repeated SpMxV on supercomputer
® Ais large = distribute on multiple nodes

® symmetric partitioning = y & b divided conformally with A
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Parallel Sparse-Matrix Vector Product (SpMx V) A\‘(IT

titute of Technology

(Task: distribute A to nodes of supercomputer such that
® work is distributed evenly

_ @ communication overhead is minimized
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Naive Approach: Rowwise Decomposition

Ac R16><16
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bbbbbbbbbbbb]

X
X X
X
X
X
X X
X X X
X X
X X
X X
X X
X X
X X
X X X
X
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Naive Approach: Rowwise Decomposition QAT

Karlsruhe Institute of Technology

Ac R16><16
bbbbbbbbbbbbbbbb
X X
P X X X
1 X X
X X
X X X
X X
X X X X
X X X
X X X
X X X X
X X X X
X X X
X X X
P X X X X
4 X X
X X X
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Naive Approach: Rowwise Decomposition

Ac R16><16

P

Py

bbbbbbbb

b bbb
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Naive Approach: Rowwise Decomposition QAT

Karlsruhe Institute of Technology

bbbblbbbbbbbbbbbb LoadBalancing?
X X
X X X
P X x =3
X X
X X X
X X
X X X X = 12
X X X
X X X
X X X X
X X X X = 14
X X X
X X X
X X X X
P 4 X X = 12
X X X
Commuication Volume?
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Naive Approach: Rowwise Decomposition

A€R16><16
bbbbb\\bbbbbbbbbbb
X » X
P X X X
1 X X
X X
X X X
X X
X X X
X X X
X X X
X X X X
X X X X
X X X
xJ X X
P X X X X
4 X X
X X X

Commuication Volume?
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Naive Approach: Rowwise Decomposition

Ac R16><16

P

Py

bbbbbbbb

b bbb

X

Commuication Volume? = 24 entries!
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Naive Approach: Rowwise Decomposition QAT
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Ac R16><16

Can we do better?
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From SpMxV to Hypergraph Partitioning A\‘(IT

Karlsruhe Institute of Technology

AcR1%%16 = H = (Vg, Ec)

B one vertex per row: [bbbbbbbbbbbbbbbb
X X
:>VR={V1,V2,...,V16} X X X
X X
® one hyperedge per column: X X
— X X X
iEc—{eheg,...,em} Y x
X X X X
X X X
X X X
X X X X
X X X X
X X X
X X X
X X X X
X X
i X X X_
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AcR1%%16 = H = (Vg, Ec)

B one vertex per row: [bbbbbbbbbbbbbbbb
X X
:>VR={V1,V2,...,V16} X X X
X X
® one hyperedge per column: X X
- X X X
= Ec={e1,60,...,€16} Y x
X X X X
X X X
vi € Vg Vo X X X
_ X X X X
® task to compute inner product of X X X X
row j with b X X X
X X X
® = c(v,) := # nonzeros X X . S
i X X X_
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From SpMxV to Hypergraph Partitioning A\‘(IT

Karlsruhe Institute of Technology

AcR1%%16 = H = (Vg, Ec)

B one vertex per row: [bbbbiblbbbbbbbbbbb
X X
:>VR={V1,V2,...,V16} X X X
_ X X
® one hyperedge per column: X X
—_ X X X
= Ec={e1,60,...,€16}  |x
X X X X
X X X
vi € Vg Vo X X X
_ X X X X
® task to compute inner product of X X X X
row i with b X X X
X X X
® = c(v,) := # nonzeros XX . S
i X X X_
€5

e; € Ecf set of vertices that need b;
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From SpMxV to Hypergraph Partitioning A\‘(IT

Karlsruhe Institute of Technology

Solution: ¢-balanced partition of H
® balanced partition ~~ computational load balance

- small (A — 1)-cutsize ~~ minimizing communication volume)
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From SpMxV to Hypergraph Partitioning A\‘(IT

Karlsruhe Institute of Technology
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Karlsruhe Institute of Technology
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Karlsruhe Institute of Technology
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From SpMxV to Hypergraph Partitioning Aﬂ("‘

llllllllllllllllllllllllllllll

9  Sebastian Schlag — Brief Introduction to Hypergraph Partitioning Institute of Theoretical Informatics
Algorithmics Group



From Hypergraph Partitioning to SpMxV A\‘(IT
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bbbbbbbbbbbbbbbb
X X X X
P X X X
1 X X X
X X
X X
X X X X
X X X X
X X
X X X
X X
X X X X
X X X
X X X
P X X X
4 X X X
X X X
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From Hypergraph Partitioning to SpMxV AT
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bbbbbbbbbbbbbbbb .
Load Balancing?
X X X X
P X X X
1 X X X
X X
X X
X X X X
X X X X
X X
X X X
X X
X X X X
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X X X
P X X X
4 X X X
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From Hypergraph Partitioning to SpM xV

b blbbbbbbbb

b bbb

x| |T
X X X||T
<

P

P

X
X
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From Hypergraph Partitioning to SpM xV

Where are the cut-hyperedges?

bbbbbbbbbb

b bbb

< |
X X X||T
>

P

P

X
X

Commuication Volume?
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From Hypergraph Partitioning to SpM xV

P

P

Where are the cut-hyperedges?

5 9i1 e{ eiz
bbbblbbbbbbbbbbbhb
X X X

X X X
X X
X
X X
X X X X
X X X X
X X
X X X
X X
X X X X
X X X
X X X
X X X
X X X
X X X

Commuication Volume? = 6 entries!
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How does
Hypergraph Partitioning

work?
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Bad News:
® hypergraph partitioning is NP-hard

@ even finding good approximate solutions for graphs is NP-hard )
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Successful Heuristic: Multilevel Paradigm QAT

Input Hypergraph

Coarsening
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Input Hypergraph

Coarsening

Ir.li-’tial-I O
Partltlonlng
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Successful Heuristic: Multilevel Paradigm QAT
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Input Hypergraph

VN
e o o m
O) = c
C local search =
c D
& &
S ©
®© O
O &)
o } uncontract ::)
: F
Initial
Partitioning
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Karlsruhe Institute of Technology

Coarsening
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Clustering-based Coarsening A\‘(IT

Common Strategy: avoid global decisions ~~ local, greedy algorithms

[Objective: identify highly connected vertices]
}using...

/

foreach vertex v do /
‘ cluster[v] := argmax rating(v,.)
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Clustering-based Coarsening A\‘(IT

Common Strategy: avoid global decisions ~~ local, greedy algorithms

[Objective: identify highly connected vertices]
}using...

/

foreach vertex v do /
‘ cluster[v] := argmax rating(v,.)

Main Design Goals:
1: reduce size of nets ~~ easier local search

2: reduce number of nets ~~ easier initial partitioning

3: maintain structural similarity ~~ good coarse solutions
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Clustering-based Coarsening A\‘(IT
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Main Design Goals:
1: reduce size of nets ~~ easier local search

2: reduce number of nets ~~ easier Initial partitioning

WW

15  Sebastian Schlag — Brief Introduction to Hypergraph Partitioning Institute of Theoretical Informatics
Algorithmics Group



Clustering-based Coarsening A\‘(IT

titute of Technology

Main Design Goals:
1: reduce size of nets ~~ easier local search

2: reduce number of nets ~~ easier Initial partitioning

WW

—> hypergraph-tailored rating functions:

r(u,v) = > ,‘:,@1

net e
containing u,v
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1: reduce size of nets ~~ easier local search
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Main Design Goals:
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—> hypergraph-tailored rating functions:
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net e W .. with small size

large number & containing u,v
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3: maintain structural similarity ~~ good coarse solutions
— > prefer clustering over matching

—> ensure ~balanced vertex weights
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Main Design Goals:
1: reduce size of nets ~~ easier local search \/

2: reduce number of nets ~~ easier Initial partitioning v

WW

—> hypergraph-tailored rating functions:

Z w(e) <==w— of heavy nets ...
e <1

net e W .. with small size

large number & containing u,v

r(u, v) =

_— o . o
3: maintain structural similarity ~~ good coarse solutions s(\‘
— > prefer clustering over matching OOQ
i ensure ~balanced vertex weights 00
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What could possibly go wrong? A\‘(IT
... a lot:

“ T i

input obscured clusters
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What could possibly go wrong? &‘(IT
... a lot:

N
u 7
u, v}
input obscured clusters

4 )

maximal matching random tie-breaking

ISSUES
prefer unclustered heavy neighbors )
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What could possibly go wrong? A\‘(IT

HE R a IOt :
N
U N
{u, v}
input obscured clusters
4 N
maximal matching random tie-breaking
ISSUES

prefer unclustered heavy neighbors )

—>Problem: relying only on local information!
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W, v}

input obscured clusters

17  Sebastian Schlag — Brief Introduction to Hypergraph Partitioning Institute of Theoretical Informatics
Algorithmics Group



17

Community-aware Coarsening

SKIT

Karlsruhe Institute of Technology

W, v}

obscured clusters

SOLUTION

community detection
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Community-aware Coarsening A\‘(IT

Karlsruhe Institute of Technology

O ~ O]
. {u, v}

input obscured clusters

SOLUTION

community detection

Framework:
B preprocessing: determine community structure

® only allow intra-community contractions
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Initial Partitionin
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Initial Partitioning AT

® use portfolio of algorithms ~~ diversification
® random partitioning
® pbreadth-first search
® greedy hypergraph growing
® size-constrained label propagation

= try all algorithms multiple times
= select partition with best cut & lowest imbalance as initial partition

Q 9 e [O] initial partition
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Karlsruhe Institute of Technology

Local Search
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Fiduccia-Mattheyses Algorithm AUT

Karlsruhe Institute of Technology

Algorithm 1: FM Local Search A

while — done do
find best move
perform best move

cut

I rollback |
' !

' >
rollback to best solution MOVeS
N~ can worsen solution
Example for Graphs:
@ compute gain g(v) = Aext(V) — At (V)
® alternate between blocks
@ edge-cut: 7
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Fiduccia-Mattheyses Algorithm AUT
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Algorithm 1: FM Local Search A

while — done do
find best move
perform best move |
rollback to best solution moves

~——___ can worsen solution

cut

|
| o rollback |
' |

>

Example for Graphs:

@ compute gain g(v) = Aext(V) — Ant(V)
@ alternate between blocks

@ edge-cut: 7
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Fiduccia-Mattheyses Algorithm AUT

Karlsruhe Institute of Technology

Algorithm 1: FM Local Search A

while — done do
find best move
perform best move |
rollback to best solution moves

~——___ can worsen solution

cut

|
| o rollback |
' |

>

Example for Graphs:

@ recalculate gain g(v) of neighbors
® move each node at most once

@ edge-cut: 7,6
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Algorithm 1: FM Local Search A

while — done do
find best move
perform best move |
rollback to best solution moves

~——___ can worsen solution

cut

|
| o rollback |
' |

>

Example for Graphs:

@ recalculate gain g(v) of neighbors
® move each node at most once

@ edge-cut: 7, 6,5
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Algorithm 1: FM Local Search A

while — done do
find best move
perform best move |
rollback to best solution moves

~——___ can worsen solution

cut

|
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Example for Graphs:

@ recalculate gain g(v) of neighbors
@ move each node at most once
@ edge-cut: 7,6,5,5
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Example for Graphs:

@ recalculate gain g(v) of neighbors
® move each node at most once

@ edge-cut: 7,6,5,5,6
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Algorithm 1: FM Local Search A

while — done do
find best move
perform best move |
rollback to best solution moves

~——___ can worsen solution

cut

I rollback |
' !

>

Example for Graphs:

@ recalculate gain g(v) of neighbors
@ move each node at most once
@ edge-cut: 7,6,5,5,6

!

rollback
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KaHyPar - Karlsruhe Hypergraph Partitioning

® n-Level Partitioning Framework

® Obijectives:
® hyperedge cut
® connectivity (A — 1)
@ Partitioning Modes:
® recursive bisection
® direct k-way
® Additional Features:

® evolutionary algorithm
® flow-based refinement
® fixed vertices

® variable block weights

® http://www.kahypar.org

Sebastian Schlag — Brief Introduction to Hypergraph Partitioning

SKIT

Karlsruhe Institute of Technology
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