

Brief Introduction to Hypergraph Partitioning

Bioinformatics Programming Practical Kickoff Meeting · April 19, 2018 Sebastian Schlag

INSTITUTE OF THEORETICAL INFORMATICS · ALGORITHMICS GROUP

Graphs and Hypergraphs

Graph
$$G = (V, E)$$
vertices edges

- models relationships between objects
- \blacksquare dyadic (**2-ary**) relationships

Graphs and Hypergraphs

Graph
$$G = (V, E)$$
vertices edges

- models relationships between objects
- \blacksquare dyadic (**2-ary**) relationships

Hypergraph H = (V, E)

- generalization of a graph⇒ hyperedges connect ≥ 2 nodes
- arbitrary (d-ary) relationships
- lacksquare edge set $E\subseteq\mathcal{P}\left(V
 ight)\setminus\emptyset$

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

 $lacks V_i$ are **roughly equal-sized**:

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

lacks blocks V_i are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

• blocks V_i are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

• blocks V_i are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

- Graphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e)$

Partition (hyper)graph $G = (V, E, c : V \to R_{>0}, \omega : E \to R_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

• blocks V_i are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

- Graphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e) = 17$

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

• blocks V_i are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

- Graphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e) = 17$

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

lacksim blocks V_i are roughly equal-sized:

imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

- Graphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e) = 17$
- Hypergraphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e)$

Partition (hyper)graph $G = (V, E, c : V \to R_{>0}, \omega : E \to R_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

• blocks V_i are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

- Graphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e) = 17$
- Hypergraphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e) = 10$

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

lacksim blocks V_i are roughly equal-sized:

imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

- Graphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e) = 17$
- Hypergraphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e) = 10$
 - connectivity: $\sum_{e \in \text{cut}} (\lambda 1) \, \omega(e)$

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

lacks blocks V_i are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

Common Objectives:

- Graphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e) = 17$
- Hypergraphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e) = 10$
 - connectivity: $\sum_{e \in \text{cut}} (\lambda 1) \omega(e)$

blocks connected by e

Partition (hyper)graph $G = (V, E, c : V \to R_{>0}, \omega : E \to R_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

• blocks V_i are roughly equal-sized:

imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

Common Objectives:

- Graphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e) = 17$
- Hypergraphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e) = 10$
 - connectivity: $\sum_{e \in \text{cut}} (\lambda 1) \omega(e) = 12$

blocks connected by e -

Variants of Standard Hypergraph Partitioning

Possibly relevant/interesting variants:

Partitioning with Fixed Vertices:

- some vertices are preassigned to blocks
- fixed vertices must remain in their block

Partitioning with Variable Block Weights:

- individual block weights $U := \{U_1, \ldots, U_k\}$
- $\forall V_i : c(V_i) \leq U_i$

 $U := \{12, 8, 11, 6\}$

Applications

VLSI Design

Warehouse Optimization

Complex Networks

Route Planning

Simulation

Scientific Computing

Applications

VLSI Design

Warehouse Optimization

Complex Networks

Route Planning

Simulation

Parallel Sparse-Matrix Vector Product (SpM×V)

$$y = Ab$$

$$\begin{vmatrix} b_{i} & b & b_{k} \\ \vdots & \vdots & \vdots \\ a_{ij} & + & a_{ik} \end{vmatrix}$$

Setting:

- repeated SpM×V on supercomputer
- lacksquare A is large \Rightarrow distribute on multiple nodes
- lacktriangle symmetric partitioning $\Rightarrow y \& b$ divided conformally with A

Parallel Sparse-Matrix Vector Product (SpM×V)

$$y = Ab$$

 b_j b_k

Task: distribute *A* to nodes of supercomputer such that

- work is distributed evenly
- communication overhead is minimized

Setting:

- repeated SpM×V on supercomputer
- lacksquare A is large \Rightarrow distribute on multiple nodes
- \blacksquare symmetric partitioning $\Rightarrow y \& b$ divided conformally with A

$$A \in \mathbf{R}^{16 \times 16}$$

$$A \in \mathbf{R}^{16 \times 16}$$

$$A \in \mathbf{R}^{16 \times 16}$$

Load Balancing?

$$\Rightarrow 9$$

$$\Rightarrow$$
 12

$$\Rightarrow$$
 14

$$\Rightarrow$$
 12

$$A \in \mathbf{R}^{16 \times 16}$$

Load Balancing?

$$\Rightarrow$$
 9

$$\Rightarrow$$
 12

$$\Rightarrow$$
 14

$$\Rightarrow$$
 12

Commuication Volume?

$$A \in \mathbf{R}^{16 \times 16}$$

Load Balancing?

$$\Rightarrow$$
 9

$$\Rightarrow$$
 12

$$\Rightarrow$$
 14

$$\Rightarrow$$
 12

Commuication Volume?

$$A \in \mathbf{R}^{16 \times 16}$$

Load Balancing?

$$\Rightarrow$$
 9

$$\Rightarrow$$
 12

$$\Rightarrow$$
 14

$$\Rightarrow$$
 12

Commulcation Volume? \Rightarrow 24 entries!

Commulcation Volume? ⇒ 24 entries!

$$A \in \mathbf{R}^{16 \times 16} \Rightarrow H = (V_R, E_C)$$

one vertex per row:

$$\Rightarrow V_R = \{v_1, v_2, \dots, v_{16}\}$$

one hyperedge per column:

$$\Rightarrow E_C = \{e_1, e_2, \dots, e_{16}\}$$

$$A \in \mathbf{R}^{16 \times 16} \Rightarrow H = (V_R, E_C)$$

one vertex per row:

$$\Rightarrow V_R = \{v_1, v_2, \ldots, v_{16}\}$$

one hyperedge per column:

$$\Rightarrow E_C = \{e_1, e_2, \ldots, e_{16}\}$$

$v_i \in V_R$:

- task to compute inner product of row i with b
- $\Rightarrow c(v_i) := \# \text{ nonzeros}$

	1	2	3	4	5	6	7	8	9	10	<u></u>	12	3	7	12	19
	b									b	b	b	b	b	b	b
1	Γχ									X						٦
1 2 3 4 5 6 7		X			X							X				
3			X			X										
4				X							X					
5	X				X								X			
6						X										
-		X			X		X		X							
8				X				X			X					
9 9									X			X			X	
. 10	X						X			X			X			
11			X								X	X		X		
12											X	X				X
13					X		X						X			
14					X	X						X		X		
15									X						X	
16				X				X								X

$$A \in \mathbf{R}^{16 \times 16} \Rightarrow H = (V_R, E_C)$$

one vertex per row:

$$\Rightarrow V_R = \{v_1, v_2, \dots, v_{16}\}$$

one hyperedge per column:

$$\Rightarrow E_C = \{e_1, e_2, \ldots, e_{16}\}$$

$v_i \in V_R$:

- task to compute inner product of row i with b
- $ightharpoonup \Rightarrow c(v_i) := \# \text{ nonzeros}$

 $e_j \in E_C$: set of vertices that need b_j

$$A \in \mathbf{R}^{16 \times 16} \Rightarrow H = (V_R, E_C)$$

one vertex per row:

$$\Rightarrow V_R = \{V_1, V_2, \ldots, V_{16}\}$$

one hyperedge per column:

$$\Rightarrow E_C = \{e_1, e_2, \dots, e_{16}\}$$

Solution: ε -balanced partition of H

- balanced partition \(\simeq \) computational load balance
- \blacksquare small $(\lambda 1)$ -cutsize \rightsquigarrow minimizing communication volume

From Hypergraph Partitioning to SpM×V

Load Balancing?

Load Balancing?

$$\Rightarrow$$
 12

$$\Rightarrow$$
 12

$$\Rightarrow$$
 12

Where are the cut-hyperedges?

Commuication Volume?

Where are the cut-hyperedges?

Load Balancing?

$$\Rightarrow$$
 12

$$\Rightarrow$$
 12

$$\Rightarrow$$
 12

$$\Rightarrow$$
 12

Commulcation Volume? ⇒ 6 entries!

How does Hypergraph Partitioning work?

How does

Bad News:

- hypergraph partitioning is NP-hard
- even finding good approximate solutions for graphs is NP-hard

Successful Heuristic: Multilevel Paradigm

Successful Heuristic: Multilevel Paradigm

Successful Heuristic: Multilevel Paradigm

Coarsening

Common Strategy: avoid global decisions \rightsquigarrow **local**, greedy algorithms

Objective: identify highly connected vertices

using...

foreach vertex v do

cluster[v] := argmax rating(v,u)

neighbor u

Common Strategy: avoid global decisions → **local**, greedy algorithms

Main Design Goals: [Karypis, Kumar 99]

1: reduce size of nets → easier local search

2: reduce **number** of nets → easier initial partitioning

3: maintain structural similarity → good coarse solutions

Main Design Goals:

1: reduce **size** of nets → easier local search

2: reduce **number** of nets \rightsquigarrow easier initial partitioning

Main Design Goals:

1: reduce size of nets → easier local search

2: reduce **number** of nets \rightsquigarrow easier initial partitioning

$$r(u, v) := \sum_{\substack{\text{net } e \\ \text{containing } u, v}} \frac{\omega(e)}{|e|-1}$$

Main Design Goals:

1: reduce size of nets → easier local search

2: reduce **number** of nets \rightsquigarrow easier initial partitioning

$$r(u, v) := \sum_{\substack{\text{net } e \\ \text{containing } u, v}} \frac{\omega(e)}{|e|-1}$$

Main Design Goals:

1: reduce size of nets → easier local search

2: reduce **number** of nets \rightsquigarrow easier initial partitioning

$$r(u, v) := \sum_{\substack{\text{net } e \\ \text{containing } u, v}} \frac{\omega(e)}{|e|-1}$$
 of heavy nets ...

Main Design Goals:

1: reduce size of nets → easier local search

2: reduce **number** of nets \rightsquigarrow easier initial partitioning

$$r(u, v) := \sum_{\substack{\text{net } e \\ \text{containing } u, v}} \frac{\omega(e)}{|e|-1}$$
 of heavy nets ... with small size

Main Design Goals:

1: reduce size of nets → easier local search

2: reduce **number** of nets \rightsquigarrow easier initial partitioning

$$r(u, v) := \sum_{\substack{\text{net } e \\ \text{containing } u, v}} \frac{\omega(e)}{|e|-1}$$
 of heavy nets ... with small size

Main Design Goals:

1: reduce size of nets \rightsquigarrow easier local search

2: reduce **number** of nets \rightsquigarrow easier initial partitioning

hypergraph-tailored rating functions:

$$r(u, v) := \sum_{\substack{\text{net } e \\ \text{containing } u, v}} \frac{\omega(e)}{|e|-1}$$
 of heavy nets ... with small size

3: maintain structural similarity → good coarse solutions

- prefer clustering over matching
- ⇒ ensure ~balanced vertex weights

Main Design Goals:

1: reduce size of nets \rightsquigarrow easier local search

2: reduce **number** of nets \rightsquigarrow easier initial partitioning

hypergraph-tailored rating functions:

$$r(u, v) := \sum_{\substack{\text{net } e \\ \text{containing } u, v}} \frac{\omega(e)}{|e|-1}$$
 of heavy nets ... with small size

3: maintain structural similarity → good coarse solutions

 \Longrightarrow ensure \sim balanced vertex weights

What could possibly go wrong?

... a lot:

What could possibly go wrong?

... a lot:

What could possibly go wrong?

Problem: relying only on local information!

Community-aware Coarsening

Community-aware Coarsening

Community-aware Coarsening

Framework:

- preprocessing: determine community structure
- only allow intra-community contractions

Initial Partitioning

Initial Partitioning

- use portfolio of algorithms → diversification
 - random partitioning
 - breadth-first search
 - greedy hypergraph growing
 - size-constrained label propagation
- ⇒ try all algorithms multiple times
- ⇒ select partition with **best** cut & **lowest** imbalance as initial partition

Local Search

Algorithm 1: FM Local Search

while ¬ done do

find best move perform best move

rollback to best solution

can worsen solution

- compute gain $g(v) = d_{ext}(v) d_{int}(v)$
- alternate between blocks
- edge-cut: **7**

Algorithm 1: FM Local Search

while ¬ done do

find best move perform best move

rollback to best solution

can worsen solution

- compute gain $g(v) = d_{ext}(v) d_{int}(v)$
- alternate between blocks
- edge-cut: 7

Algorithm 1: FM Local Search

while ¬ done do

find best move perform best move

rollback to best solution

can worsen solution

- compute gain $g(v) = d_{ext}(v) d_{int}(v)$
- alternate between blocks
- edge-cut: 7

can worsen solution

Example for Graphs:

rollback to best solution

- recalculate gain g(v) of neighbors
- move each node at most once
- edge-cut: 7, 6

- ightharpoonup recalculate gain g(v) of neighbors
- move each node at most once
- edge-cut: 7, 6

Example for Graphs:

- **recalculate** gain g(v) of neighbors
- move each node at most once
- edge-cut: 7, 6,5

can worsen solution

while ¬ done do

find best move perform best move

rollback to best solution

can worsen solution

- \blacksquare recalculate gain g(v) of neighbors
- move each node at most once
- edge-cut: 7, 6,5,5

while ¬ done do

find best move perform best move

rollback to best solution

can worsen solution

- \blacksquare recalculate gain g(v) of neighbors
- move each node at most once
- edge-cut: 7, 6,5,5

while ¬ done do

find best move perform best move

rollback to best solution

can worsen solution

- ightharpoonup recalculate gain g(v) of neighbors
- move each node at most once
- edge-cut: 7, 6,5,5,6

Algorithm 1: FM Local Search

while ¬ done do

find best move perform best move

rollback to best solution

can worsen solution

- \blacksquare recalculate gain g(v) of neighbors
- move each node at most once
- edge-cut: 7, 6,5,5,6

KaHyPar - Karlsruhe Hypergraph Partitioning

- n-Level Partitioning Framework
- Objectives:
 - hyperedge cut
 - connectivity (λ − 1)
- Partitioning Modes:
 - recursive bisection
 - direct k-way
- Additional Features:
 - evolutionary algorithm
 - flow-based refinement
 - fixed vertices
 - variable block weights
- http://www.kahypar.org

References

[ALENEX'16]: S. Schlag, V. Henne, T. Heuer, H. Meyerhenke, P. Sanders, Christian Schulz. *k*-way Hypergraph Partitioning via *n*-Level Recursive Bisection. In 18th Workshop on Algorithm Engineering and Experiments, (ALENEX), pages 53–67, 2016.

[ALENEX'17]: Y. Akhremtsev, T. Heuer, P. Sanders, and S. Schlag. Engineering a direct k-way hypergraph partitioning algorithm. In 19th Workshop on Algorithm Engineering and Experiments, (ALENEX), pages 28–42, 2017.

[SEA'17]: T. Heuer and S. Schlag. Improving Coarsening Schemes for Hypergraph Partitioning by Exploiting Community Structure. In 16th International Symposium on Experimental Algorithms, (SEA), page 21:121:19, 2017.

[SEA'18]: T. Heuer, P. Sanders, S. Schlag. Network Flow-Based Refinement for Multilevel Hypergraph Partitioning. In 17th International Symposium on Experimental Algorithms (SEA), 2018, preprint arXiv:1802.03587.

[GECCO'18]: R. Andre, S. Schlag, and C. Schulz. Memetic Multilevel Hypergraph Partitioning. In Genetic and Evolutionary Computation Conference (GECCO), 2018, preprint arXiv:1710.01968.

[Karypis, Kumar 99]: G. Karypis and V. Kumar. Multilevel K-way Hypergraph Partitioning. In Proceedings of the 36th ACM/IEEE Design Automation Conference, pages 343–348. ACM, 1999.