

High-Quality (Hyper)Graph Partitioning

ICIAM · Combinatorial Scientific Computing · July 15th, 2019

Y. Akhremtsev, T. Heuer, P. Sanders, S. Schlag, C. Schulz, D. Seemaier, D. Strash

Institute of Theoretical Informatics · Algorithmics Group

Research Areas in Peter Sanders' Group

Graph Partitioning

Shared-Memory Data Structures

Route Planning

Text Indexing

SAT Solving

Hypergraph Partitioning

Parallel Sorting

Communication-Efficient Algorithms

Graph Generators

This Talk: Hypergraph & Graph Partitioning

Graph Partitioning

Shared-Memory Data Structures

Route Planning

Text Indexing

SAT Solving

Hypergraph Partitioning

Parallel Sorting

Communication-Efficient Algorithms

Graph Generators

Research Methodology

Graphs and Hypergraphs

Graph
$$G = (V, E)$$
vertices edges

- Models relationships between objects
- Dyadic (2-ary) relationships

Hypergraph H = (V, E)

- Generalization of a graph⇒ hyperedges connect ≥ 2 nodes
- Arbitrary (d-ary) relationships
- Edge set $E \subseteq \mathcal{P}(V) \setminus \emptyset$

Partition hypergraph $H = (V, E, c : V \to R_{>0}, \omega : E \to R_{>0})$ into k disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that

 \blacksquare Blocks V_i are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left| \frac{c(V)}{k} \right|$$

Objective function on hyperedges is minimized

Partition hypergraph $H = (V, E, c : V \to \mathbb{R}_{>0}, \omega : E \to \mathbb{R}_{>0})$ into k disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that

 \blacksquare Blocks V_i are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

Objective function on hyperedges is minimized

Partition hypergraph $H = (V, E, c : V \to \mathbb{R}_{>0}, \omega : E \to \mathbb{R}_{>0})$ into k disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that

lacksim Blocks V_i are roughly equal-sized:

equal-sized: imbalance parameter
$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

Objective function on hyperedges is minimized

Common HGP Objectives:

• Cut-Net: $\sum_{e \in Cut} \omega(e)$

Partition hypergraph $H = (V, E, c : V \to \mathbb{R}_{>0}, \omega : E \to \mathbb{R}_{>0})$ into k disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that

 \blacksquare Blocks V_i are roughly equal-sized:

- imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

Objective function on hyperedges is minimized

Common HGP Objectives:

- Cut-Net: $\sum_{e \in Cut} \omega(e)$
- Connectivity: $\sum_{e \in \text{cut}} (\lambda 1) \omega(e)$

Partition hypergraph $H = (V, E, c : V \to R_{>0}, \omega : E \to R_{>0})$ into k disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that

 \blacksquare Blocks V_i are roughly equal-sized:

imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

Objective function on hyperedges is minimized

Common HGP Objectives:

- Cut-Net: $\sum_{e \in Cut} \omega(e)$
- Connectivity: $\sum_{e \in \text{cut}} (\lambda 1) \omega(e)$

blocks connected by e

Partition hypergraph $H = (V, E, c : V \to \mathbb{R}_{>0}, \omega : E \to \mathbb{R}_{>0})$ into k disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that

 \blacksquare Blocks V_i are roughly equal-sized:

 $c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$

Objective function on hyperedges is minimized

Common HGP Objectives:

- Cut-Net: $\sum_{e \in Cut} \omega(e)$
- Connectivity: $\sum_{e \in \text{cut}} (\lambda 1) \omega(e)$
- # blocks connected by e
- ⇒ Both revert to edge-cut for graphs

Applications

VLSI Design

Warehouse Optimization

Complex Networks

 $\mathbf{R}^{n\times n}\ni Ax=b\in\mathbf{R}^n$

Scientific Computing

High-Quality Hypergraph Partitioning

Successful Heuristic: Multilevel Paradigm

Successful Heuristic: Multilevel Paradigm

Successful Heuristic: Multilevel Paradigm

Why Yet Another Multilevel Algorithm?

Why Yet Another Multilevel Algorithm?

Why Yet Another Multilevel Algorithm?

Coarsening

Partitioning

Min-Hash Based Sparsification

[ALENEX'17]

Partitioning

Min-Hash Based Sparsification

[ALENEX'17]

Experiments – Benchmark Setup

System: 1 core of 2 Intel Xeon E5-2670 @ 2.6 Ghz, 64 GB RAM

- # Hypergraphs: [publicly available]
 - SuiteSparse Matrix Collection 184
 - SAT Competition 2014 (3 representations) 92·3
 - ISPD98 & DAC2012 VLSI Circuits
 28
- $k \in \{2, 4, 8, 16, 32, 64, 128\}$ with imbalance: $\varepsilon = 3\%$
- Comparing KaHyPar with:
 - hMetis-R & hMetis-K
 - PaToH-Default & PaToH-Quality
 - HYPE
 - Zoltan-AlgD

Experiments: Connectivity Optimization

⇒ Similar results for cut-net optimization

Parallel Shared-Memory Graph Partitioning

Parallel GP: Coarsening [EuroPar'18]

Algorithm: Parallel label propagation [SM'16] with improved load balancing

Parallel GP: Coarsening [EuroPar'18]

Algorithm: Parallel label propagation [SM'16] with improved load balancing

Problem: Vertex-based distribution ⇒ bad load-balance

Solution: Edge-based distribution

Packets P: $\sqrt{|E|} \le \sum_{v \in P} d(v) \le \sqrt{|E|} + \Delta$, $\Delta = \max_{v \in V} d(v)$

Parallel GP: Initial Partitioning [EuroPar'18]

Parallel Initial Partitioning using KaHIP [SEA'14]

Parallel GP: Refinement [EuroPar'18]

Algorithms:

- Parallel label propagation
- Parallel localized k-way local search
 - minimal coordination of searches
 - serialized execution of final moves

Experiments: Solution Quality

38 Graphs with $k = \{16, 64\}$

Experiments: Speedup & Running Time

4 Socket Machine with 79 Threads

Cumulative: $(x, y) \rightarrow \text{speedup}/\text{running time for graphs with}|E| \ge x = y$

Scalable Edge Partitioning

Partition edge set of graph $G = (V, E, c, \omega)$ into **k** disjoint blocks $\Pi = \{E_1, \ldots, E_k\}$ such that

■ Blocks E_i are roughly equal-sized:

$$\omega(E_i) \leq (1 + \varepsilon) \left\lceil \frac{\omega(E)}{k} \right\rceil$$

minimize vertex cut:

Partition edge set of graph $G = (V, E, c, \omega)$ into **k** disjoint blocks $\Pi = \{E_1, \ldots, E_k\}$ such that

■ Blocks E_i are roughly equal-sized:

$$\omega(E_i) \leq (1 + \varepsilon) \left\lceil \frac{\omega(E)}{k} \right\rceil$$

minimize vertex cut:

 $\sum_{v\in V}|\mathsf{I}(v)|-1$

blocks with edges incident to v

Partition edge set of graph $G = (V, E, c, \omega)$ into **k** disjoint blocks $\Pi = \{E_1, \dots, E_k\}$ such that

 \blacksquare Blocks E_i are roughly equal-sized:

$$\omega(E_i) \leq (1 + \varepsilon) \left\lceil \frac{\omega(E)}{k} \right\rceil$$

minimize vertex cut:

 $\sum_{v\in V}|\mathsf{I}(v)|-1$

blocks with edges incident to v

Motivation [Gonzalez et al.'12]:

- edge-centric distributed computations
- combat shortcomings of TLAV approaches
- duplicate node-centric computations

Partition edge set of graph $G = (V, E, c, \omega)$ into **k** disjoint blocks $\Pi = \{E_1, \dots, E_k\}$ such that

■ Blocks E_i are roughly equal-sized:

$$\omega(E_i) \leq (1 + \varepsilon) \left\lceil \frac{\omega(E)}{k} \right\rceil$$

minimize vertex cut:

 $\sum_{v\in V} |I(v)| - 1$

blocks with edges incident to v

Motivation [Gonzalez et al.'12]:

- edge-centric distributed computations
- combat shortcomings of TLAV approaches
- duplicate node-centric computations

Think-Like-A-Vertex

Sequential

Sequential

Hypergraph Model:

- Graph edge ~ vertex
- Graph node ~> hyperedge
- Optimize connectivity

Sequential

Split-And-Connect (SPAC) [Li et al.'17]:

- Build auxilary graph
- Use vertex partitioning algorithm

Sequential

Distributed

Sequential

Distributed

Experiments: Benchmark Setup

- Test suite: 70 graphs
 - Walshaw Graph Archive
 - Sparse Matrix-Vector Multiplication
 - Web & Social Graphs
 - Random Geometric Graphs
- $k \in \{2, 4, 8, 16, 32, 64, 128\}$
- Imbalance: ϵ = 3%
- Averages of 5 repetitions
- Sequential: 1 core
- Distributed: 32 * 20 cores

Competitors:

- KaHyPar-MF
- HGP's

- PaToH
- Zoltan
- Zoltan-AlgD
- hMetis-{R, K}
- JaBeJa-VC
- NE
- SPAC + KaHIP
- SPAC + Metis
- dSPAC + ParHIP
- dSPAC + ParMetis

Experiments: Sequential HGP

Experiments: Sequential HGP & SPAC+X

Experiments: Sequential Running Time

Experiments: Sequential Running Time

Experiments: Distributed HGP & dSPAC+X

Experiments: Distributed Running Time

Experiments: Distributed Running Time

Conclusion & Outlook

High-Quality Graph & Hypergraph Partitioning Frameworks:

- KaHIP-http://algo2.iti.kit.edu/kahip/
- KaHyPar http://www.kahypar.org

Future Work:

- Shared-Memory HGP
- Distributed-Memory HGP
- Shift focus towards fast (H)GP algorithms with reasonable quality

(Personal) Open Questions:

- What would benefit the CSC community?
- What are "difficult" instances?