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Independent Set Maximal IS Maximum IS

Independent Set (IS)
Given a graph G = (V , E),
find I ⊆ V such that ∀u, v ∈ I : {u, v} /∈ E

Find Maximum IS (MIS) I: for all IS I′ of G: |I| ≥ |I′|
NP-hard

I ⊆ V is a Maximum Independent Set⇔ V \ I is a Minimum Vertex Cover
I ⊆ V is a Maximum Independent Set of G = (V , E)⇔ I is a Maximum Clique of G = (V , E)
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Huge Complex Networks: Independent Sets

Large networks with structure

⇒ millions or billions of nodes

Social networks (people and their connections)

Road networks (road segments and intersections)

Biological networks (proteins and their interactions)

Application: Partition graph to minimize
communication between machines

Application: Decrease storage and running
time of routing

Application: Where can we sample to find new
interactions?
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Kernelization

Reduction Algorithm Reduce:
Input: G

Output: G′ with |G′| ≤ |G|

function KERNELMIS(G)
G′ ←REDUCE(G)
I′ ←MIS(G′)
I ← REDUCE−1(G′, I′)
return I
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STOP
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Parallelization by Graph Partitioning

Idea: Partition graph into blocks and reduce them separately

Boundaries problematic

Cannot
do both
reductions
at the
same time

Cannot connect
new edges

Parallelize LP reduction with parallel maximum bipartite matching
[Azad et al., TPDS’17]

⇒ ParHIP (part of KaHIP) finds small cuts in parallel [Meyerhenke et al., TPDS’17]
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Reduction Tracking
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Start sampling graph size after first block finishes
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timei−timei−1
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Reduction Tracking: Results
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Experimental Setup

Different input graphs with >10M vertices

Real world: Web graphs, road networks
Synthetic: RGG, RHG, Delaunay triangulations

Comparison with state of the art (sequential) algorithms:

VCSolver [Akiba and Iwata, TCS’16]: Slow but small kernels
LinearTime and NearLinear [Chang et al., MOD’17]: Fast but large kernels

We use LinearTime as preprocessing step
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Time vs. Kernel Size
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Using the Kernel for Local Search
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Conclusion

Future Work

Distributed memory

Use faster parallel partitioning

What about other MIS algorithms that use kernelization?

Other problems that use kernelization

e.g., undirected feedback vertex set, graph coloring problems

Orders of magnitude smaller than fast methods

Orders of magnitude faster than algorithms with similar-sized kernels

Local search shows: Small kernels matter!

We find larger independent sets faster
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