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Maximum Independent Sets ﬂ("'

Independent Set (IS)
Given a graph G = (V, E),
find / C V suchthatVu,ve l:{u,v} ¢ E

® Find Maximum IS (MIS) [I: for all IS I of G: |I| > |/'|

Independent Set Maximal 1S Maximum |S

<. <
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Maximum Independent Sets ﬂ("'

Independent Set (IS)
Given a graph G = (V, E),
find / C V suchthatVu,ve l:{u,v} ¢ E

NP-hard \‘

® Find Maximum IS (MIS) [I: for all IS I of G: |I| > |/'|

Independent Set Maximal 1S Maximum |S

<. <

®
| C Vis a Maximum Independent Set < V \ /is a Minimum Vertex Cover
| C V is a Maximum Independent Set of G = (V, E) < I is a Maximum Clique of G = (V, E)
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® Large networks with structure

= millions or billions of nodes

® Social networks (people and their connections)
Application: Partition graph to minimize
communication between machines

® Road networks (road segments and intersections)

Application: Decrease storage and running
time of routing

® Biological networks (proteins and their interactions)

Application: Where can we sample to find new
interactions?
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Reduction Algorithm Reduce:
® Input: G

® Output: G’ with |G| < |G

function KERNELMIS(G)
G’ +~REDUCE(G)
I <MIS(G)
| < REDUCE™ (G, I
return /
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Reduction Algorithm Reduce:

®m Input: G '/Kernel
® Output: G’ with |G| < |G

Fast
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function KERNELMIS(G)
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Reduction Algorithm Reduce:
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Kernelization: Reduction Rules A\‘(IT

Reduction Algorithm Reduce:

| |nput: G '/-Kernel |X/§%\X| e 3
' O 1l
m Output: G’ with |G| < NE g T ST
o 09 \__ &6 06 ©o /
ast | ™ Isolated Clique Reduction
polynomialf

function KERNELMIB(G) N\

G’ +{REDUCE(G) >

I <—MIS(G) (.7%7“2) (¢de o)

| < REDUCE™ (G, ®m Degree 2 Vertex Folding

return / . .
® Twin Reduction
® Unconfined and Diamond Reduction
® LP via Maximum Bipartite Matching
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Still not
a clique

No reduction in G and Ng(v) = Ng/(v) = No reduction in G’

® Isolated Clique Reduction ® Unconfined Reduction X
m Degree 2 Fold Reduction v/ m Diamond Reduction X
® Twin Reduction v ® LP Reduction X
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® |dea: Partition graph into blocks and reduce them separately
® Boundaries problematic

Block 1 Block 1 Block 1

g\/\) A~

N 7 71X

AN
° \o/ o> (0/0\0/ \c) (o/o/o \.)
Block 2 Block 2 Block 2
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® |dea: Partition graph into blocks and reduce them separately

® Boundaries problematic Cannot connect

new edges
Block 1 Block 1 Block 1
Cannot
[/ N do both [ / \ [ J
\\ // reductions A A
(. V4 at the (/ oV \) Je \.)
Block 2 same time Block 2 Block

® We want few edges between blocks (small cut)
= ParHIP (part of KaHIP) finds small cuts in parallel [Meyerhenke et al., TPDS'17]

® Parallelize LP reduction with parallel maximum bipartite matching
[Azad et al., TPDS’17]
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® Some blocks take significantly longer than others

® Few changes after a while
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® Some blocks take significantly longer than others

® Few changes after a while

X
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® Different input graphs with >10M vertices

® Real world: Web graphs, road networks
® Synthetic: RGG, RHG, Delaunay triangulations

® Comparison with state of the art (sequential) algorithms:

® VVCSolver [Akiba and lwata, TcS'16]; Slow but small kernels
® LinearTime and NearLinear [Chang et al., MOD'17]: Fast but large kernels

= We use LinearTime as preprocessing step
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Time vs. Kernel Size
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Speedup Relative to 2 Threads QAT
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Using the Kernel for Local Search A\‘(IT
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Conclusion A\‘(IT

® Orders of magnitude smaller than fast methods
® Orders of magnitude faster than algorithms with similar-sized kernels

® Local search shows: Small kernels matter!
® We find /larger independent sets faster

Future Work

® Distributed memory

® Use faster parallel partitioning

® What about other MIS algorithms that use kernelization?

® Other problems that use kernelization
® e.g., undirected feedback vertex set, graph coloring problems
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