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Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 3/17



Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

(World) State: Consistent set of boolean atoms;
e.g. at(ball,A), at(robot,B)
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Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

Action a: Has boolean preconditions and effects;
e.g. action move(robot,A,B) requires at(robot,A),
deletes at(robot,A), adds at(robot,B)
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Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

Goal g: Subset of possible states, e.g. at(ball,B) must hold
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Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

Plan π: Action sequence transforming an initial state to a goal state
e.g. π =
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Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

Plan π: Action sequence transforming an initial state to a goal state
e.g. π = 〈 pickup(robot,ball,A)
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Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

Plan π: Action sequence transforming an initial state to a goal state
e.g. π = 〈 pickup(robot,ball,A), move(robot,A,B)
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Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

Plan π: Action sequence transforming an initial state to a goal state
e.g. π = 〈 pickup(robot,ball,A), move(robot,A,B),

drop(robot,ball,B) 〉
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Hierarchical Planning

Main idea: Share domain-specific expert knowledge with your planner.

Which tasks need to be achieved

How to directly achieve simple tasks

How to break down complex tasks into simpler ones

Most popular: Hierarchical Task Network (HTN) Planning
[Erol et al., 1994]

Extension of classical planning (same states, actions, plans)

More expressive than classical planning

More focused search, enables more efficient planning
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Hierarchical Task Networks

move-ball(ball,B)

navigate(robot,
B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

move(robot,
B,A)

move(robot,
A,B)
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Hierarchical Task Networks

move-ball(ball,B)

navigate(robot,
B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

move(robot,
B,A)

move(robot,
A,B)

Root(s): Initial task(s), part of problem input

Abstract notion of what needs to be achieved
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Hierarchical Task Networks

move-ball(ball,B)

navigate(robot,
B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

move(robot,
B,A)

move(robot,
A,B)

Directed edges: Subtask relationships

Here: totally ordered

Span a tree of tasks
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Hierarchical Task Networks

move-ball(ball,B)

navigate(robot,
B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

move(robot,
B,A)

move(robot,
A,B)

Inner nodes: Compound tasks

Can be achieved by choosing a method and achieving each subtask

Example: method move-ball(ball, to, r, x, y)

Preconditions { at(ball,x), at(r,y) },
Subtasks 〈 (1) navigate(r,y,x), (2) pickup(r,ball,x),

(3) navigate(r,x,to), (4) drop(r,ball,to) 〉
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Hierarchical Task Networks

move-ball(ball,B)

navigate(robot,
B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

move(robot,
B,A)

move(robot,
A,B)

Leaf nodes: Primitive tasks

Directly correspond to applying a certain action

In-order traversal of all leaves⇒ Plan!
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SAT-based Planning

Encode planning problem into propositional logic
up to a certain number of steps [Kautz and Selman, 1992]

Use Satisfiability (SAT) Solver to find satisfying assignment

Decode assignment back into a plan

SAT planner

Actions

Initial state

Goal(s)

Encoder
for n steps

n := 0

SAT
Solver

Result?

UNSAT: 
           n++

Decoder
SAT: 1 -2 3 
-4 -5 -6 7 8 -9 ...

Plan

1. ...
2. ...
3. ...
...

(1  2)  ∨ ∧
(¬2  3  7) ∨ ∨

 ∧ ...
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Related Work

Introduction of incremental SAT solving to planning
[Gocht and Balyo, 2017]

Maintain and iteratively extend a single logical formula

Remember logical conflicts from previous iterations

SAT-based HTN planning: Few research before 2018
[Mali and Kambhampati, 1998]

Previous encodings do not address recursive task relationships
(fixed maximum amount of actions for each task)

Complexity of clauses and variables cubic in amount of steps

In practice, infeasible for today’s problem instances
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Encoding: Grammar-Constrained Tasks

Enhancement of previous bottom-up linear forward encoding
[Mali and Kambhampati, 1998]

Focused on totally ordered HTN planning

Fully supporting recursive subtask relationships

Resulting in smaller encoding size (quadratic in #steps, #tasks)

Limitations of new encoding:

Encoding still too large for realistic problem sizes

Allows for interleaving of tasks in some special cases

Observation: HTN is like enforcing a grammar on valid plans

Totally ordered HTN corresponds to context-free grammar

Finding a plan equivalent to deriving a word from the grammar
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Encoding: Stack Machine Simulation (1)

Based on idea of context-free grammar:

Encode stack of tasks at each step of future plan

Add transition rules (pop, push) to process tasks until stack is empty

move-ball(
ball,B)

Plan: 〈
〉
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Encoding: Stack Machine Simulation (1)

Based on idea of context-free grammar:

Encode stack of tasks at each step of future plan

Add transition rules (pop, push) to process tasks until stack is empty

move-ball(
ball,B)

navigate(robot,
B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

→

Plan: 〈
〉
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Encoding: Stack Machine Simulation (1)

Based on idea of context-free grammar:

Encode stack of tasks at each step of future plan

Add transition rules (pop, push) to process tasks until stack is empty

move(robot,
B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

→
navigate(robot,

B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

Plan: 〈
〉
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Encoding: Stack Machine Simulation (1)

Based on idea of context-free grammar:

Encode stack of tasks at each step of future plan

Add transition rules (pop, push) to process tasks until stack is empty

move(robot,
B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)→

Plan: 〈 move(robot,room2,room1)
〉
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Encoding: Stack Machine Simulation (1)

Based on idea of context-free grammar:

Encode stack of tasks at each step of future plan

Add transition rules (pop, push) to process tasks until stack is empty

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

navigate(robot,
A,B)

drop(robot,
ball,B)

→

Plan: 〈 move(robot,room2,room1), pickup(robot,ball,room1)
〉
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Encoding: Stack Machine Simulation (1)

Based on idea of context-free grammar:

Encode stack of tasks at each step of future plan

Add transition rules (pop, push) to process tasks until stack is empty

move(robot,
A,B)

navigate(robot,
A,B)

drop(robot,
ball,B)

drop(robot,
ball,B)

→

Plan: 〈 move(robot,room2,room1), pickup(robot,ball,room1)
〉
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Encoding: Stack Machine Simulation (1)

Based on idea of context-free grammar:

Encode stack of tasks at each step of future plan

Add transition rules (pop, push) to process tasks until stack is empty

move(robot,
A,B)

drop(robot,
ball,B)

→
drop(robot,
ball,B)

Plan: 〈 move(robot,room2,room1), pickup(robot,ball,room1),
move(robot,room1,room2) 〉
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Encoding: Stack Machine Simulation (1)

Based on idea of context-free grammar:

Encode stack of tasks at each step of future plan

Add transition rules (pop, push) to process tasks until stack is empty

drop(robot,
ball,B)

→

Plan: 〈 move(robot,room2,room1), pickup(robot,ball,room1),
move(robot,room1,room2), drop(robot,ball,room2) 〉
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Encoding: Stack Machine Simulation (2)

Realization in propositional logic:

Boolean variables for each task at each stack position at each step,
for each action at each step, for each atom at each step

All clauses only contain variables from adjacent steps
⇒ Formula can be expanded incrementally

Assertion to SAT solver: stack must be empty at final step n
⇒ Assignment found: Extract plan from true action variables
⇒ Unsatisfiable: Increase n, add new clauses, repeat

Properties

Handles all special cases (recursive subtasks, no interleaving, etc.)

Requires parameter σ: Maximum stack size to encode

O(#steps · (σ ·#tasks +#methods +#actions)) clauses
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Evaluation

Internal evaluation of approaches

GCT Encoding

SMS Encoding (3 variants)

Evaluation environment:

120 benchmark instances from six IPC domains
Barman, Blocksworld, Childsnack, Elevator, Rover, Satellite

24 core Intel Xeon CPU E5-2630 @ 2.30 GHz, 264 GB of RAM

Limits per run: five minutes; 12 GB of RAM
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Comparison of Run Times
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Run Time Scores per Domain

Domain GCT SMS-bt SMS-ut SMS-ur
Barman 00.09 1.90 1.96 4.68
Blocksworld 0.08 9.22 10.94 6.74
Childsnack 0.98 3.90 9.95 4.50
Elevator 4.21 14.86 13.32 10.29
Rover 0.44 6.17 5.40 5.58
Satellite 0.96 7.08 7.17 16.08
Total 6.75 43.13 48.74 47.88

Score for each instance and competitor: T∗

T = best competitor’s run time
run time
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Plan Length Scores per Domain

Domain GCT SMS-bt SMS-ut SMS-ur
Barman 0.85 2.72 2.00 5.00
Blocksworld 2.00 10.00 13.00 11.00
Childsnack 3.00 6.00 10.00 8.00
Elevator 13.00 16.00 15.00 15.00
Rover 3.86 6.62 6.55 6.62
Satellite 4.00 9.61 11.79 16.77
Total 26.70 50.96 58.33 62.40

Score for each instance and competitor: T∗

T = best competitor’s plan length
plan length

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 14/17



Conclusion

Two new SAT encodings for totally ordered HTN planning
GCT: Handles recursive subtask relationships
SMS: Introduces incremental SAT solving to HTN planning

Evaluation: Incremental SMS encoding significantly outperforms
more conventional GCT encoding

Future work

Enhance SMS to expand tasks more rapidly

Eliminate hyper-parameter σ by changing structure of encoding

Compare to recent related work [Behnke et al., 2018]

Thank you for your attention!
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