
KARLSRUHE INSTITUTE OF TECHNOLOGY // UNIVERSITY GRENOBLE ALPES

Efficient SAT Encodings for Hierarchical Planning
11th International Conference on Agents and Artificial Intelligence
Dominik Schreiber (Speaker), Tomáš Balyo, Damien Pellier, Humbert Fiorino | February 19, 2019

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

www.kit.edu

http://www.kit.edu

Outline

Background: Planning, Hierarchical Planning, SAT Planning

Related Work

Contributions: GCT Encoding, SMS Encoding

Evaluation

Conclusion

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 2/17

Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 3/17

Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

(World) State: Consistent set of boolean atoms;
e.g. at(ball,A), at(robot,B)

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 3/17

Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

Action a: Has boolean preconditions and effects;
e.g. action move(robot,A,B) requires at(robot,A),
deletes at(robot,A), adds at(robot,B)

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 3/17

Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

Goal g: Subset of possible states, e.g. at(ball,B) must hold

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 3/17

Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

Plan π: Action sequence transforming an initial state to a goal state
e.g. π =

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 3/17

Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

Plan π: Action sequence transforming an initial state to a goal state
e.g. π = 〈 pickup(robot,ball,A)

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 3/17

Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

Plan π: Action sequence transforming an initial state to a goal state
e.g. π = 〈 pickup(robot,ball,A), move(robot,A,B)

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 3/17

Automated Planning

A B

Find a valid sequence of actions from some initial world state
to a desired goal state.

Plan π: Action sequence transforming an initial state to a goal state
e.g. π = 〈 pickup(robot,ball,A), move(robot,A,B),

drop(robot,ball,B) 〉

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 3/17

Hierarchical Planning

Main idea: Share domain-specific expert knowledge with your planner.

Which tasks need to be achieved

How to directly achieve simple tasks

How to break down complex tasks into simpler ones

Most popular: Hierarchical Task Network (HTN) Planning
[Erol et al., 1994]

Extension of classical planning (same states, actions, plans)

More expressive than classical planning

More focused search, enables more efficient planning

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 4/17

Hierarchical Planning

Main idea: Share domain-specific expert knowledge with your planner.

Which tasks need to be achieved

How to directly achieve simple tasks

How to break down complex tasks into simpler ones

Most popular: Hierarchical Task Network (HTN) Planning
[Erol et al., 1994]

Extension of classical planning (same states, actions, plans)

More expressive than classical planning

More focused search, enables more efficient planning

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 4/17

Hierarchical Task Networks

move-ball(ball,B)

navigate(robot,
B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

move(robot,
B,A)

move(robot,
A,B)

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 5/17

Hierarchical Task Networks

move-ball(ball,B)

navigate(robot,
B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

move(robot,
B,A)

move(robot,
A,B)

Root(s): Initial task(s), part of problem input

Abstract notion of what needs to be achieved

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 5/17

Hierarchical Task Networks

move-ball(ball,B)

navigate(robot,
B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

move(robot,
B,A)

move(robot,
A,B)

Directed edges: Subtask relationships

Here: totally ordered

Span a tree of tasks

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 5/17

Hierarchical Task Networks

move-ball(ball,B)

navigate(robot,
B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

move(robot,
B,A)

move(robot,
A,B)

Inner nodes: Compound tasks

Can be achieved by choosing a method and achieving each subtask

Example: method move-ball(ball, to, r, x, y)

Preconditions { at(ball,x), at(r,y) },
Subtasks 〈 (1) navigate(r,y,x), (2) pickup(r,ball,x),

(3) navigate(r,x,to), (4) drop(r,ball,to) 〉

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 5/17

Hierarchical Task Networks

move-ball(ball,B)

navigate(robot,
B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

move(robot,
B,A)

move(robot,
A,B)

Leaf nodes: Primitive tasks

Directly correspond to applying a certain action

In-order traversal of all leaves⇒ Plan!

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 5/17

SAT-based Planning

Encode planning problem into propositional logic
up to a certain number of steps [Kautz and Selman, 1992]

Use Satisfiability (SAT) Solver to find satisfying assignment

Decode assignment back into a plan

SAT planner

Actions

Initial state

Goal(s)

Encoder
for n steps

n := 0

SAT
Solver

Result?

UNSAT:
 n++

Decoder
SAT: 1 -2 3
-4 -5 -6 7 8 -9 ...

Plan

1. ...
2. ...
3. ...
...

(1 2) ∨ ∧
(¬2 3 7) ∨ ∨

 ∧ ...

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 6/17

Related Work

Introduction of incremental SAT solving to planning
[Gocht and Balyo, 2017]

Maintain and iteratively extend a single logical formula

Remember logical conflicts from previous iterations

SAT-based HTN planning: Few research before 2018
[Mali and Kambhampati, 1998]

Previous encodings do not address recursive task relationships
(fixed maximum amount of actions for each task)

Complexity of clauses and variables cubic in amount of steps

In practice, infeasible for today’s problem instances

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 7/17

Related Work

Introduction of incremental SAT solving to planning
[Gocht and Balyo, 2017]

Maintain and iteratively extend a single logical formula

Remember logical conflicts from previous iterations

SAT-based HTN planning: Few research before 2018
[Mali and Kambhampati, 1998]

Previous encodings do not address recursive task relationships
(fixed maximum amount of actions for each task)

Complexity of clauses and variables cubic in amount of steps

In practice, infeasible for today’s problem instances

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 7/17

Encoding: Grammar-Constrained Tasks

Enhancement of previous bottom-up linear forward encoding
[Mali and Kambhampati, 1998]

Focused on totally ordered HTN planning

Fully supporting recursive subtask relationships

Resulting in smaller encoding size (quadratic in #steps, #tasks)

Limitations of new encoding:

Encoding still too large for realistic problem sizes

Allows for interleaving of tasks in some special cases

Observation: HTN is like enforcing a grammar on valid plans

Totally ordered HTN corresponds to context-free grammar

Finding a plan equivalent to deriving a word from the grammar

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 8/17

Encoding: Grammar-Constrained Tasks

Enhancement of previous bottom-up linear forward encoding
[Mali and Kambhampati, 1998]

Focused on totally ordered HTN planning

Fully supporting recursive subtask relationships

Resulting in smaller encoding size (quadratic in #steps, #tasks)

Limitations of new encoding:

Encoding still too large for realistic problem sizes

Allows for interleaving of tasks in some special cases

Observation: HTN is like enforcing a grammar on valid plans

Totally ordered HTN corresponds to context-free grammar

Finding a plan equivalent to deriving a word from the grammar

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 8/17

Encoding: Grammar-Constrained Tasks

Enhancement of previous bottom-up linear forward encoding
[Mali and Kambhampati, 1998]

Focused on totally ordered HTN planning

Fully supporting recursive subtask relationships

Resulting in smaller encoding size (quadratic in #steps, #tasks)

Limitations of new encoding:

Encoding still too large for realistic problem sizes

Allows for interleaving of tasks in some special cases

Observation: HTN is like enforcing a grammar on valid plans

Totally ordered HTN corresponds to context-free grammar

Finding a plan equivalent to deriving a word from the grammar

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 8/17

Encoding: Stack Machine Simulation (1)

Based on idea of context-free grammar:

Encode stack of tasks at each step of future plan

Add transition rules (pop, push) to process tasks until stack is empty

move-ball(
ball,B)

Plan: 〈
〉

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 9/17

Encoding: Stack Machine Simulation (1)

Based on idea of context-free grammar:

Encode stack of tasks at each step of future plan

Add transition rules (pop, push) to process tasks until stack is empty

move-ball(
ball,B)

navigate(robot,
B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

→

Plan: 〈
〉

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 9/17

Encoding: Stack Machine Simulation (1)

Based on idea of context-free grammar:

Encode stack of tasks at each step of future plan

Add transition rules (pop, push) to process tasks until stack is empty

move(robot,
B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

→
navigate(robot,

B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

Plan: 〈
〉

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 9/17

Encoding: Stack Machine Simulation (1)

Based on idea of context-free grammar:

Encode stack of tasks at each step of future plan

Add transition rules (pop, push) to process tasks until stack is empty

move(robot,
B,A)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)→

Plan: 〈 move(robot,room2,room1)
〉

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 9/17

Encoding: Stack Machine Simulation (1)

Based on idea of context-free grammar:

Encode stack of tasks at each step of future plan

Add transition rules (pop, push) to process tasks until stack is empty

navigate(robot,
A,B)

pickup(robot,
ball,A)

drop(robot,
ball,B)

navigate(robot,
A,B)

drop(robot,
ball,B)

→

Plan: 〈 move(robot,room2,room1), pickup(robot,ball,room1)
〉

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 9/17

Encoding: Stack Machine Simulation (1)

Based on idea of context-free grammar:

Encode stack of tasks at each step of future plan

Add transition rules (pop, push) to process tasks until stack is empty

move(robot,
A,B)

navigate(robot,
A,B)

drop(robot,
ball,B)

drop(robot,
ball,B)

→

Plan: 〈 move(robot,room2,room1), pickup(robot,ball,room1)
〉

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 9/17

Encoding: Stack Machine Simulation (1)

Based on idea of context-free grammar:

Encode stack of tasks at each step of future plan

Add transition rules (pop, push) to process tasks until stack is empty

move(robot,
A,B)

drop(robot,
ball,B)

→
drop(robot,
ball,B)

Plan: 〈 move(robot,room2,room1), pickup(robot,ball,room1),
move(robot,room1,room2) 〉

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 9/17

Encoding: Stack Machine Simulation (1)

Based on idea of context-free grammar:

Encode stack of tasks at each step of future plan

Add transition rules (pop, push) to process tasks until stack is empty

drop(robot,
ball,B)

→

Plan: 〈 move(robot,room2,room1), pickup(robot,ball,room1),
move(robot,room1,room2), drop(robot,ball,room2) 〉

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 9/17

Encoding: Stack Machine Simulation (2)

Realization in propositional logic:

Boolean variables for each task at each stack position at each step,
for each action at each step, for each atom at each step

All clauses only contain variables from adjacent steps
⇒ Formula can be expanded incrementally

Assertion to SAT solver: stack must be empty at final step n
⇒ Assignment found: Extract plan from true action variables
⇒ Unsatisfiable: Increase n, add new clauses, repeat

Properties

Handles all special cases (recursive subtasks, no interleaving, etc.)

Requires parameter σ: Maximum stack size to encode

O(#steps · (σ ·#tasks +#methods +#actions)) clauses

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 10/17

Encoding: Stack Machine Simulation (2)

Realization in propositional logic:

Boolean variables for each task at each stack position at each step,
for each action at each step, for each atom at each step

All clauses only contain variables from adjacent steps
⇒ Formula can be expanded incrementally

Assertion to SAT solver: stack must be empty at final step n
⇒ Assignment found: Extract plan from true action variables
⇒ Unsatisfiable: Increase n, add new clauses, repeat

Properties

Handles all special cases (recursive subtasks, no interleaving, etc.)

Requires parameter σ: Maximum stack size to encode

O(#steps · (σ ·#tasks +#methods +#actions)) clauses

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 10/17

Encoding: Stack Machine Simulation (2)

Realization in propositional logic:

Boolean variables for each task at each stack position at each step,
for each action at each step, for each atom at each step

All clauses only contain variables from adjacent steps
⇒ Formula can be expanded incrementally

Assertion to SAT solver: stack must be empty at final step n
⇒ Assignment found: Extract plan from true action variables
⇒ Unsatisfiable: Increase n, add new clauses, repeat

Properties

Handles all special cases (recursive subtasks, no interleaving, etc.)

Requires parameter σ: Maximum stack size to encode

O(#steps · (σ ·#tasks +#methods +#actions)) clauses

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 10/17

Encoding: Stack Machine Simulation (2)

Realization in propositional logic:

Boolean variables for each task at each stack position at each step,
for each action at each step, for each atom at each step

All clauses only contain variables from adjacent steps
⇒ Formula can be expanded incrementally

Assertion to SAT solver: stack must be empty at final step n
⇒ Assignment found: Extract plan from true action variables
⇒ Unsatisfiable: Increase n, add new clauses, repeat

Properties

Handles all special cases (recursive subtasks, no interleaving, etc.)

Requires parameter σ: Maximum stack size to encode

O(#steps · (σ ·#tasks +#methods +#actions)) clauses

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 10/17

Evaluation

Internal evaluation of approaches

GCT Encoding

SMS Encoding (3 variants)

Evaluation environment:

120 benchmark instances from six IPC domains
Barman, Blocksworld, Childsnack, Elevator, Rover, Satellite

24 core Intel Xeon CPU E5-2630 @ 2.30 GHz, 264 GB of RAM

Limits per run: five minutes; 12 GB of RAM

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 11/17

Evaluation

Internal evaluation of approaches

GCT Encoding

SMS Encoding (3 variants)

Evaluation environment:

120 benchmark instances from six IPC domains
Barman, Blocksworld, Childsnack, Elevator, Rover, Satellite

24 core Intel Xeon CPU E5-2630 @ 2.30 GHz, 264 GB of RAM

Limits per run: five minutes; 12 GB of RAM

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 11/17

Comparison of Run Times

0 8 16 24 32 40 48 56 64
Number of solved instances

0

50

100

150

200

250

300
Ti

m
e

lim
it

/ s
GCT
SMS-bt
SMS-ud
SMS-ut

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 12/17

Run Time Scores per Domain

Domain GCT SMS-bt SMS-ut SMS-ur
Barman 00.09 1.90 1.96 4.68
Blocksworld 0.08 9.22 10.94 6.74
Childsnack 0.98 3.90 9.95 4.50
Elevator 4.21 14.86 13.32 10.29
Rover 0.44 6.17 5.40 5.58
Satellite 0.96 7.08 7.17 16.08
Total 6.75 43.13 48.74 47.88

Score for each instance and competitor: T∗

T = best competitor’s run time
run time

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 13/17

Plan Length Scores per Domain

Domain GCT SMS-bt SMS-ut SMS-ur
Barman 0.85 2.72 2.00 5.00
Blocksworld 2.00 10.00 13.00 11.00
Childsnack 3.00 6.00 10.00 8.00
Elevator 13.00 16.00 15.00 15.00
Rover 3.86 6.62 6.55 6.62
Satellite 4.00 9.61 11.79 16.77
Total 26.70 50.96 58.33 62.40

Score for each instance and competitor: T∗

T = best competitor’s plan length
plan length

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 14/17

Conclusion

Two new SAT encodings for totally ordered HTN planning
GCT: Handles recursive subtask relationships
SMS: Introduces incremental SAT solving to HTN planning

Evaluation: Incremental SMS encoding significantly outperforms
more conventional GCT encoding

Future work

Enhance SMS to expand tasks more rapidly

Eliminate hyper-parameter σ by changing structure of encoding

Compare to recent related work [Behnke et al., 2018]

Thank you for your attention!

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 15/17

Conclusion

Two new SAT encodings for totally ordered HTN planning
GCT: Handles recursive subtask relationships
SMS: Introduces incremental SAT solving to HTN planning

Evaluation: Incremental SMS encoding significantly outperforms
more conventional GCT encoding

Future work

Enhance SMS to expand tasks more rapidly

Eliminate hyper-parameter σ by changing structure of encoding

Compare to recent related work [Behnke et al., 2018]

Thank you for your attention!

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 15/17

Conclusion

Two new SAT encodings for totally ordered HTN planning
GCT: Handles recursive subtask relationships
SMS: Introduces incremental SAT solving to HTN planning

Evaluation: Incremental SMS encoding significantly outperforms
more conventional GCT encoding

Future work

Enhance SMS to expand tasks more rapidly

Eliminate hyper-parameter σ by changing structure of encoding

Compare to recent related work [Behnke et al., 2018]

Thank you for your attention!

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 15/17

Conclusion

Two new SAT encodings for totally ordered HTN planning
GCT: Handles recursive subtask relationships
SMS: Introduces incremental SAT solving to HTN planning

Evaluation: Incremental SMS encoding significantly outperforms
more conventional GCT encoding

Future work

Enhance SMS to expand tasks more rapidly

Eliminate hyper-parameter σ by changing structure of encoding

Compare to recent related work [Behnke et al., 2018]

Thank you for your attention!

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 15/17

References I

Behnke, G., Höller, D., and Biundo, S. (2018).

totSAT–totally-ordered hierarchical planning through SAT.

In Proceedings of the 32th AAAI conference on AI (AAAI 2018). AAAI Press.

Erol, K., Hendler, J., and Nau, D. (1994).

UMCP: A sound and complete procedure for hierarchical task-network planning.

In Proceedings of the Artificial Intelligence Planning Systems, volume 94, pages
249–254.

Gocht, S. and Balyo, T. (2017).

Accelerating SAT based planning with incremental SAT solving.

Proceedings of the International Conference on Automated Planning and
Scheduling, pages 135–139.

Kautz, H. and Selman, B. (1992).

Planning as Satisfiability.

In Proceedings of the European Conference on Artificial Intelligence, pages
359–363.

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 16/17

References II

Mali, A. and Kambhampati, S. (1998).

Encoding HTN planning in propositional logic.

In Proceedings International Conference on Artificial Intelligence Planning and
Scheduling, pages 190–198.

Schreiber et al. – Efficient SAT Encodings for Hierarchical Planning February 19, 2019 17/17

