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Starting Point Architecture/Table Management

= Circular linear probing = Global Object: stores the current table and some data

» Each entry can be changed atomically (CAS) does not offer any functions (except create Handle)

B : = Handle Object: stores threadlocal data and exposes the hash table functionality
([key| + [value| = 128 bit) cannot be shared between threads
= Bound capacity 2—4 xn size

= Reserved keys for (empty) and (deleted) = To approximate element count, global
count local insertions. Update

the global count
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» Use std::shared ptr to t1 handle
ensure safe deallocation. Cache £2 handle
the shared pointer to reduce £3 handle

overheads. Compare version

= Adressing using the most significant digits of h(key) » approx_count

m version

= table_ptr
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= Measured by inserting 100 000000 elements (strong scaling)

All entries stored within one block are o Qur tables were initialized with 4096 cells.
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» displaced into that block through

= The competitors were initalized with 50 % of the target size.
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» Measured by searching 100000 000 keys.

Displaced entries should be avoided, because they make atomic

insertions necessary (into the destination table). » Searched keys are Zipf distributed (P(key = k) = ks.l}lN )
= Therefore, we move the block borders to free spaces, this can » Every searched key was previously inserted. To make sure
be done implicitly during the block migration. that the table size doesn't shrink under high contention
: we inserted 100000000 additional elements.

= This eliminates displaced entries, because elements cannot be : |
displaced over empty cells (insertions in the destination table = Using 48 threads (24 cores + hyperthreading)
can be done non-atomically).

= The expected size difference between a block and the

corresponding implicit block is bound by a small constant » dual-socket 2x12 cores with 2.3 GHz each
= Intel Xeon E5-2670 v3 (codenamed Haswell-EP)
= 128 GB RAM

= each measurement is the average of 5 runs

We also implemented two different options to ensure atomicity in the source table

®* Marking copied elements (m_ours) ® Using flags to ensure that no update can
operate concurrently to the migration (f_ours)
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