Concurrent Hash Tables: Fast and General [(?)

Tobias Maier' Peter Sanders! and Roman Dementiev?.

A\({]]

Karlsruhe Institute of Technology Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
“Intel Deutschland GmbH

Starting Point Architecture/Table Management

= Circular linear probing = Global Object: stores the current table and some data

» Each entry can be changed atomically (CAS) does not offer any functions (except create Handle)

B : = Handle Object: stores threadlocal data and exposes the hash table functionality
([key| + [value| = 128 bit) cannot be shared between threads
= Bound capacity 2—4 xn size

= Reserved keys for (empty) and (deleted) = To approximate element count, global
count local insertions. Update

the global count
insert(key, value) probabilistically every = p

ProRd N
h(key) [11010111[T1010111 insertions. error € O(p°)

» Use std::shared ptr to t1 handle
ensure safe deallocation. Cache £2 handle
the shared pointer to reduce £3 handle

overheads. Compare version

= Adressing using the most significant digits of h(key) » approx_count

m version

= table_ptr

numbers before every ® parent
key (empty) operation. » loc_inserts — |
® cache_ver
®m cache_t_ptr
Migration with minimal Synchronization Experiments
Source destination Allocate destination table (uninitialized) Insertions (growing needed)
Whenever a thread accesses the source 180 re——————1—— | I
e : : o ®—@ m_ours &—@ folly v—v BB hash >—» urcu
table while it Is growing that thread is } 120 HO ¢ f_ours << libcuckoo A-A TBB unord ®B-m java 1
forced to help migrate the table (no 2 113
' O 100 " ¥
synchronized start) = {10 &
c 80 1. £
The source table Is separated into = 18 S
constant sized blocks (here 4096) o 60] 2 -
N O
. . 15
Blocks are dynamically distributed %0 40 14 é
between participating threads =, —g S
= |
Elements within one block are migrated) 1; ‘(1)
into the corresponding block in the 124 8 12 16 24 36 48
destination table (for details see below). Number of threads p

= Measured by inserting 100 000000 elements (strong scaling)

All entries stored within one block are o Qur tables were initialized with 4096 cells.

either
® hashed into that block OR

» displaced into that block through

= The competitors were initalized with 50 % of the target size.

Successful find (with contention)

4000 | | [|
linear probing. = o © starting point v—v TBB hash <
»w 3500 L (non-growing)]
_ S, ®—@ m_ours A—A TBB unord
Displaced elements can only occur O 2000 || ¢—4 f_ours > > urcu
within the first cluster of the block = & folly --- sequential
: X £ 200 1 o <libeuckoo 10/20% seq |
S 2000
o
o 1500
llllllllllllllllllllllll :
S 1000
-
= 500
0

0.25 0.50 0.75 1.00 1.25 1.50 2.00
Zipt distribution Parameter s

» Measured by searching 100000 000 keys.

Displaced entries should be avoided, because they make atomic

insertions necessary (into the destination table). » Searched keys are Zipf distributed (P(key = k) = ks.l}lN)
= Therefore, we move the block borders to free spaces, this can » Every searched key was previously inserted. To make sure
be done implicitly during the block migration. that the table size doesn't shrink under high contention
: we inserted 100000000 additional elements.

= This eliminates displaced entries, because elements cannot be : |
displaced over empty cells (insertions in the destination table = Using 48 threads (24 cores + hyperthreading)
can be done non-atomically).

= The expected size difference between a block and the

corresponding implicit block is bound by a small constant » dual-socket 2x12 cores with 2.3 GHz each
= Intel Xeon E5-2670 v3 (codenamed Haswell-EP)
= 128 GB RAM

= each measurement is the average of 5 runs

We also implemented two different options to ensure atomicity in the source table

®* Marking copied elements (m_ours) ® Using flags to ensure that no update can
operate concurrently to the migration (f_ours)

KIT — The Reasearch University in the Helmholtz Association

