
KIT – The Reasearch University in the Helmholtz Association

Tobias Maier1, Peter Sanders1, and Roman Dementiev2.

Concurrent Hash Tables: Fast and General !(?)

1Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
2Intel Deutschland GmbH

Test Setup

Starting Point

Circular linear probing

Each entry can be changed atomically (CAS)

Bound capacity 2–4×n size

(|key|+ |value| = 128 bit)

Reserved keys for 〈empty〉 and 〈deleted〉

Architecture/Table Management

Migration with minimal Synchronization

Global Object:

Experiments

1.

2.

3.

4.

hashed into that block OR

h(key) 11010111 11010111

insert(key, value)

〈empty〉 〈empty〉CASkey value

approx count

version

table ptr

parent

loc inserts

cache ver

cache t ptr

global

t1 handle

t2 handle

t3 handle

does not offer any functions (except create Handle)

Handle Object:
cannot be shared between threads

stores the current table and some data

stores threadlocal data and exposes the hash table functionality

To approximate element count,
count local insertions. Update
the global count
probabilistically every ≈ p
insertions. error ∈ O(p2)

Use std::shared ptr to
ensure safe deallocation. Cache
the shared pointer to reduce
overheads. Compare version
numbers before every
operation.

source destination

5.

Adressing using the most significant digits of h(key)

Allocate destination table (uninitialized)

Whenever a thread accesses the source
table while it is growing that thread is
forced to help migrate the table (no
synchronized start)

The source table is separated into
constant sized blocks (here 4096)

Blocks are dynamically distributed
between participating threads

Elements within one block are migrated
into the corresponding block in the
destination table (for details see below).

All entries stored within one block are
either

displaced into that block through
linear probing.

Displaced elements can only occur
within the first cluster of the block

Displaced entries should be avoided, because they make atomic
insertions necessary (into the destination table).

Therefore, we move the block borders to free spaces, this can
be done implicitly during the block migration.

This eliminates displaced entries, because elements cannot be
displaced over empty cells (insertions in the destination table
can be done non-atomically).

The expected size difference between a block and the
corresponding implicit block is bound by a small constant

12 4 8 12 16 24 36 48
0

20

40

60

80

100

120

140

0
1
2
3
4
5
6
7
8
9
10
11
12

Insertions (growing needed)

Measured by inserting 100 000 000 elements (strong scaling)

Our tables were initialized with 4096 cells.

Number of threads p

T
hr

ou
gh

pu
t

in
M

O
ps
/s

absolute
sp

eedup

0.25 0.50 0.75 1.00 1.25 1.50 2.00
0

500

1000

1500

2000

2500

3000

3500

4000

Successful find (with contention)

T
hr

ou
gh

pu
t

in
M

O
ps
/s

Zipf distribution Parameter s

dual-socket 2×12 cores with 2.3 GHz each

Intel Xeon E5-2670 v3 (codenamed Haswell-EP)

128 GB RAM

each measurement is the average of 5 runs

m_ours
(non-growing)

f_ours

folly

starting point TBB hash

TBB unord

urcu

sequential

10/20× seqlibcuckoo

m_ours
f_ours

folly
libcuckoo

TBB hash
TBB unord

urcu
java

The competitors were initalized with 50 % of the target size.

Searched keys are Zipf distributed (P (key = k) = 1
ks·HN,s

)

Measured by searching 100 000 000 keys.

Every searched key was previously inserted. To make sure
that the table size doesn’t shrink under high contention
we inserted 100 000 000 additional elements.

Using 48 threads (24 cores + hyperthreading)

www.kit.edu

We also implemented two different options to ensure atomicity in the source table

Marking copied elements (m_ours) Using flags to ensure that no update can
operate concurrently to the migration (f_ours)

