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Abstract

The �eld of automated planning is concerned with the automatic generation of plans for di�erent
domains of problems. To allow the usage in as many �elds as possible, only minimal assumptions are
made to the domains. Since the complexity of these problems require a great amount of computation
resources, the usage of multi core systems becomes more important. Nevertheless, there exists no clear
best strategy to solve the planning problem in parallel. Cube and Conquer has proven to be a new and
successful approach for solving problems of propositional logic in parallel. In this thesis we will translate
the ideas of Cube and Conquer to automated planning.

We focus on the realisation of cubes trough nodes in the State Space Graph of the planning problem.
In doing so, we present techniques to generate the cubes and assign computation time to them. Thereby
we hope to approach parallel planning from a new angle. We are able to solve more problems than a
comparable sequential algorithm. On hard test cases our algorithm scales well for up to eight cores. On
easy test cases or when using more than eight cores we achieve no signi�cant speedup.

Zusammenfassung

Das Forschungsfeld Automated Planning befasst sich mit dem automatisierten Generieren von Plänen
für verschiedene Problemdomänen. Dabei werden geringe Voraussetzungen an die Probleme gestellt,
um die Anwendung in möglichst vielen Bereichen zu ermöglichen. Da die Komplexität dieser Probleme
eine große Menge an Rechenressourcen erfordert, spielt die Verwendung von Mehrkernsystemen eine
zunehmende Rolle. Dennoch gibt es keine eindeutig beste Strategie Automated Planning parallel zu
lösen. Cube and Conquer hat sich als neuer und vielversprechender Ansatz herausgestellt, um Probleme
der Aussagenlogik parallel zu lösen. In dieser Arbeit werden wir die Ideen von Cube and Conquer auf
Automated Planning übertragen.

Dabei konzentrieren wir uns auf die Umsetzung von Cubes als Knoten im State Space Graph des
Planungsproblems. Wir stellen Techniken vor die Cubes zu generieren und ihnen Rechenzeit zuzuwei-
sen. Dadurch versprechen uns eine neue Richtung einzuschlagen, Planung zu parallelisieren. Es ist
uns möglich mehr Probleme als ein vergleichbarer sequentieller Algorithmus zu lösen. Auf schweren
Testfällen skaliert unser Algorithmus zufriedenstellend für bis zu acht Kernen. Auf leichten Testfällen
oder unter Benutzung von mehr als acht Kernen bleibt ein signi�kanter Speedup aus.
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1 Introduction

1.1 Motivation

Consider the following scenario: You are tasked with programming a robot to dip multiple instruments
into chemical baths. In addition, you are given di�erent constraints, for example: Some instruments
need to be in special baths at speci�c times and there is a topological order that de�nes which baths
have to be taken �rst. If the number of baths and instruments is small enough and the constraints are
not too complex you can work out a plan by hand. But if the number of baths is bigger than twelve it
is more promising to start designing a program that generates the plan for you. Since the criteria are
manageable you are able to design a model of the problem after a short while. After giving the command
to start generating the plan you go to sleep, con�dent that your work is done. But the next day your
computer does not present you with a plan. Because you forgot about combinatorial explosion, the
computer ran out of memory and refused further work. So you modify your program and think about
some heuristics that allow you to save some time and memory in various special cases. And indeed,
after a few more days of work the computer is able to come up with a plan that dips the instruments in
the correct baths at the right time.

A week later, a friend asks you to help him program a solver for the new type of puzzle he invented.
It contains a snake that needs to move around a board in a special way. You agree although you are
already working on the next project. This time you do not program a robot to dip chemicals but work
on a delivery plan for a big trucking company. So you start to wonder if there is some kind of magical
algorithm that could do all these things at once: dipping instruments into chemicals, delivering packages
and solving puzzles with snakes. But the requirements that must be met by this algorithm seem too
strong to be ful�lled properly.

And here automatic planning comes into play. The goal of automated planning is to construct a
single algorithm that is able to �nd plans for di�erent domains of problems. Although such a claim of
generality seems to be impossible to achieve, automated planning is already used for various problems.

This does not come without a cost. Most of the time the search spaces for these problems are
unbelievably big. And the structure of a planning domain must be very generic in order to maintain
generality. But the community around automated planning continuously develops new heuristics and
methods to cope with these challenges.

1.2 Contribution

One key piece for practical algorithmics which gained importance over the last couple of years is the
e�cient usage of multiple cores. There exists no trivial solution on how to parallelize the algorithms
used in automated planning. But since the increase of clock speed from processors seems to decrease,
usage of multiple cores becomes necessary if an algorithm wants to keep bene�ting from hardware
improvements [Sut05]. Two important approaches for this are algorithm portfolios and divide and
conquer algorithms. Portfolios run di�erent algorithms and con�gurations on the same problem, hoping
that at least one algorithm has the right con�guration to quickly solve the problem. Divide and conquer
techniques break down the problem and let each core solve a di�erent part of it.
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1 Introduction

Recently, the concept of cube and conquer sparked our interest. It was shown to be a successful
approach for solving di�cult SAT problems in parallel. On a very basic level, algorithm portfolios can
be described as di�erent solvers working on the same problem while divide and conquer algorithms let
multiple instances of the same solver cooperate to work on the same problem. Cube and conquer on the
other side runs the same kind of solver on di�erent problems.

We want to build upon the success of Cube and Conquer and apply its ideas to automated planning in
order to approach parallel solving from a new direction. In this thesis we look at possibilities to translate
SAT solving with Cube and Conquer into the world of automated planning. We identify challenges that
arise with our approach and categorize them into three main sections: finding, scheduling and solving.
For each section we propose multiple solutions to solve these challenges. We test di�erent combinations
against each other to get a better understanding on which attempts are fruitful for planning algorithms.
This allows us to judge about which aspects of Cube and Conquer can be useful for automated planing
and which aspects require furtherer work in order to be properly applied. For implementation we choose
the Aquaplanning framework, since it is easy to adept and expand. Our best con�guration is tested
against a comparable sequential algorithm from the Aquaplanning framework. We are able to solve up
to 15% more problems than the sequential implementation. On hard test cases we achieve an average
speed-up of 3.5 using eight cores. However, our algorithm is not able to scale well for more than eight
cores. Especially on easy test cases the sequential solver often outperforms all of our parallel solutions.

1.3 Structure of the Thesis

Chapter 2 gives a short overview on the current state of the art SAT solving and important methods to
solve the planning problem in parallel. In Chapter 3 we explain how Cube and Conquer is used to solve
SAT instances. Afterwards, we de�ne the planning problem and look at algorithms that are commonly
used for solving automated planning instances. We explain our parallel approach in Chapter 4 and
evaluate the performance in Chapter 5. At last, we conclude our results in Chapter 5 and point out
possibilities for future work.
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2 Related Work

This chapter gives a brief overview on the current state of SAT solving and parallel automated planning.
First, we look at the concept Cube and Conquer (C&C) and how it is used to solve SAT problems.
Secondly, we talk about two important approaches for solving planning problems in parallel, algorithm
portfolios and a divide-and-conquer mechanism by distributing the work via a hash function.

2.1 SAT

The SAT problem asks, whether a given formula of propositional logic is satis�able (SAT). A formula
is satis�able if at least one assignment of truth values exists that evaluates the formula to true. It is
also possible to ask if a given formula is unsatis�able. In this case no satisfying assignment of truth
values must exist. SAT is one of the most important NP-complete problems and many other problems
can be reduce to �nding a satisfying assignment for a propositional logic formula. Because of this, much
research was invested in developing sophisticated heuristics for big SAT instances.

Modern SAT solvers can be categorized into con�ict-driven clause learning solvers (CDCL) and
lookahead solvers. CDCL solvers are especially successful at solving large but easy SAT instances. On
the contrary, lookahead solvers perform better on small but hard problems. This is mainly due to the
fact that CDLC solvers have a very local view in terms of heuristics and lookahead solvers have a more
global view on the problem [HKWB11]. Popular example for state of the art SAT solvers are Minisat
[EB05], Glucose [AS09] or Lingeling [Bie12].

Cube and Conquer The idea behind C&C is to combine lookahead solvers with CDCL solvers for a
hybrid approach on SAT solving and was �rst proposed by [HKWB11]. C&C consists of two phases. In the
�rst phase of C&C, a lookahead solver is used to partition the original problem into many sub-problems.
The second phase uses a CDCL solver to solve these sub-problems. The intuition behind this is that the
lookahead solver partitions the problem until it become easy enough that the CDCL solver can solve
them faster than the lookahead solver. Section 3.2 gives a more detailed explanation of this algorithm.

On hard problems, it was shown that C&C is faster than a pure lookahead or a pure CDCL approach.
In addition, C&C can be easily parallelized by distributing the cubes among multiple processors. A
breakthrough made possible by C&C was the 2016 solution of the Boolean Pythagorean Triple problem
[HKM16]. An implementation of the ideas of C&C is given by the parallel SAT solver Treengeling [Bie12].

2.2 Automated Planning

A solution to an instance of the planning problem is a sequence of actions, called plan, that transforms
the initial state of the problem to a desired goal. The set of state can be represented as state space graph,
with states as vertices and actions as edges. Finding a plan translates to �nding a valid path in the
state space graph. Therefore, graph search algorithms play an important role for the �eld of automated
planning. In contrast to SAT, the question whether such a sequence exists in PSPCAE-complete. An
important sequential planning system is given by the Fast Downward Planner [Hel06]. We want to give
a short overview on existing strategies to solve the planning problem in parallel.
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2 Related Work

Algorithm Portfolio The idea of using algorithm portfolio for automated planning was �rst intro-
duced by Robert and Howe [GSV09]. It is based on the observation that no solver or heuristic performs
well on every planning domain. In fact, one solver might perform very well on a single planning domain
and has di�culties with another whereas for a second solver it is the other way around. An algorithm
portfolio tries to pick solvers that complement each other. This means picking solvers that perform well
on di�erent planning domains and therefore maximizing overall coverage. When a good set of solvers is
chosen, they can either be run sequentially or in parallel. If the portfolio algorithms run sequentially
or the number of processors is smaller than the number of solvers, scheduling has to be introduced.
Otherwise, the solvers can run in parallel without much synchronization.

The advantage of this approach is that there exists hardly any communication overhead as long the
solvers share no information with each other. A disadvantage is that the speedup of this approach
is limited by the best sequential solver. It is likely that the portfolio algorithm has a better average
performance than any of the used solvers. But on a speci�c problem, it will never be better than the
fastest sequential solver. A more extensive overview on algorithm portfolios is given by [Val12].

A popular example for an algorithm portfolio is Fast Downward Stone Soup (FDSS) [HRK]. FDSS is a
sequential portfolio planner that uses di�erent con�gurations of the Fast Downward Planner [Hel06].
The portfolio makes the assumption that a con�guration either solves a problem in a small amount
of time or not at all. It uses relatively small time outs to try out a number of di�erent con�gurations.
Another example is ArvandHerd [Val+12]. In contrast to FDSS, it is a parallel planner that runs on
multiple cores.

Parallel Search Algorithms In essence, planning consist of �nding a path in the state space graph.
Thus, parallel planning directly bene�ts from parallel search algorithms for graphs.

One example for this is Hash Distributed A∗ (HDA∗) [KFB09]. It is a parallel A∗ algorithm that uses
a hash function to distribute the work. Each thread keeps a list of open and closed nodes and has a
receive queue for incoming nodes. As long as the receive queue of the thread contains a node, that node
is compared against the closed list of the thread. If the closed list does not contain this node, it is added
to the open list. When the receive queue is empty, the thread picks a node of the open list and explores
it. Each newly explored node gets hashed and send to the corresponding thread depending on the hash
value. For a hash function with uniformly distributed hash values, the work is split evenly among the
processors.

This approach has been shown to achieve a signi�cant speedup compared to sequential solvers.
Additionally, it has access to a larger amount of memory and thus can work with bigger search spaces
than a sequential approach. A major disadvantage is the constant sending and receiving of nodes, which
results in a communication overhead.

Other parallel search techniques focus on improving load balancing by sending work from working
threads to idle ones. An extensive overview to balance the load for a parallel depth �rst search is given
by [San97].
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3 Preliminaries

This chapter explains the concepts we uses throughout this thesis. We look more detailed on how C&C
is used for solving SAT problems. Afterwards we explain the basics of automated planning. We will
de�ne the planning problem and discuss how to solve it with search algorithms. At the end, we describe
the bandit problem, which will become useful when presenting some of our algorithms in Section 4.5.

3.1 SAT

In this section we brie�y introduce basic terminology for the de�nition of the SAT problem.

Definition 3.1 (Literal, Clause, Conjunctive Normal Form):

A literal is a variable A or a negated variable ¬A. A clause is a disjunction of literals e.g. A ∨ ¬B. A
formula of propositional logic is in conjunctive normal form (CNF) if it is a conjunction of clauses e.g.
(A∨¬A)∧ (B∨C). A formula F is satisfiable if there exists an assignment of truth values to the variables
in F , such that F reduces to true. F is unsatisfiable if no such assignment exists.

Each formula of propositional logic F can be converted into a formula F ′ such that F is satis�able
if and only F ′ is satis�able. The problem of deciding whether a formula of propositional formula in
conjunctive normal form is satis�able is called SAT. SAT is one of the most important NP-complete
problems. As such, no polynomial algorithm that decides SAT is known.

3.2 SAT Solving with Cube and Conquer

This section explains what Cube and Conquer is and how it is used to solve SAT. As said in Section 2.1,
the idea behind C&C is to combine lookahead solvers with CDCL solvers in two di�erent phases. The
sub-problems generated by the lookahead solver in the �rst phase are called cubes. The lookahead solver
generates these cubes by building a binary decision tree that assigns some variables a truth value. Each
edge in this tree symbolizes an assignment of one variable. The leaves in the decision tree represent
the cubes. They can be obtained by walking down the path from the root of the tree and assigning
truth values to the variables in the original problem corresponding to the edges. When the CDCL solver
solves the cubes in the second phase, we also speak about conquering the cubes.

An outline of the C&C approach can be found in Algorithm 1 and 2 [HKWB11]. Algorithm 1 checks
if a given SAT formula in CNF is satis�able or unsatis�able. In line 2, it uses Algorithm 2 to generate
the cubes. Line 4 then calculates if any cube is satis�able. This check is done by a CDCL solver and
returns a satisfying assignment if one exists. The original problem is satis�able if and only if any cube
is satis�able. Since this approach is mainly used to test for unsatis�ability, the order in which the cubes
are tested by the CDCL solver does hardly matter.

Algorithm 2 is used to generate the cubes. As described above, it generates a decision tree. Each
leaf of this tree will either be returned as a cube or discarded because the corresponding sub-problem
cannot be satis�ed. It takes two parameters: The �rst parameter describes the original SAT problem P
in CNF and the second one is a truth assignment A. The assignments in A can be understood as the
assignments of the current path in the decision tree. By assigning these variables in P , we get a simpler

5



3 Preliminaries

Algorithm 1: SATSolver
Input: P : SAT problem
Output: a : assignment of variables

1 C : Set of Cubes
2 C ← GetCubes(P , ∅) // start cubing phase

3 for each c ∈ C do
4 a ← isSatisfiable(c)
5 if a , ⊥ then // if an assignment is found

6 return a
7 return ⊥

Algorithm 2: GetCubes
Input: P : SAT problem, A : truth assignment
Output: C : Set of Cubes

1 a : Atom
2 if isTriviallyUnsat(P , A) then
3 return ∅
4 else if shouldBeCutOff(P , A) then // if cut-off heuristic is triggered

5 return {newProblem(P , A)}
6 a ← lookaheadHeuristic(P , A)
7 return GetCubes(P , A ∪ {a}) ∪ GetCubes(P , A ∪ {¬a})

formula P ′. How easy P ′ is to solve is not only determined by the size of A. Some formulas can be
nearly as hard as the original problem even if A is big, while others become very easy to solve after
only a few variables have been set. The algorithms tries to determine the variables with the biggest
e�ect on the original problem by letting a lookahead solver pick them.

Line 2 checks if P ′ is already trivially unsatis�able. This happens if a clause of P ′ can be simpli�ed to
false after assigning the values of A. If this is the case, P ′ does not have to be checked by the CDCL
solver again and we return an empty set. In line 4, a heuristic is used to determine if the cube is already
easy enough to be solved by a CDCL solver. This heuristic is called cut-o� heuristic. The heuristic is
computed based on the number of already assigned variables and the amount of variables they imply.
The call in line 5 then returns the formula P ′.

If none of the above conditions hold, the solver extends the current path in the decision tree by a new
assignment. The heuristic of the lookahead solver in line 6 picks the variable. Afterwards, the algorithm
calls itself recursively two times to walk down both new paths in the decision tree. The union of both
calls is returned in the end.

3.3 Automated Planning

The research �eld of automated planning is concerned with solving planning problems. A planning
problem is described by an initial state, a set of possible actions and a desired goal. To solve a planning
problem, one has to come up with a valid sequence of actions that transfers the initial state into a state
that satis�es the goal. In this thesis, we will approach the most basic formulation of a planning problem.

First, we will de�ne some basic building blocks and operations to perform on them. These will be
used to formalise the planning problem. Afterwards, we look at basic algorithms to solve it.

6



3 Preliminaries

Definition 3.2 (Atom and Assignment):

An atom is a variable with a value of true or false. We write A for a set of atoms. An assignment
σ : A→ {true, false} assigns the atoms in A a value. A partial assignment τ : B→ {true, false} with
B ⊆ A only assigns some atoms in A a value. An assignment σ fulfils a partial assignment τ if

∀x ∈ B : σ (x) = τ (x).

The application of the partial assignment τ on the assignment σ is a new assignment γ̂ (σ , τ ) : A →
{true, false} de�ned by

∀x ∈ A \ B : γ̂ (σ , τ )(x) B σ (x),
∀x ∈ B : γ̂ (σ , τ )(x) B τ (x).

Definition 3.3 (State, Action and Goal):

Let A be a set of atoms. A state is an assignment of the atoms in A. An action α consists of two partial
assignments, the preconditions pre(α) and the effects eff (α). The action α is applicable in a state σ if σ
ful�ls pre(α). If α is applicable in σ then the application of the action α in the state σ is a new state
γ (σ ,α) and is de�ned by

γ (σ ,α) B γ̂ (σ , eff (α)).
A goal is a partial assignment of atoms in A. It can also be understood as the set of states that ful�l this
partial assignment.

We want to note that, in a similar way, an action α can be unapplied on a goal G. The result of
unapplying an action on a goal is not a state but a set of states Σ. A state σ is in Σ if and only if α is
applicable in σ and the application of α in σ ful�lsG . We will see that the set Σ can also be understood as
a new Goal G∗, so the result of unapplying an action on a goal is a new goal. First, we determine which
actions have the potential to ful�l G. This is the counterpart to checking if an action is applicable in a
state. An action α with eff (α) : C → {true, false} and pre(α) : D→ {true, false} has the potential to
ful�l the Goal G : B→ {true, false} if

∀a ∈ C ∩ B : eff (α)(a) = G(a) and
∀a ∈ (B ∩ D) \ C : pre(α)(a) = G(a) and

C ∩ B , ∅

The �rst condition ensures that if an action e�ects an atom that must be ful�lled in the goal, it must
have the correct value. Otherwise no state would exist which application with α can ful�l G, since
at least one atom would not have the right value. The second condition ensures that atoms that are
une�ected by the action but need to be ful�lled by the precondition and the goal have the same value.
The last condition is not necessary to meet our requirements for the potential to ful�l G but we will
see that the goals resulting from unapplying an action that does not meet this requirement are not
interesting for us.

The predecessor goal G∗ : E → {true, false}, which is obtained by unapplying α on G is de�ned by

E B (B \ C) ∪ D
∀a ∈ (B \ C) \ D : G∗(a) B G ′(a)

∀a ∈ D : G∗(a) B pre(α)(a)

7



3 Preliminaries

As said before G∗ can be understood as the set of states Σ. We obtain G∗ by removing assignments of
the e�ects from α and adding the assignments of the preconditions from α . The second equation ensures
that all other assignments stay the same. The �rst and last equations remove and add the assignments
of the changed atoms. If an action α ′ meets the �rst two conditions to be unapplyable in G but not
C ′ ∩ B , ∅, the Goal G ′ resulting from unapplying α ′ on G would just add assignments to G. So the set
of states represented by G ′ is smaller than the set for G . However, this is of no use to solve the planning
problem, since it only adds restrictions to the problem and does not introduce di�erent conditions.

Definition 3.4 (Planning Problem):

Let A be a set of atoms. A planning problem P = (S,A,σ ,G) is de�ned by a set of States S =
{true, false}A, a set of Actions A, an initial State σ ∈ S and a Goal G ⊆ S . A plan p = 〈α1,α2, . . . ,αn〉
is a sequence of actions. We can apply p on a state by de�ning the resulting state recursively as

γ̃ (σ , 〈〉) B σ and
γ̃ (σ , 〈α1,α2, . . . ,αn〉) B γ̃ (γ (σ ,α1), 〈α2,α3, . . . ,αn〉)

This assumes that each action is applicable in the corresponding state. The plan p solves P if γ̃ (σ ,p)
ful�ls G. We can interpret this as γ̃ (σ ,p) ∈ G.

We will deal with the problem of �nding a plan that solves a given planning problem. There are other
variants that try to �nd an optimal, that means the shortest possible, plan or a near optimal plan. The
following de�nition allows us to look at some of the theoretical properties of planning problems.

Definition 3.5 (PlanSAT):

Given a set of atoms A and a planning problem P , decide whether there is a plan p that solves P .

Each atom of a planning problem P can be assigned two di�erent values. Therefore, if the number of
atoms for P is n, then the amount of possible states is 2n . In addition, the length of a shortest plan for
solving P is only bounded by 2n as well. In fact PlanSAT is PSPACE-complete [Byl94]. Some extended
planning models are even undecideable [EHN94]. Hence, there exists no known algorithm for solving
the PlanSAT problem in polynomial time. It is not known if PlanSAT is in NP. The natural candidate
for a witness, the plan p, can be exponentially long as well.

We can easily transform a planning problem into a graph by mapping states to vertices and applications
of actions to edges. We call the resulting graph the state space graph and it has the following form.

Definition 3.6 (State Space Graph):

Let P = (S,A,σ ,G) be a planning problem. The state space graph GP = (V , E) of P is de�ned as V B S
and (σ1,σ2) ∈ E if there exists σ1,σ2 ∈ S and α ∈ A such that α is applicable in σ1 and γ (σ1,α) = σ2.

In rare cases, we will also consider a goal space graph. It is de�ned like the state space graph but uses
goals as nodes and unapplying actions as edges. The transformation for the state space graph enables us
to use graph search algorithms to solve the planning problem. In most cases an uninformed search will
get lost in the exponentially big graph. Therefore, we require a sophisticated heuristic which guides
us while searching for a plan. Heuristics play an important part in automated planning. In this thesis
we are not interested in concrete implementations of heuristics and treat them as black boxes. The
only thing that is of importance to us is that a heuristic takes a state of a planning problem and tries to
estimate the minimum amount of actions required to reach the goal.

3.4 Search Algorithms

In this section we will clarify some terms considering search algorithms for graphs. This allows us to
formulate later algorithms more simple and precise.
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Frontier Most search algorithms keep track of which nodes of a graph have been visited and which
ones will be explored next. We di�erentiate between these two types of nodes and call them closed and
open. Closed nodes were already explored by the search algorithm and wont be reconsidered again for
exploring. Open nodes were already visited by but not explored yet. We call the data structure that
keeps track of both kinds of nodes the frontier. The interface of the frontier provides two methods add()
and top(). The �rst method adds a new node to the set of open nodes from the frontier. If the node
was not visited before, the node will be added to the set. If it was already open before, the frontier will
discard it to avoid duplicates. If the node was already closed, it will be discarded as well. The second
method returns a node from the set of open nodes that will be explored next by the search algorithm.
Depending on the exact search strategy, the behaviour of this method will di�er. For example, a breadth
�rst search would return the nodes in a FIFO order but a depth �rst search would return them according
to a stack. After the node has been retrieved, it will be marked as closed.

Search Strategies A search strategy determines the order in which a search algorithm explores
nodes. Two common examples would be a breath �rst or depth �rst search strategy. Another important
example for us will be the best first search and, a variant thereof, the greedy best first search. Both require
a heuristic. As said before, a heuristic takes a search node and approximates a lower bound for the
distance to the goal. The best �rst search always takes the node with the overall lowest heuristic value.
This is usually implemented via a priority queue that holds all open nodes. The greedy best �rst search
also takes the node with the lowest heuristic value but it only considers immediate children of the
currently explored node that were not visited before. If there is no child or all children are closed, it
backtracks like a depth �rst search. We will use both search strategies throughout this thesis.

3.5 One Armed Bandit

In Section 4.5 we will be confronted with the dilemma of choosing between exploration and exploitations.
This dilemma can be formulated as a multiple one armed bandit problem. In this section we will explain
the problem and a known solution to solve it.

For the bandit problem, we imagine multiple casino gambling devices which are commonly called slot
machines or one armed bandits. At each point in time exactly one bandit can be played. This will result
in a reward. The reward a bandit yields is random but follows some kind of distribution. A solution to
the bandit problem aims to �nd a sequence of bandit plays that maximises the expected reward.

Definition 3.7 (Bandit Problem):

Let n be the number of one armed bandits. The random variables Xi ,1,Xi ,2, . . . describe the bandit with
the number i ≤ n. The variable Xi , j represents the reward that the i-th bandit yields if it is played for
the j-th time. It is normalised to [0, 1]. Each of the variables Xi , j , Xi ,k (j , k) are independent and
identically distributed with an expected value of µi . Random variables Xi , j , Xk ,l with i , k are also
independent but not necessarily identically distributed.

This means that bandits have no state and the reward a bandit yields is not dependent on the number
of times this bandit got played. Di�erent bandits however can have di�erent reward distributions.

There are known strategies to this problem that try to minimize the regret. The best strategy would
always play the bandit with the highest average reward. We de�ne the regret ρ(m) of a strategy S after
m plays as the expected di�erence in reward between the best strategy and S

ρ(m) B µ∗m −
n∑
i=1

µiE[Ti (m)]

9
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where µ∗ is the expected reward value of the best bandit and E[Ti (m)] is the expected number of times
bandit i got played afterm total plays. The strategy we will use is called Upper Con�dence Bound (UCB)
and was introduced by [ACF02]. UCB assigns a value νi to each bandit. This value is only dependent on
past reward values of this bandit. The strategy plays each bandit once and after that plays the bandit
that has a maximal νi value with

νi B r̄i +

√
2 lnm
mi

where r̄i is the average of the past reward values,m is the total number of played bandits and mi is the
amount the i-th bandit got played.
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In this chapter, we explain our ideas for applying the C&C approach to automated planning. At �rst,
we discuss how to transfer C&C to automated planning. After that, we give a basic overview on the
algorithm that we use to implement the C&C approach. It can be divided into three major phases:
Finding the cubes, scheduling the cubes and solving them. All these phases will be explained in detail in
their respective section 4.4, 4.5 and 4.6.

4.1 Translating the Cube and Conquer Approach to Automated

Planning

We decided to model a cube for the planning problem P as a new planning problem P ′ with a new initial
state or a new goal. Additionally, if we �nd a solution for P ′ we have to be able to easily construct a
solution for P out of it. If we want to �nd candidates for P ′, we do a forward search in the state space
graph of P and use the found nodes as a new initial state for P ′. In a similar way we can do a backward
search from the goal of P and generate new goals that we can use for P ′.

4.2 Challenges

One of the biggest challenges that arise when modelling cubes this way is that we do not partition
the search space. Cubes in context of SAT however partition the problem perfectly into many sub-
problems. This has the e�ect that we will have overlapping search spaces when trying to solve each cube
independently. In most cases the search spaces of two di�erent cubes are even identical since the initial
state of one cube can be reached by the initial state of the other cube and vice versa. If we repeatedly
search trough the same part of the graph again we do not use our computation time e�ciently. We
approach this issue in the cube �nding phase which is explained in Section 4.4.

Another di�erence between both types of cubes is that the cubes of a planning problem are rarely
unsolvable while the cubes of the SAT problem can also be used to prove the unsatis�ability of a problem.
In fact, most planners have di�culties to show that a non trivial planning instance has no solution. In
order to prove that a formula is unsati�able all cubes have to be proven unsatis�able. For SAT disproving
all cubes requires roughly as much work as disproving the original problem but for automated planning
the work can multiply by the number of cubes. Since the search spaces of our cubes overlap we would
just show that the same planning problem has no plan over and over again. Trying to show that a
planning problem has no solution by applying the C&C method is hard to justify. Therefore we will
only try to prove the existence of a plan for satis�able planning problems.

In the case of unsatis�ability, all cubes have to be disproven, but if we are concerned with satis�ability
we only have to solve one cube. Thus, the order in which we try to solve the cubes matters a lot.
Regarding execution time, an optimal strategy would use all its computation time to solve the easiest
cube. But of course it is not that easy to determine which cube is fastest to solve in advance. Instead
we have split our computation resources between �nding the easiest cube and solving the easiest cube.
If we use too much of our time looking at all the cubes, trying to �nd the easiest one, we would be
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overtaken by a sequential solver. But if we use all our computation time for solving a cube, the selection
of this cube is uneducated and we might try to solve a very bad or even unsolvable cube. We introduce
a scheduler in Section 4.5 that tries to balance the computation time between both concepts.

4.3 General Structure of the Algorithm

This section gives an overview on the approach we use to solve the planning problem. We also explain
some terms we use throughout the thesis. It is implemented by Algorithm 3 and 4 which apply the
C&C method for planning. Some methods of these algorithms are placeholders. We introduce di�erent
implementations of these methods in Section 4.4, 4.5 and 4.6 to achieve varying behaviour of the
algorithm.

Algorithm 3: planner
Input: P : planning problem
Output: p: plan

1 C : list of Cubes, Ĉ : list of lists of Cubes, p : plan
2 C ← findCubes(P ) // start cubing phase

3 C ← shuffle(C)
4 Ĉ ← split(C)
5 for each l ∈ Ĉ do // start conquering phase

6 p ← startSchedulerThread(l )
7 while p = ⊥ do // while no plan is found

8 wait()

9 return p

Algorithm 4: startSchedulerThread
Input: C: List of Cubes
Output: p: plan

1 Σ : Scheduler, S : list of cube solver, s : cube solver, p : plan
2 for each c ∈ C do
3 S .add(newSolver(c))
4 Σ← newScheduler(S)
5 while p = ⊥ do // while no plan is found

6 p ← Σ.scheduleNext()
7 return p

Algorithm 3 is a parallel planning algorithm that takes a planning problem and outputs a plan that
solves this problem. It does so by splitting the problem into multiple cubes and distributing them among
the threads. As described in Section 4.1, cubes represent a new planning problem with either a new
initial state or a new goal. In Section 4.4 we will look in detail on how to model these cubes.

The call in line 2 generates the cubes. The equivalent in C&C SAT solving would be the heuristic of a
lookahead solver in combination with the cut-o� heuristic. The exact amount of cubes is variable but
we generally generate a lot more cubes than we have cores. Generating a good set of cubes is a crucial
part for a successful C&C approach. We call this aspect of the algorithm the cubing phase. Section 4.4
discusses di�erent possibilities for �nding a good set.

12
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In line 3 and 4 we shu�e the list of cubes and split them evenly. Each sub list of cubes will then
be given to a di�erent thread in line 6. Algorithm 4 describes the behaviour of the threads in more
detail. This call is asynchronous and at this point the planner will run in parallel. We call the parallel
phase of our algorithm the conquering phase. By shu�ing the cubes we destroy any ordering that the
cubing phase might have induced on the cubes. This distributes the work on all threads more evenly.
Additionally, the threads which receive the sub-lists can make no assumptions about the order they
receive their cubes in. By doing so we decouple the cubing phase from the conquering phase. This
allows us to try di�erent approaches for one phase without too much interference on the other.

Each thread tries to �nd a solution for one of its given cubes. As soon as one thread �nds a solution,
p will be overridden by a plan that solves the original problem in line 6. Afterwards all other threads
will terminate, the main thread stops waiting in line 8 and then returns the solution of the problem.

Algorithm 4 describes the behaviour of the threads. Each thread receives a list of cubes and tries
to �nd a plan for one of them. It stores a list of cube solvers that take turns to solve a cube. They get
initialized in line 3. The C&C solver for the SAT problem uses a CDCL solver at this point. We will look
at di�erent options for cube solvers in Section 4.6.

Until no plan is found, the variable p is set to ⊥. The thread then picks one solver according to the
scheduling method of the scheduler in line 6 which assigns a �xed amount of computation time to it. If
the cube solver �nds a plan in the given amount of time we return it. Else we repeat the process. The
policy after which a solver is picked is of great importance for the performance of our planner. We
discuss di�erent approaches in Section 4.5.

4.4 Finding the Cubes

As mentioned in Section 4.1 we want to model our cubes as a new planning problem with a new initial
state or goal. In the case that we choose to model them with a new state it is easy to generate cubes
by doing a forward search in the state space graph. For each node σ ′ that was touched by the forward
search we know a valid plan that transforms the initial state of the original problem into σ ′. Therefore
if we �nd a plan for a problem with σ ′ as the initial state we can concatenate it with the plan to reach
σ ′ from the original initial state and get a plan for the original problem. If we want to generate cubes
with a new goal we do the same thing but as a backward search in the goal space graph.

The C&C algorithm for SAT solving uses a the cut-o� heuristic to determine when to stop the cubing
phase. This heuristic uses a parameter Θ that is dependent on the number of made decisions and the
number of implications through these decisions. However, there is no good analogy for the number of
implications while searching in a state space graph. We will fall back to a simpler approach that is not
as dynamic. We introduce the parameter N which represents the amount of desired cubes and should
be greater than or equal to the number of processors. The cubing phase will continue to search through
the state space graph until N cubes are found. If it �nds a plan for the original problem while searching
for cubes, the conquering phase will be skipped and the plan returned.

The amount of computation resources invested into the cubing phase could also be bounded by time
in a similar way. Both methods have their own advantages. Bounding by number of cubes gives more
control over how much work each thread receives, while bounding by time allows more control over
the ratio of sequential to parallel computation time.

Figure 4.1 illustrates this search. It represents the state of an arbitrary forward search in the state
space graph of a planning problem. Depending on the concrete search strategy used the search will look
very di�erent. The search starts from the initial state σ and continues towards the goal on the right side.
Two di�erent kinds of nodes are known to the search algorithm: closed and open nodes. The closed
nodes are symbolized by the thin black lines starting from σ , the open nodes are represented by the

13



4 Our Approach

open nodes
closed nodes

Goal

σ

Figure 4.1: Illustration of �nding cubes via a search in the state space graph.

grey area around these lines. To generate the cubes we will only use the closed nodes, found during the
search. The only exception to this is a breath �rst search. In this case we use the open nodes for cube
generation. The reasons to this will become clearer during this section but in short, the open nodes of
a depth �rst search are too similar and will result in too much redundant work. Section 5.3 includes
experimental results comparing the execution time of planners using open or closed nodes.

Breadth First Search If we want to generate a �xed amount of cubes N , the most simple approach
would be to do a breadth �rst search until the layer that will be explored next is bigger than N . Each
node in the last layer then becomes a cube. As simple as this approach is, it has some obvious problems.
We will use breadth �rst search as a case study to emphasize important characteristics when �nding
cubes.

One problem is that our search does not extend deep into the graph. Even if the branching factor of
our state space graph is not very big we can expect our layers to growth exponentially in most cases.
Therefore we will only visit about L = O(log(N )) layers. Depending on the concrete planning problem,
�nding the solution can be signi�cantly easier if only the �rst few actions of the solution are given. In
most cases however, solving the cube wont be signi�cant easier than the original problem.

Another di�culty we have to deal with when using a breath �rst search is that the resulting cubes
can be very similar. The initial states of two di�erent cubes can often be transformed into each other
by only a few actions. Especially if the state space graph is undirected, two cubes from the breath
�rst search will only di�er by 2 · L actions. Should two threads try to solve two cubes that are similar,
they will search in similar regions of the graph. Therefore we do not bene�t signi�cantly from using
multiple threads. For a diverse set of cubes, we try to maximise the minimal number of actions it takes
to transform two cubes of the set into each other.

The last problem of the breath �rst search is that it searches blindly in the graph. Because we use no
heuristic, it is likely that we return cubes that are harder to solve then the original planning problem.

We can summarise that a good set of cubes should ful�l two di�erent characteristics. First, the nodes
that become the cubes should tend to have a lower heuristic value than the initial node. This ensures
that the problems from the cubes are easier to solve than the original problem. And secondly, we want
to have a diverse set of cubes such that the search spaces for di�erent cubes have less overlap.
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Heuristic Search A simple approach to counter the weaknesses of a breath �rst search would be to
use an informed search with a heuristic h. This means that we either use a best �rst or greedy best
�rst search strategy together with h. If we want to �nd N nodes we continue to explore new nodes in
the graph until we visited N nodes. All these nodes are then returned as cubes. Unlike in the case of a
breath �rst search we use the closed nodes to return as cubes.

Overall we can expect the nodes of a heuristic search to have a better heuristic value than the nodes
of a breath �rst search and they are therefore easier to solve. However, the search spaces of the cubes
will still be very similar. Especially if we use a greedy best �rst search, the search spaces will be nearly
identical. If we use a greedy best �rst search with the same heuristic and no randomization for �nding
and solving the cubes, the cube solver will make the same decisions when picking a predecessor as we
did when �nding the cubes. As a result, the solvers for each cube will search through exactly the same
part of the graph. Only if a parent node has a better heuristic value than all of its children the cube
�nder has to pick a child σ while the solver that starts from σ can pick the parent. This rare case is the
only one where the search spaces of the cube solver and cube �nder di�er.

The problem is not as severe if we use a best �rst search but the overlap of the search space will still be
a signi�cant factor. Especially if the cube �nder and the cube solver use the same heuristic, it is probable
that the heuristic will guide the cubes in the same direction. To counteract this, we propose three
di�erent approaches. We use di�erent heuristics similar to a portfolio approach, introduce randomness
to the heuristic and force the cube �nder to pick nodes as cubes that are not too close together.

Portfolio A common approach to achieve more diversity is to use a portfolio of di�erent heuristics.
As mentioned in Chapter 2, portfolio planners are a fruitful attempt when dealing with a wider range of
domains. We try to build upon this success and �nd a more diverse set of cubes by using a portfolio of
heuristics to �nd cubes.

Algorithm 5: portfolio
Input: P = (S,A,σ ,G) : planning problem, N : integer
Output: C : list of cubes

1 H : list of heuristics, R : set of nodes, C : list of cubes
2 for each h ∈ H do
3 R.addAll(findNodes(P, N

|H | ,h))
4 for each ν ∈ R do
5 C .add(newCube(ν ))
6 return C

Algorithm 5 implements this idea. The cube �nder keeps a set of di�erent heuristics H . For each
heuristic h ∈ H the �nder starts a separate search from the initial state. This is done in line 3. The
resulting set of nodes gets added to R. Duplicate nodes are ignored. Since all searches stop after N /|H |
cubes have been found, the total amount of found cubes in R is at most N . In the end the union of all
sets is converted to cubes in line 5 gets returned in line 6.

Random Search Another way to get a diverse set of cubes with good heuristic values is to introduce
randomness to the search. We use two di�erent approaches to randomize a heuristic. The �rst randomizes
a depth �rst search and the second a best �rst search. Both methods can start multiple searches from
the initial node similarly to what a portfolio �nder does, to cover di�erent parts of the graph.
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The �rst method looks at a set of nodes F and tries to pick a random node from it depending on the
heuristic values. For each node ν ∈ F , we calculate its heuristic value h(ν ). Then we assign each node a
reward value r (ν ) according to the following formula:

r (ν ) B hmax − h(ν ), with hmax B max
ν ′∈F

h(ν ′) + 1

The node ν will be picked with a probability of

p(ν ) B r (ν )∑
ν ′∈C r (ν ′)

So nodes with a lower heuristic value have a higher reward value and therefore a higher probability to
be picked. This approach is only feasible if the set F is small. If we add or remove nodes from F , all
values p(ν ) change and it is di�cult to update all these values e�ciently. Thus, we use this approach as
a modi�ed greedy depth �rst search and the set F becomes the children of the node that we currently
explore.

Algorithm 6: randomDepthFirst
Input: P = (S,A,σ ,G) : planning problem, N ,D : integer
Output: C : list of cubes

1 S : stack of nodes, Rд,Rl ,F : set of nodes, ν, µ : node, C : list of cubes
2 for i = 1 to D do
3 S ←newStack(), S .add(σ ) // initialize new depth first search

4 Rl ← ∅
5 while not S .isEmpty() and |Rl | ≤ N

D do
6 ν ← S .top()
7 F ← ν .getUnfinishedChildren()
8 if F .isEmpty() then // if no child to explore

9 S .pop() // backtrack

10 else
11 µ ←randomNode(F ) // explore new node

12 S .push(µ), Rl .add(µ)
13 Rд .addAll(Rl ) // add local set of nodes to global set

14 for each ν ∈ Rд do
15 C .add(newCube(ν ))
16 return C

Algorithm 6 implements this approach. In addition to the parameter N it also uses D, which describes
the number of repeated random depth �rst searches through the graph. Each depth �rst search uses its
own stack S and a local set of closed nodes Rl . They get initialized in line 3 and 4. To ensure that at
most N cubes are found, each depth �rst search stops after it has found N /D cubes. The node ν that is
currently explored is retrieved from the stack in line 6. The call in line 7 returns a list of all children
F from ν that are not closed by the algorithm yet. If this list is empty, ν has no feasible children and
the algorithm backtracks by popping ν from the stack in line 9. Otherwise, a random node µ will be
picked from F in line 11 according to the strategy explained above. The node gets added to the stack
and the set of closed nodes in line 12. When the depth �rst search stops because it found enough cubes,
all closed nodes get added to the global set of nodes Rд . These nodes will be converted to cubes and
returned in line 15 and 16 after all depth �rst searches �nished.
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The second method does not have to update the probabilities of all considered nodes. Instead, if the
heuristic value of a node h(ν ) is calculated, a random real number r ∈ [0.9, 1.1] is picked. Then the
algorithm assigns ν the value h(ν ) · r . The node ν will be treated as if it had a heuristic value of h(ν ) · r .
In contrast to the �rst method, the values of nodes do not change if new nodes get added or old ones get
removed. Because of this, the set F of considered nodes can be bigger and we combine this method
with a best �rst search. By slightly changing Algorithm 6 we achieve this behavior. The stack S gets
exchanged by a priority queue. The call in line 6 returns and removes the node with minimal value.
If the node is already closed it gets skipped, otherwise it gets expanded is now considered closed, by
adding it to Rl . In line 7, all nodes in F get added to the queue according to the method above. No
method for duplicate detection is applied. The if-else-block in line 8 is omitted. We call this algorithm a
randomBestFirst search.

Cut-O� Search In order to get a diverse set of cubes we can try to force the cube �nder to pick its
cubes from di�erent parts of the graph. Algorithm 7 implements this approach. The basic idea behind
the algorithm is, that it keeps a set of search nodes we call anchors. If the algorithm visits a node that
is too close to an anchor, it stops the search and continues elsewhere. The algorithm will add a new
node to the set of anchors after it has searched through a new part of the graph for some time. The new
picked anchor then ensures that the algorithm has to stop the search in this part of the graph and �nd a
new one.

Algorithm 7: cutOffSearch
Input: P = (S,A,σ ,G) : planning problem, N : integer
Output: C : list of cubes

1 A : list of nodes, F : frontier of nodes, C : list of cubes, ν : node, P : list of nodes,
2 F .add(σ )
3 while |C | < N do
4 ν ← F .top() // explore new node

5 if cutNodeOff(A, ν ) then // if node is too close to an anchor

6 continue // cut node off by ignoring it

7 else
8 if becomeAnchor(ν ) then
9 A.add(ν ) // add ν to the list of anchors

10 P ← getPredecessors(ν )
11 F .addAll(P )
12 C .add(newCube(ν ))
13 return C

Algorithm 8: cutNodeOff
Input: A : list of nodes, ν : node
Output: b : boolean

1 for each ω ∈ A do
2 if h.distance(ν , ω) ≤ Φ · h.distance(σ ,ω) then
3 return true

4 return false
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This approach is implemented by Algorithm 7 which takes a planning problem P and an integer N as
input. It then tries to �nd N cubes for the problem P . It uses a list of nodes A which work as the set of
anchors and a frontier F . After it has initialized the frontier with the initial state of P it continues to
explore the graph until it found enough cubes.

In line 4, the frontier provides the node ν that should be explored next. If the node is too close to one
of the anchors, the call in line 5 will return true. If this is the case the node does not become a cube and
we continue to search elsewhere in the graph by picking a new node from F . Since ν is a closed node
at this point, it will not be reconsidered again whether it becomes a cube. This call is implemented by
Algorithm 8.

In the other case, we continue to explore ν . The function in line 8 determines if our node should
become an anchor. In this case, it gets added to the list of anchors. We use the additional parameter Ψ if
we want to determine if a node should become an anchor in line 8. The integer Ψ de�nes the amount of
anchors that are chosen when the algorithm returns. To achieve that, the algorithm picks new anchors
at an interval of i B dN /Ψe. This means that every i-th node that should become a cube also becomes
an anchor. Afterwards, the node will get explored by adding its children to the frontier in line 10 and 11.
We also add ν to the set of cubes our algorithm will return in the end.

Algorithm 8 works as follows: It uses a heuristic h to approximate the distance between two states
and an additional parameter Φ which is a real number between zero and one. Φ decides how close a
node has to be to an anchor in order to be cut o�. For each anchor ω, it approximates the distance δ
between the initial node of the planning problem σ and ω. If the approximated distance between the
node that we currently explore ν and ω is smaller than ε B δ · Φ we cut ν o�. The idea is that we build
an ε-ball around ω and each node that is in this ball will be cut o�.

Figure 4.2 illustrates this procedure. It represents the state of Algorithm 7 while searching for cubes
in the state space graph. The search started from the initial node σ . A thick black line indicates the
path of the search. Most nodes on the path are omitted for clarity. Each node on the path is labelled as
�nished and picked as a cube. The algorithm already found the two anchors ω1 and ω2 in that order and
is about to �nd the third anchor ω3. The ε-balls around the anchors mark the region of nodes that will
be cut o�. After an anchor has been picked, all nodes inside of the ε-ball will be ignored by the search
and cannot become cubes. We can think about this as cutting the ball out of the graph. Thus, we force
the search algorithm to branch o� and continue in a new part of the graph. We can see this in the �gure.
After the algorithm found the anchor ω1 or ω2, it had to backtrack until it left the corresponding ε-ball
and then had to search around it.

Considering ω3 the Figure 4.2 visualizes the calculation of the ε-ball. First the distance δ3 between σ
and ω3 is calculated using the heuristic h. Together with the parameter Φ we calculate ε3 and can draw
the ε3-ball around ω3.

4.5 Scheduling the Cubes

We already mentioned in Section 4.2 that scheduling will be an important part of our C&C approach.
In our context, scheduling is the process of repeatedly choosing a solver for a cube and assigning a
�xed time slice of computation time to the solver. More precisely, this section is concerned with the
implementation of line 6 from Algorithm 4. First, we will look at the most basic form of scheduling, a
Round Robin scheduling algorithm. We can then discuss the weaknesses of this approach and formulate
a more informed Bandit scheduling algorithm. At last, we will tweak this approach, which results in the
Greedy Bandit scheduling algorithm.
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Figure 4.2: Illustration of a cut-o� search.

Round Robin A Round Robin scheduling algorithm keeps a circular list of all solvers. It has an
internal pointer that initially points to the �rst solver in its list. If the scheduler should pick a new solver
it returns the element its pointer is currently pointing to and moves the pointer to the next element in
the list.

The problem with this approach is that the scheduler does not focus the computation time on a single
solver. In fact, it distributes the computation time equally across all solvers. This has the e�ect that if all
cubes need an equal amount of time to solve, the scheduler would need an amount of time equals to the
number of cubes times the amount of time it needs to solve a single cube to solve the original problem.
Therefore, Round Robin performs especially bad if we have a lot of cubes or the cubes are hard to solve.

Bandit The problem we face when choosing a cube solver is an example for the exploration/exploita-
tion dilemma. We already discussed this dilemma in Section 3.5. In this paragraph we want to describe
how to apply the UCB strategy for the bandit problem to resolve the dilemma for our scheduling problem.

We will apply the UCB strategy to our scheduling problem in the following way. Cube solvers
are equivalent to the bandits and playing a bandit means assigning computation resources to the
corresponding solver. The di�cult part is to assign a reward value to our solvers that ful�l the conditions
of De�nition 3.7. A solver which is closer to solving its cube should have a higher reward value than a
solver that needs more time to solve it. To approximate the time a solver needs to solve its cube, we
use a heuristic. We identify the heuristic value of a solver with the heuristic value of the node that was
�nished last by that solver. The reward value of a solver should then be dependent on its heuristic value.

We propose the following reward function. It takes the history of all prior heuristic values of this
solver L and outputs a reward r between zero and one. Each time a solver uses computation time, we
add the updated heuristic value to L. Doing so we can plot these values as points on a two dimensional
plane with time on the x-axis and heuristic value on the y-axis. Let n + 1 be the size of L. If the i-th
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entry (0 ≤ i ≤ n) in L has value yi then the point representing this entry has the coordinated (xi ,yi )
with xi B δi where δ is the size of the time slice that gets assigned to scheduled solvers. We can then
draw the linear regression line y = α + βx through these points with

β B
∑n

i=0(xi − x̄)(yi − ȳ)∑n
i=0(xi − x̄)2

and α B ȳ − βx̄

where x̄ and ȳ are the mean values of all xi or yi values. If we calculate the intersection with the x-axis,
we get an approximation r ′ for the remaining time our solver needs to �nish. We scale this value
between zero and one to get r

r ′ B

{
min

(
−αβ , B

)
if b < 0

B else
and r B

B − r ′
B

where B is a generous upper bound for the total time our solver needs to solve the problem.
Algorithm 9 implements this approach. It will get called repeatedly by the C&C planner to schedule a

new solver. It takes no input and outputs a plan if the scheduled solver �nds one. The algorithm keeps a
list of all solvers S . Each solver s ∈ S has two additional attributes. The attribute s .r is a list of all reward
values of this solver and s .h is a list of all prior heuristic values of the solver. The lists s .h are initialized
with one element representing the heuristic value of the initial state for the solver s . The lists s .r are
initialized empty. An invariant for the algorithm is that if the list s .h has size n then the list s .r will have
size n + 1. The integer i is initialized to zero and guarantees that each solver get scheduled at least once.

The check in line 2 schedules each solver once before applying the UCB strategy. This ensures that
the heuristic lists of each solver has at least size two and we can calculate the linear regression line to
assign a reward value. Afterwards, the UCB strategy in line 6 picks the solver with the highest νi value.
The picked cube solver then tries to solve its cube for a �xed amount of computation time in line 7. We
add the new heuristic value of the solver to its list in line 8. After that we can calculate the new reward
value for this solver as we described above. In the end, we return p this will be either ⊥ or a valid plan
depending on whether the solver solved the cube.

Algorithm 9: bandit
Output: p : plan

1 S : list of solvers, s : solver, p : plan, i : integer
2 if i < S .size() then // if not every solver was played at least once

3 s ← S .get(i)
4 i ← i + 1
5 else
6 s ← arg maxs ′∈S UCB(s ′.r ) // pick a solver after the UCB strategy

7 p ← s .calculateUntilTimeout()
8 s .h.add(s .getHeuristicValue())
9 s .r .add(calculateReward(s .h))

10 return p

We recall that the random variables Xi ,1,Xi2, . . . have to be independent and identically distributed.
Our reward function does not ful�l this condition but under the assumption that the heuristic value of a
solver will decrease linearly with the amount of computation time it uses, we get close to the desired
behaviour. Another problem with our reward function is that the UCB strategy tries to minimise ρ(m)
and we do not necessarily bene�t from that. Consider the case that we have multiple cube solvers
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i1, i2, . . . ik that need an equal amount of time to �nish their respective cube. All these cube solvers
would have a similar expected reward value ri1 ≈ ri2 ≈ · · · ≈ rik . If the best solver i∗ also has a similar
reward value r ∗ ≈ ri1 the regret of the UCB strategy ρ(m) will be the same whether it always picks the
best solver or all solvers i1, i2, . . . ik equally often. Only picking the best solver will result in fast solving
of the original problem but switching between multiple solvers will result in a much higher execution
time. Therefore, a small regret value does not lead to a small computation time. This problem can be
boiled down to the reward value of a solver not increasing when it is played often. In fact, the UCB
strategy is less likely to pick a solver that has been played often. Additionally, the UCB strategy seems
to need a big constant of plays before it plays well. Since playing a solver for a �xed amount of time is
very costly, the strategy runs into problems when we have a great number of solvers or a big scheduling
interval.

Greedy Bandit The Greedy Bandit scheduler is a simpli�ed version of the bandit approach and aims
to circumvent its problems. It calculates a reward value in a similar way as the bandit scheduler but
does not apply the UCB strategy. Because the reward function does not have to ful�l the requirements
of the bandit problem, we have more freedom in de�ning it.

The bandit scheduler has the problem that it does not take into account how often a scheduler gets
played. A very e�ective way to counteract this is to modify the reward function in the following way.
The reward function still takes the list of all prior heuristic values as input but rather than calculating a
scaled approximation of the �nishing time of the solver it outputs an approximation on the remaining
�nishing time of the solver. Let y = α + βx be the same linear regression line as in the bandit approach,
δ the size of the scheduling interval, i the amount this bandit got scheduled in the past and B be a
generous upper bound for the total solving time. We de�ne our reward value r for the Greedy Bandit
scheduler as

r B

{
min

(
−αβ − iδ , B

)
if b < 0

B else

If the linear regression line has a slope greater than zero we set the reward value to B. Otherwise, we
calculate the approximated �nishing time by intersecting the linear regression line with the x-axis
−α/β and subtract the amount of time this cube got scheduled iδ to obtain the approximated remaining
calculation time to �nish the problem. The scheduler schedules the solver with lowest reward value.

Algorithm 10 implements this approach. It works similar to the bandit scheduler but has some small
di�erences. In addition to the list of all solvers, it also keeps a priority queue with solvers. The solvers
will be added to this priority queue after their reward value was calculated for the �rst time. The solver
with the lowest reward value will be at the front of the priority queue.

The �rst phase of the algorithm works the same as for the bandit scheduler. Each solver gets scheduled
once in Line 2 to 4. In the second phase, the scheduler picks the solver with the lowest reward value by
removing the top element of the priority queue in line 6. After that the heuristic and reward lists get
updated accordingly in line 7 to 9. At the end in line 10 the scheduler will add the scheduled solver to
the priority queue with the updated reward value.

The reward function of the greedy bandit scheduler has several advantages over the reward function
of the bandit scheduler. First of all, it is easier to calculate. The UCB strategy must update the µi values
of all solvers after a single solver was scheduled. The greedy bandit scheduler must only update the
value of the scheduled solver. This allows the usage of a priority queue which in turn leads to a faster
selection of the best solver.

Secondly and more importantly, the new reward function takes into account how often a solver gets
scheduled. We recall that the bandit scheduler has problems to focus its computation time on a single
solver if multiple solvers have similar �nishing times. We can apply this scenario on the greedy bandit
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Algorithm 10: greedyBandit
Output: p : plan

1 S : list of solvers, P : min priority queue, s : solver, p : plan, i : integer
2 if i < S .size() then // if not every solver was played at least once

3 s ← S .get(i)
4 i ← i + 1
5 else
6 s ← P .popTop()
7 p ← s .calculateUntilTimeout()
8 s .h.add(s .getHeuristicValue())
9 s .r .add(calculateReward(s .h))

10 P .add(s , s .r .getLast())
11 return p

scheduler. Since all solvers have similar �nishing times they will have similar values −α/β for the linear
regression line. This value will get reduced by 2δ for the �rst scheduler that gets scheduled twice and
and reduced by 1δ for all other solvers. After that the reward value for the solver that was scheduled
two times will be signi�cantly lower than the values of the other solvers. The scheduler will continue to
schedule this solver which will in turn decrease the reward value even more. This chain reaction will
only stop if the solver gets multiple bad reward values which will increase −α/β up to the point where
it overtakes iδ . Therefore, the greedy bandit scheduler is better at focusing its computation time in a
single solver.

4.6 Solving the Cubes

We already discussed the process of generating and scheduling cubes. In this section we describe how
to solve them. For most cases we treat the cube solver as a black box and use the same implementation
for it as the default sequential solver. The sequential solver does a forward search in the state space
graph of the planning problem. It uses a best �rst search strategy with a greedy approximation of the
FastForward heuristic [HN01] by Marvin Williams. The only exception to this is the randomized cube
solver.

Random Solving In Section 4.4 we looked at di�erent methods to randomize the cubing phase of
our C&C approach. We can apply the same method to randomize the conquering phase. The �rst
randomization method results in a solver that uses a greedy best �rst search strategy but picks the next
node at random according to the strategy explained in Section 4.4. The second randomization method
leads to a solver using a best �rst search strategy with randomized heuristic values for the nodes of the
state space graph. We call these solvers random depth first solver and a random best first solver.

4.7 Optimisations

This section includes additional techniques we introduce to render our approaches more e�ciently.

Sharing Finished Nodes Currently threads share no information between each other to keep the
communication overhead low. This has the disadvantage that the search spaces of di�erent threads can
easily overlap. We propose the following option as a compromise. In addition to assigning each solver a
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cube to solve, we also share the set of �nished nodes from the cube �nder with each thread. Each cube
�nder keeps two set of nodes: its own set and the set from the cube �nder. If a cube solver needs to
check if a node is already �nished, it performs a lookup in both sets.

This option cannot be combined with sparsening. Otherwise it is possible that the part of the state
space graph containing the goal is not reachable for any cube solver, because it is surrounded by �nished
nodes from the cubing phase. In this case the algorithm loses completeness.

Sparsening We recall that the C&C approach for SAT solving generated a large set of cubes. A key
aspect of this is, that the total amount of work is reduced with a larger amount of cubes. But in our
case the amount of work increases or even multiplies with the number of cubes and the scheduler has a
harder time �nding the easiest cube. Therefore we face the dilemma of keeping the number of cubes
low in order to keep the total amount of work low but at the same time having a large and divers set of
cubes with good heuristic values. To deal with this dilemma we introduce sparsening.

Under sparsening we understand the process of removing cubes from the original setC that is returned
at the end of the cubing phase and instead returning the smaller set C ′ for the conquering phase. This
way the set becomes more diverse and the scheduler has an easier time to distinguish between promising
and unpromising cube candidates.

We propose two di�erent approaches to remove cubes from C: a deterministic and a random one.
Both use the parameter p, which is a real number in the interval (0, 1]. The parameter indicates what
percentage of the original cubes are removed. In other words |C | · p = |C ′ |. The lower p gets the longer
the cube �nder has to search for cubes if N stays constant. If p = 1 no sparsening is done at all. If
p < 1, the cube �nder has to search for N · 1/p cubes until it can return C ′. In the case of deterministic
sparsening the cube �nder only adds every 1/p-th cube to C ′. Every other cube candidate is simply
discarded. By doing so, the gaps between the cubes are evenly spaced. The random approach chooses
p · |C | cubes from C at random and returns them. Both approaches add a cube representing the initial
state σ to C ′ at the end so that our algorithm stays complete.
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This chapter evaluates our contributions from Chapter 4. We explain our test set up and implementation
in Section 5.1 and 5.2. Afterwards we compare di�erent approaches and evaluate their performance in
Section 5.3.

5.1 Implementation

We implemented our algorithms in Java, building on the Aquaplanning framework1. Aquaplanning
already provides methods to parse, solve and verify planning problems (in PDDL format). Parsed
problems are represented as an internal Ground Planning Problem class. To work with this class, the
framework also provides methods and objects representing graph structures and search algorithms. Our
own algorithms were realized by implementing the Planner interface and modifying the existing graph
classes to �t our needs. Throughout all algorithms we use a greedy approximation of the FastForward
heuristic [HN01] by Marvin Williams.

5.2 Experimental Setup

Our experiments were run on a machine using an AMD Epyc 7551P processor with 32 CPU cores and a
clock rate of 2GHz. We had 256GB of DDR4 RAM accessible but never came close to exhausting it.

We used GNU parallel[Tan+11] to run multiple instances of our algorithms at once. The generated
data was analysed using Python2 and PyPlot3.

We used the following optimisation domains from past international planning competition: agricola,
barman, data-network, �oortile, hiking, parking, snake, termes, tetris, tidybot, transport, visitall [Pom18].
To generate a manageable set of benchmarks, we ran a sequential solver on several planning domains.
Only the test cases that were solved by the sequential solver after at most 5000 seconds are considered
for parallel testing. The sequential solver solved 171 out of 231 problems. If we only consider problems
solved before 1000 seconds, the sequential solver solved 143 problems. This test set was used to test
most parallel solvers. In Section 5.4, we choose the most promising solvers to run on the complete set of
test cases. Unless otherwise stated, all parallel solvers were run on four cores for 1000 seconds on the
small test set.

5.3 Experimental Results

Scheduler Although we mentioned scheduling methods last in Chapter 4, we will evaluate them
�rst. Taking a look at the di�erent scheduling methods in combination with basic cube �nd algorithms
gives us a good starting point to start from and compare more advanced approaches. Table 5.1 gives an
overview on the number of solved test cases for basic parameter combinations. It lists the number of

1https://github.com/domschrei/aquaplanning
2https://www.python.org/
3https://matplotlib.org/api/pyplot_api.html
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solved instances for all combinations of the round robin, bandit and greedy bandit scheduler with a BFS
or heuristic cube �nder. The scheduler was con�gured with a 10 or 100 milliseconds time slice. The
cube �nder searched for 40 cubes or 400 cubes.

We can see that the bandit scheduler consistently outperforms the round robin scheduler, which in
turn is outperformed by the greedy bandit scheduler. This coincides with our intuition about scheduling
in Section 4.5. The greedy bandit scheduler seems to be able to focus its computation time better that
the other two schedulers.

Additionally, using a BFS strategy to �nd cubes is inferior to using a heuristic best �rst search in
most cases. Due to the fact that the impact of the cubing phase is lower when giving it less time,
this e�ect is reduced when using less cubes. When comparing the BFS and heuristic search for 400
cubes, the heuristic approach solves more problems. Although most of the computation resources are
invested in the conquering phase, this shows that the cubing phase has a signi�cant impact on the
overall performance of the algorithm.

The impact of the time slice has no noticeable impact on the number of solved test cases as long as
it is chosen big enough. For a time slice of t seconds and n cubes per thread, every scheduler needs
t · n seconds to schedule each cube once. So if T represents the time-out of the algorithm in seconds, t
and n should be chosen in a way that t · n � T . Otherwise, the scheduler does not have enough time
to evaluate promising cubes. Increasing the number of cubes from 40 to 400 seems to decrease the
performance of the algorithm. The BFS search strategy and the round robin scheduler su�er the most
from this. However, this does not mean that we want to keep the number of cubes small for further tests.
Choosing a small set of cubes means that the cube solvers solve more similar problems, which makes it
di�cult to achieve a speedup compared to a sequential solver. With that in mind, we want to note that
it is a good property of the heuristic search in combination with the greedy bandit scheduler to not be
a�ected by a change in the number of cubes. We will further investigate on what a good amount of
cubes is when we evaluate sparsening techniques for the cubing phase.

Figure 5.1 compares the performance of the sequential solver and a C&C solver, using the greedy
bandit scheduler with a time slice of 100 ms and a heuristic best �rst search cube �nding phase, searching
for 400 cubes in a cactus plot. For each solver, we sorted the list of execution times to solve test cases
independently. The sorted lists are plotted on the graph, with the number of the test case in the sorted
list on the x-axis and the execution time in seconds on the y-axis. Test cases that were already solved
during the cubing phase are plotted in a di�erent colour. We only plot points for test cases that were
solved before 1000 seconds. A vertical lines indicate the time-out for the algorithm.

Two interesting observations can be made. First, the parallel approach has di�culties to keep up with
the sequential solver and manages to close the gap for longer execution times. Part of the reason for this
is that the test set used to generate this plot favours the sequential solver, since we only ran the parallel
algorithm on tests that the sequential already solved. Secondly, most problems that are solved before ten
seconds and some problems that are solved after 800 seconds are solved during the cubing phase. This
shows that it is hard to bound the amount of time invested in the cubing phase by the number of cubes.
On the other hand it is di�cult to determine the number of found cubes for a �xed time of cubing.

Figure 5.2 plots the same points of data but does not sort them. Instead, we vertically divide the plot
into the di�erent domains in which the points belong to. The ordering of the domains is the same as
mentioned in Section 5.1. This way we can see if the parallel approach performs signi�cantly better
on a speci�c domain than the sequential solver. We see that the parallel algorithm performs better on
all three solved barman instances. But the sequential algorithm noticeably outperforms the parallel on
termes and tetris. We make a clearer distinction of this when evaluating our best approach in Section
5.4.

Further tests use the greedy bandit scheduler by default.
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cube �nder
BFS heuristic

scheduler time slice 40 c 400 c 40 c 400 c

round robin 10 ms 116 96 118 106
100 ms 118 100 117 107

bandit 10 ms 131 108 128 123
100 ms 129 112 126 125

greedy bandit 10 ms 139 123 142 138
100 ms 140 123 139 142

Table 5.1: Number of solved problems for di�erent parameter combinations

forward backward
time slice 40 c 400 c 40 c 400 c

10 ms 142 138 57 48
100 ms 139 142 62 37

Table 5.2: Comparing number of solved problems between a backward and a forward search for �nding
cubes

Backward Search In Section 3.3, we mentioned the possibility of a backward search in the goal state
graph. In this paragraph, we take a short look at a possible usage of a backward search for our C&C
approach. We can use a backward search to �nd the cubes and a forward search to solve them. In this
case, the cubes become problems with a new goal and not with a new state, as it is the case with a
forward search. The behaviour of this algorithm can be compared to a bidirectional search.

Table 5.2 compares the performance of our C&C approach using a forward or a backward search in
the cube �nding phase. We see that the backward search performs exceptionally bad. There are two
main reasons for this. First, within the used framework, the generation of nodes in the goal state graph
is implemented rather ine�ciently. And secondly, the heuristics we used were not intended to estimate
distances in a goal state graph. We believe that with further work, the performance can be signi�cantly
improved but we do not follow this approach any further in the thesis.

Open and Closed Nodes We recall that we use closed nodes as cube candidates for all cube �nd
algorithms except a BFS. This paragraph compares the usage of open and closed nodes as cubes and
justi�es this decision.

Table 5.3 lists the number of solved problems for a C&C solver running on the small test set. It
compares the usage of open and closed nodes in combination with a BFS or best �rst search strategy in
the cube �nding phase. In all cases, a greedy bandit scheduler was used with time slices of 10 or 100 ms.
The table shows a slight trend in solving more problems if open nodes are used in combination with a
BFS and closed nodes in combination with a heuristic best �rst search. Although this trend is subtle, we
hope that its impact increases with the overall performance of our algorithm.

Intuitively, this can be explained as follows: In the case of a BFS, the children of most closed nodes
are closed too. That way, work which was already done by the cube �nder is redone by the cube solvers.
But if the number of closed children is close to one, like in the case of a depth �rst search, using closed
nodes as cubes allows to explore deeper into the graph before reaching the limit of required cubes. If
the average branching factor of a graph is β and the average number of closed children is about one,
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Figure 5.1: Comparing execution time between a sequential and parallel approach with sorted execution
times

open closed
cube �nder time slice 40 c 400 c 40 c 400 c

BFS 10 ms 140 123 132 124
100 ms 139 123 129 122

heuristic
best �rst

10 ms 137 137 142 138
100 ms 136 135 139 142

Table 5.3: Comparing number of solved problems between open and closed nodes

then a cube �nd algorithm using closed nodes can explore up to β more nodes than the same algorithm
using open nodes. This will result in higher heuristic values for the cubes and more solved problems. As
a side e�ect, most algorithms become easier to implement if closed nodes are used for cubes.

Cut-O� Search This paragraph evaluates the performance of the cut-o� cube �nder. All tests use
time slices of 10 ms and the cube �nder was tasked with �nding 400 cubes. We recall that in Section 4.4
two new parameters were introduced, Φ and Ψ. Their values are listed in Table 5.4 together with the
number of solved problems for this parameter combination.

Overall, this approach performs slightly worse than a normal heuristic best �rst cube �nding phase.
Decreasing the parameters yields slightly better results but it does not overtake the heuristic best �rst
approach. The behaviour of the cut-o� search can be very chaotic and strongly dependent on the
structure of the graph, so this result is neither expected nor astonishing for us. The cut-o� cube �nder
needs a method to estimate the distance between two states. Since normal heuristics only approximate
the distance between a state σ and a goal G and not two states σ1,σ2, we slightly adjusted our heuristic:
The second state σ2 gets converted into a goal with the exact same atoms G ′ = {σ2}. It is possible that a
heuristic speci�cally designed for estimating the distance between two states yield better results.
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Figure 5.2: Comparing execution time between a sequential and parallel approach with execution times
divided by domains

Distance Factor Φ
0.125 0.25

Number of
Anchors Ψ

4 140 139
8 140 135

Table 5.4: Comparing number of solved problems for the cut-o� cube �nder with di�erent parameters

Random Search Section 4.4 introduced two di�erent approaches to randomize the cube �nding phase.
Table 5.5 compares these two. It lists the number of solved problems of the C&C solver and either uses a
random depth �rst search or a random best �rst search. The number of descents indicate how many
random searches are started in the cube �nding phase. All combinations use a greedy bandit scheduler
with a time slice of 10 or 100 ms.

The random best �rst cube �nder solved noticeably more problems than the random depth �rst
approach. Overall, the random depth �rst cube �nder performed even worse than a BFS search strategy.
One explanation for this is that the random depth �rst is more likely to pick a bad node and has trouble
to recover after this. Because of the way the probabilities for choosing a node are scaled, the random
best �rst search never chooses nodes with signi�cantly higher heuristic values than other nodes. This is
not the case for the random depth �rst search, since even nodes with very high heuristic values can be
picked. Additionally, if the random depth �rst search chooses to explore a part of the state space graph
with high heuristic values, it has a hard time escaping this part. It only considers immediate children of
the currently explored node and cannot backtrack unless it reaches a dead end.
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depth �rst best �rst
descents time slice 40 c 400 c 40 c 400 c

1 10 ms 130 126 148 144
100 ms 131 123 148 144

5 10 ms 126 117 146 135
100 ms 127 119 144 134

25 10 ms 122 111 146 132
100 ms 123 108 144 132

Table 5.5: Comparing number of solved problems for di�erent random searches and di�erent number
of descents

cube �nder
cube Solver deterministic random
deterministic 142 144
random 103 108

Table 5.6: Comparing number of solved problems between random and deterministic cube �nding and
solving

Both approaches su�er under an increase in the number of descents, especially in the cases where the
�nders searched for 400 cubes. This corresponds to our intuition that a cube �nder should search deep
into the state space graph in order to generate easy to solve cubes with low heuristic values. Overall, we
can say that the C&C approach de�nitely bene�ts from a randomized cubing phase. We believe that
trying out other randomization techniques has the potential to achieve further increase in performance.

Based on the success of randomizing the cube �nding phase, we randomize the conquering phase too.
Table 5.6 shows the result of this attempt. It compares deterministic and random cubing and conquering
phases against each other. All tests used 100 ms time slices and searched for 400 cubes. We use a random
best �rst search for both solver and �nder. Unfortunately, randomizing the conquering phase does
not yield the same results. We can see that random cube solver performs signi�cantly worse than a
deterministic one.

Sharing finished Nodes As a compromise between communication overhead and search space
overlap between threads, we introduced the sharing of �nished nodes in Section 4.7. Table 5.7 compares
the number of solved problems for various cube �nders with or without the sharing of �nished states.
All cube �nders use 400 cubes. Solvers that share �nished nodes solve more problems but this is hardly
noticeable. It is plausible that the structure of the state space graph is too complex and the amount of
shared nodes is too small to have a signi�cant impact on the search space that is explored by the solvers.
We do not believe that this attempt has the potential to increase the performance of our C&C approach
signi�cantly.

closed
heuristic

open
heuristic

closed
BFS

open
BFS

5 random
decents

25 random
descents

without sharing 142 137 124 123 133 132
with sharing 144 137 128 126 136 134

Table 5.7: Comparing number of solved problems when sharing �nished nodes
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Figure 5.3: Comparing execution time for the random sparsening technique and di�erent values for p

Sparsening of Cubes We introduced two sparsening techniqeus in Section 4.7 in order to �x the
dilemma between choosing a small set of cubes while at the same time proving a diverse set of cubes with
good heuristic values for the solvers. This paragraph compares the performance of these two approaches.
Table 5.8 summarises the number of solved problems for deterministic and random sparsening and
di�erent values for the degrees of sparsening p. All tests use a greedy bandit scheduler with a time
slice of 100 ms. Overall the deterministic and random approach show a similar performance. The most
problems are solved for p = 0.1 and searching for 40 cubes. Both sparsening techniques outperform the
best �rst search without it. This shows that sparsening a reasonable approach to �x our dilemma.

Figure 5.3 illustrates an e�ect that occurs if p is chosen small. It compares the cubing phases of the
random sparsening technique for di�erent values for p. Only instances that were solved during the
cubing phase are plotted. We see that with a decreasing p the number of solved problems during the
conquering phase increases. In fact, for p = 1, 0.1 and 0.01 the C&C solver �nished 18, 76 and 105
problems out of 171 already in the cubing phase. So the degree of parallelism is drastically decreased if
p is too small.

deterministic random
percentage p 40 c 400 c 40 c 400 c

100% 143 146 147 147
10% 150 147 149 146
1% 144 142 143 142

Table 5.8: Comparing number of solved problems for di�erent sparse cube �nders
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Together with the random best �rst cube �nder these are our best results. It is obvious to combine
both. The resulting algorithm uses a random best �rst search to �nd 40 cubes and combines it with the
random sparsening technique. For p = 1, 0.1 and 0.01 this approach solves 148, 148 and 149 problems of
the small test set in 1000 seconds. Since this is our most promising candidate we will use it to evaluate
the scaling potential of our approach.

5.4 Scaling

In order to evaluate the scalability of our approach we decided to compare a sequential solver to two
di�erent con�gurations of our C&C solver. We run both con�gurations with a timeout of 1000 seconds
on di�erent amount of threads and compare the speedups to the sequential solver. The �rst con�guration
is very basic. It uses a heuristic best �rst search to �nd 400 cubes and the greedy bandit scheduler with
a time slice of 10 ms. The second con�guration represents our best approach based on preliminary
experiments. It also uses the greedy best �rst scheduler with a time slice of 10 ms. But for the cubing
phase we choose the random best �rst cube �nder searching to �nd 40 cubes. This is combined with the
random sparsening technique and parameter p = 0.1.

For this comparison we use the large test set of optimization domains containing 231 test cases in
total. After 1000 seconds the sequential solver solves 143 of these.

First Configuration Table 5.9 lists the number of solved test cases and speedups for the �rst con-
�guration. The second column shows the number of test cases the parallel planner solved after 1000
seconds. The third column shows the number of test cases both, the sequential and parallel planner
solved after 1000 seconds. We only calculated the speedup for test cases that both solvers solved before
the time-out. Columns four to six contain the average, total and median speedup on these test cases. If
L is the list of all speedups then the average speedup is de�ned as the average of all values in L and
the median speedup as the median value in L. The total speedup is de�ned as the ratio between the
sum of all execution times of the sequential solver and the sum of all execution times of the parallel
one. The average speedup is calculated as the average of the the speedups The last three columns also
show these speedups but only consider hard test cases. We consider a test case hard if the sequential
solver only solves it after T · 10 seconds, where T is the number of threads. For example, if we use 16
threads, the speedups for the last three columns were calculated only on the test cases that were solved
by the sequential approach in between 160 and 1000 seconds and by the parallel solver running on 16
threads before 1000 seconds. This is known as weak scaling. It allows us to take into account that higher
amount of computation resources are generally used for bigger problem sizes.

We see speedups of less than one if we use up to 4 threads. Even the solver using 32 threads only
achieves an average speedup of 1.17 on all test cases. Considering the hard test cases, we get similar
results. Only the average speedup for 8, 16 and 32 threads increases noticeably for the hard test set.
This speedup is insigni�cant but we have to keep in mind that the parallel solver solved up to 19 more
problems than the sequential. The problems only solved by the parallel (or sequential) solver are not
considered when calculating the speedup. Using hard test cases to calculate the speedup compensates
this issue a little bit. However, this only ignores the easiest problems both solvers solved and cannot
include the problems only the parallel solver solved.

Finally, we see that our C&C approach has di�culties to scale with higher amounts of threads. The
number of solved problems improves for up to eight threads, but after that the increase in speedup and
number of solved problems decreases.
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Parallel Both speedup all tests speedup hard tests
Threads Solved Solved Avg. Tot. Med. Avg. Tot. Med.

1 138 131 0.790 0.790 0.912 0.794 0.722 0.887
2 150 139 0.871 0.883 0.937 0.940 0.891 0.931
4 152 142 0.943 0.980 0.962 1.099 0.991 0.975
8 159 142 1.023 1.114 0.965 1.378 1.140 1.019
16 162 142 1.158 1.250 1.026 1.691 1.276 1.178
32 161 142 1.165 1.180 1.026 1.870 1.270 1.174

Table 5.9: Comparing speedup for di�erent numbers of threads, using a heuristic best �rst search with
a greedy bandit scheduler

Figure 5.4 plots the sorted speedups for each test cases. Figure 5.6 plots the same speedups but only
considers the hard test cases for the respective amount of threads. We added two vertical lines to indicate
a speedup of one and two.

Second Configuration Table 5.10 shows the speedups for the second con�guration. First, we notice
an improvement in the number of solved problems. This is not surprising due to our experiments
in Section 5.3. The parallel approach manages to solve up to 23 more problems than the sequential.
Additionally we get signi�cantly higher speedups. On all test cases the parallel approach with 8 threads
achieves an average speedup of 1.86 and on the hard test cases of 3.46.

However, the problem that our approach does not scale well with higher number of threads remains.
When using more than eight threads we only get diminishing increases of speedup and number of solved
problems.

We want to address that the average speedup using only one thread on all test cases is higher than
one. The reason for this is that the calculation of the average speedup favours algorithms with high
variance in execution time. This is the case for our random approach. If the parallel solver solves the
problems half of the time twice as fast as the sequential one and the other half twice as slow, the average
speedup will be 1.25.

Figure 5.5 plots the sorted speedups of the second con�guration running on all test cases and Figure
5.6 only plots the points on hard test cases (for the respective number of threads). We added three
vertical lines to indicate a speedup of two, four and eight. Considering all test cases, we notice that the
lowest 70 to 90 speedups stay below one and only the upper quarter is bigger than 2. If we look at the
hard test cases we see more promising results. The increase in performance is more noticeable and most
points represent a speedup greater than one.

Figure 5.8 shows the execution time of the �rst and second con�guration running on 8 an 32 threads
on a cactus plot. The second con�guration with 32 threads has the overall best performance. But the
con�gurations converge against it with an increase in execution time. All approaches outperform the
sequential solution after the �rst 80 test cases. Figure 5.9 plots the execution time for con�guration
one and two running on 32 cores and divides the plot into the respective domains. We see that the
parallel approach has better execution times especially on the domains barman, hiking, tetris and tidybot
whereas the sequential solver is faster on solving the termes domain.
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Parallel Both speedup all tests speedup hard tests
Threads Solved Solved Avg. Tot. Med. Avg. Tot. Med.

1 145 133 1.354 1.102 0.844 1.939 1.112 1.329
2 153 135 1.369 1.099 0.825 2.101 1.123 1.380
4 158 136 1.430 1.240 0.857 2.319 1.276 1.227
8 164 139 1.864 1.329 1.032 3.460 1.401 1.691
16 166 139 1.911 1.360 1.043 3.960 1.449 2.181
32 161 138 2.052 1.539 1.097 3.717 1.705 2.417

Table 5.10: Comparing speedup for di�erent numbers of threads, using a random best �rst search with
a greedy bandit scheduler
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Figure 5.4: Comparing speedup for di�erent numbers of threads, using a heuristic best �rst search with
a greedy bandit scheduler
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Figure 5.5: Comparing speedup for di�erent numbers of threads, using a random best �rst search with
a greedy bandit scheduler
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Figure 5.6: Comparing speedup on hard test cases for di�erent numbers of threads, using a heuristic
best �rst search with a greedy bandit scheduler
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Figure 5.7: Comparing speedup on hard test cases for di�erent numbers of threads, using a random
best �rst search with a greedy bandit scheduler
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Figure 5.8: Comparing execution time for con�guration 1 and 2 and di�erent numbers of threads, using
a heuristic best �rst search with a greedy bandit scheduler
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Figure 5.9: Comparing execution of con�guration 1 and 2 with 32 threads against a sequential solver
with execution times divided by domains
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6 Conclusion

In this thesis we applied the concept of Cube and Conquer used in SAT solving, to automated planning.
We showed that the translation of C&C SAT solving to planning faces some di�cult challenges, most

importantly the partitioning of the search space and the identi�cation of the most promising cubes.
These emerge from the di�erence in structure of the problems but also from varying requirements to
the solution. While we were able to �nd reasonable solutions to the latter, we were not able to fully
resolve the �rst challenge.

We identi�ed characteristics that are necessary to solve the problem of overlapping search spaces and
use the computation resources e�ciently. This means �nding a set of cubes that has good heuristic values
while simultaneously covering big portions of the state space graph. These requirements are hard to ful�l
due to the complex nature of the planning problem. But we showed that by introducing randomness at
di�erent points in our algorithm, the performance can be signi�cantly increased compared to a more
basic approach.

For the second challenge we were able to fall back to existing methods that solve the exploration/-
exploitation dilemma. By adjusting these methods to �t our needs more precisely, we came up with a
robust scheduler that is able to identify the most promising cubes while not overcommitting computation
resources into bad decisions.

Combining our most sophisticated approaches resulted in a parallel C&C planner that outperforms
the sequential one on hard test cases. While the sequential solver is faster in solving small problems,
we achieved an average speed-up of 3.5 on hard test cases using eight cores. In addition, the parallel
approach was able to solve up to 15% more problems. We showed that the parallel approach scales well
for up to eight threads but yields diminishing returns for higher number of threads.

Although these results are not able to compare with state of the art parallel planners from the
international planning competitions [Pom18], our approach leafs much room for improvement. We are
sure that the performance of our algorithm can be increased further, especially by modifying the cubing
phase. But also other parts have the potential to be optimized. With more research, Cube and Conquer
might become a feasible approach for parallel planning, next to algorithm portfolios and distributed
search algorithms.

6.1 Future Work

We were not able to provide a satisfying solution to all the challenges we faced, and even some of our
successful solutions can still be optimized. This section lists possibilities for further improvements of
the performance of Cube and Conquer for parallel planning.

Re-evaluation with more sophisticated planning technologies We only implemented and tested
our algorithms in the Aquaplanning framework. This allowed us to experiment with a number of di�erent
approaches but restricted our use of more sophisticated planning technologies. We were not able to
exploit powerful modern heuristics such as patter databases to �nd higher quality cubes [CS98]. Because
of this limitations we missed out on using global heuristics in the cubing phase and local heuristics
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6 Conclusion

in the conquering phase as it is the case for C&C SAT solving. Another worthwhile addition would
be planners that can e�ciently determine if a planning problem is unsatis�able, since this reduces the
amount of cubes that the scheduler has to handle.

Diversifying the Cubes We belief that improving the diversity of the cubes yields a great potential for
increasing the performance of our algorithm. But it also seems to be the hardest challenge. Introducing
randomness to the cubing phase is an successful attempt but has room for improvement. Building upon
the cut-o� cube �nder could result in a stronger notion of diversity. Using a more sophisticated approach
to calculate the distance between two states might yield better results. Another possibility would be to
introduce randomness to the cut-o� �nder.

Scheduler The greedy bandit scheduler was shown to be successful in focusing its computation time
on promising cubes. But it made the assumption that the heuristic values of cubes decrease linearly
with the investment of computation time and calculated the reward values based on that. This could
lead to overcommitting to a single cube and discarding other cubes too fast. Not assuming linear but
rather an exponential or polynomial scaling of the heuristic values might solve this issue. It can also be
useful to weight the heuristic value of the scheduler in such a way that the most recent values have the
biggest impact on the reward value. This way the scheduler could detect whether a solver runs into a
dead end much faster.

Dynamic method of determining the number of cubes In the cubing phase our algorithm
searches for a �xed amount of cubes. The C&C SAT approach however introduces a cut-o� heuristic
that could dynamically determine when a branch in the search tree would be cut o� and added to the
cubes. Implementing a cut-o� heuristic for C&C with automated planning would allow us to adjust the
length of the cubing phase and the amount of found cube more precisely. Additionally, an informed
cut-o� heuristic could improve the diversity of cubes by identifying important edges in the state space
graph and cutting the vertices after these o� as cubes.

Sharing Information Between Solvers We introduced the sharing of �nished nodes between the
cube �nder and solver to decrease the overlap of search space. But this approach did not scale well since
the amount of shared information was too little. If we do not share information between threads, we
can try to share information in between the solvers of a thread. By letting the solvers share the set of
�nished nodes, we can prevent the search spaces form solvers of the same thread to collide.
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