
Bachelor thesis

Algorithm Configuration for
Hypergraph Partitioning

Clemens Öhl

Date: May 31, 2018

Supervisors: Prof. Dr. Peter Sanders
Sebastian Schlag, M.Sc.
Dr. Christian Schulz

Institute of Theoretical Informatics, Algorithmics
Department of Informatics

Karlsruhe Institute of Technology

Abstract

Hypergraph partitioners such as KaHyPar-CA have many different parameters that are diffi-
cult to configure. To the best of our knowledge, there is no work on algorithm configuration
of hypergraph partitioners. In this thesis, we configure KaHyPar-CA for different optimiza-
tion objectives (running time, quality and Pareto) using the optimizer SMAC. We select
training instances such that improvements on training sets lead to general improvements.
We benchmark our configurations on a newly generated benchmark set. We consider the
effects of randomization of KaHyPar-CA to ensure that improvements of configurations are
not obscured. Furthermore we analyze the impact of SMAC’s parameters on the required
optimization time. Despite the difficulties of optimizing for heterogeneous instance sets,
we achieve a significant quality improvement of 0.88% on average or an average speedup
of 1.66, depending on the optimization objective. Our quality and Pareto optimized con-
figurations are faster than the state-of-the-art hypergraph partitioner hMetis and produce
partitions with better quality.

Zusammenfassung

Hypergraphenpartitionierer wie KaHyPar-CA haben viele verschiedene Parameter und sind
schwer zu konfigurieren. Unserem Wissen nach gibt es bisher noch keine Forschung zur
Konfiguration von Hypergraphenpartitionierern. Das Ziel dieser Arbeit ist es KaHyPar-CA
mittels dem Optimierer SMAC für verschiedene Optimierungsziele (Laufzeit, Qualität und
Pareto) zu konfigurieren. Wir wählen die Menge unserer Trainingsinstanzen so aus, dass
Verbesserungen auf dieser Menge zu allgemeinen Verbesserungen führen. Konfigurationen
werden auf unserer neu generierten Menge von Benchmarkinstanzen evaluiert. Wir be-
rücksichtigen die Effekte der Randomisierung von KaHyPar-CA um sicherzustellen, dass
Verbesserungen von Konfigurationen nicht überdeckt werden. Außerdem analysieren wir
den Einfluss der Parameter von SMAC auf die Optimierungszeit. Trotz der Schwierigkeiten
bei der Optimierung für heterogene Mengen von Instanzen erzielen wir auf unseren Bench-
markinstanzen signifikante Qualitätsverbesserungen von 0,88% im Durchschnitt oder eine
Laufzeitverbesserung von einem Faktor 1,66, je nach Optimierungsziel. Des Weiteren er-
zeugen unsere auf Qualität und Pareto optimierten Konfigurationen schneller Partitionen
als der state-of-the-art Partitionierer hMetis und diese weisen eine bessere Qualität auf.

Danksagung

Ich möchte mich bei allen bedanken, die mich bei der Erstellung dieser Bachelorarbeit un-
terstützt haben. Das sind zum einen natürlich meine Betreuer, welche mir diese Arbeit erst
ermöglicht haben. Sie waren bei allen Problemen stets für mich da. Außerdem möchte ich
mich auch bei Freunden und Familie bedanken, die mich immer mental unterstützt haben.
Außerdem möchte ich mich besonders beim Steinbuch Centre for Computing (SCC) für die
bereitgestellte Rechenzeit bedanken sowie bei Marius Lindauer für seine Unterstützung bei
der Verwendung von SMAC.

Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen, als die
angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich übernommenen
Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts für Technolo-
gie zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet
habe.

Ort, den Datum

Contents

Abstract iii

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 1
1.3 Structure of Thesis . 2

2 Preliminaries 3
2.1 General Definitions . 3

2.1.1 Hypergraph . 3
2.1.2 Hypergraph Partitioning Problem 3
2.1.3 Algorithm Configuration Problem 4

2.2 Hypergraph Partitioning . 5
2.2.1 Multilevel Paradigm . 5
2.2.2 KaHyPar-CA . 7

2.3 Algorithm Configuration with SMAC . 8
2.3.1 Preliminaries . 8
2.3.2 Intensification . 10
2.3.3 Adaptive Capping . 12
2.3.4 Selection of Promising Configurations 12
2.3.5 Parallelization of SMAC (pSMAC) 14
2.3.6 Homogeneity and Size of Training Sets 14
2.3.7 Features . 15

2.4 Summarizing Benchmark Results . 15

3 Algorithm Configuration for Hypergraph Partitioning 19
3.1 Definition of Cost Functions . 20

3.1.1 Quality . 20
3.1.2 Running Time . 21
3.1.3 Pareto . 21

3.2 Required Optimization Time . 21
3.2.1 Parameters Affecting Optimization Time 22
3.2.2 Required Minimum Optimization Time 23

vii

3.3 Training Set Selection . 24
3.3.1 Features . 24
3.3.2 Randomization Analysis . 25
3.3.3 Exclusion of Inappropriate Instances 26

3.4 Finding a Better Benchmark Set . 27
3.4.1 Random Selection of Benchmark Set 28
3.4.2 Verifying Representativeness of the Benchmark Set 28

3.5 Validation of SMAC Configurations . 30
3.6 Dynamic Capping Time . 30

4 Experimental Evaluation 33
4.1 Tuning Parameters . 33

4.1.1 Coarsening Parameters . 33
4.1.2 Actual Initial Partitioning Parameters 34
4.1.3 Refinement Parameters . 34

4.2 Environment and Methodology . 35
4.3 Default Configuration . 35
4.4 Results . 36

4.4.1 Running Time . 37
4.4.2 Quality . 37
4.4.3 Pareto . 39
4.4.4 Comparison with PaToH and hMetis 41

5 Discussion 45
5.1 Conclusion . 45
5.2 Future Work . 46

A Appendix 47
A.1 Features of Hypergraphs . 47
A.2 New Benchmark Set . 48
A.3 Training Sets . 49
A.4 Configurations . 62
A.5 Significance Tests . 64
A.6 Improvement Plots . 66

Bibliography 71

1 Introduction

1.1 Motivation

Hypergraphs are a generalization of graphs where each (hyper)edge can connect more than
two vertices. The generalization of the graph partitioning problem is the k-way hypergraph
partitioning problem: partition the vertex set into k disjoint non-empty blocks with a max-
imum block size of at most 1 + ε times the average block size, while minimizing a metric
(e.g. the number of cut edges between the blocks).
Use cases for hypergraph partitioning are for example the acceleration of sparse matrix-
vector multiplications [38], the identification of groups of connected variables in SAT
solving as a preprocessing step [28, 10] or the physical design of digital circuits for very
large-scale integration (VLSI) where it is used to partition circuits into smaller units [1].
Since hypergraph partitioning is NP-hard [26], hypergraph partitioning is very complex and
heuristics are used in practice. Often these heuristics work only on some types of instances,
so the necessary design decisions behind them are also very difficult. Therefore parameters
are introduced to allow algorithm designers and end users to choose a good configuration
for their instance sets. However, the problem of finding a good configuration, which is
known as the algorithm configuration problem, is often tried to be solved manually. On
the other hand, automated tools for the algorithm configuration problem have been created
recently [18, 20]. They promise to outperform default configurations found manually from
algorithm designers even on very large parameter spaces.
Motivated by the success of the optimizer SMAC [18] for optimization of a wide range
of algorithms [31, 8, 27], we want to optimize KaHyPar-CA [17], a state-of-the-art hyper-
graph partitioner. However, with respect to the hypergraph partitioning problem, complex
optimizers such as SMAC are not directly usable as a black box: SMAC itself has a vari-
ous parameters which have to be configured, such as the training set, parameters to handle
randomization and the definitions of cost functions. The main problem is to ensure that
improvements on training sets lead to general improvements.

1.2 Contribution

We present our approach to optimizing KaHyPar-CA [17] using SMAC [18] in such a way
that improvements on the training set lead in general improvements. The approach consists

1

1 Introduction

of the definition of different cost functions for different optimization objectives (quality,
running time and Pareto), the selection of appropriate training sets and the selection of a
representative benchmark set. We consider the effects of randomization of KaHyPar-CA
to ensure that the improvements of configurations are not obscured by randomization. We
benchmark the found configurations on our newly generated benchmark set. Despite the
difficulties of optimizing for heterogeneous instance sets, we achieve significant improve-
ments of 0.88% on average and average speedups of a factor of 1.66, depending on the
optimization objective. Furthermore our quality and Pareto optimized configurations pro-
duce significantly better partitions than hMetis [23, 24] and is faster.

1.3 Structure of Thesis

First we introduce necessary notations and definitions in Chapter 2. We describe how the
hypergraph partitioner KaHyPar-CA [17] works and give an overview over algorithm con-
figuration. In Chapter 3 we present our approach to optimizing KaHyPar-CA [17] with
SMAC [18]. Our optimization results are presented and discussed in Chapter 4 and fol-
lowed by a conclusion of this thesis in Chapter 5.

2

2 Preliminaries

In the following, important definitions are established in Section 2.1, including the hyper-
graph partitioning problem as well as the algorithm configuration problem. The hypergraph
partitioner KaHyPar-CA [17] is described with special attention to its parameters in Sec-
tion 2.2. We use SMAC [18] to optimize KaHyPar-CA. A description of SMAC can be
found in Section 2.3.

2.1 General Definitions

2.1.1 Hypergraph

An undirected hypergraph H = (V,E, c, ω) is defined by a set of n vertices V , a set of m
hyperedges (also called nets) E and weight functions c and ω. Each net e ∈ E is a subset
of the vertex set V (e ⊆ V). The weight functions c and ω assign a positive weight to each
vertex (c : V → R>0) and to each net (ω : E → R>0), respectively. A pin is a vertex of a
net. For a net e, its size |e| is the number of its pins. The weight of a set of vertices U ⊆ V
is c(U) :=

∑
v∈U c(v), the weight of a set of nets F ⊆ E is ω(F) :=

∑
e∈F ω(e). A vertex

v is incident to a net e iff v ∈ e. For a vertex v, I(v) is the set of all incident nets of v. The
degree d(v) of a vertex v is defined by I(v): d(v) := |I(v)|. Two vertices are adjacent iff
a net e exists which contains both vertices. The neighborhood of a vertex v is defined by
Γ(v) := {u | ∃e ∈ E : {v, u} ⊆ e}.

2.1.2 Hypergraph Partitioning Problem

A k-way partition of a hypergraph H is a partition of the vertices into k disjoint non-empty
blocks P = {V1, . . . , Vk} with V =

⋃k
i=1 Vi. A partition is ε-balanced iff for each block

Vi ∈ P the balance constraint is satisfied: c(Vi) ≤ Lmax := (1 + ε)d c(V)
k
e. The number

of pins of a net e in a block Vi ∈ P is defined as Φ(e, Vi) := |{v ∈ Vi | v ∈ e}|. A net
e is connected to a block Vi iff Φ(e, Vi) > 0. The connectivity set of a net e for a k-way
partition P is defined by Λ(e,P) := {Vi ∈ P | Φ(e, Vi) > 0}. The connectivity of a net e
is defined by λ(e,P) := |Λ(e,P)|. For a partition P , a net e is called cut if λ(e,P) > 1.
All cut nets of a partition P are contained in E(P) := {e ∈ E | λ(e,P) > 1}.

3

2 Preliminaries

The k-way hypergraph partitioning problem is to find an ε-balanced k-way partition P that
minimizes an objective function. There are several different objective functions, but the
following two are the most commonly used [17, 38]:

The cut-net metric: cut(P) :=
∑

e∈E(P)

ω(e)

The connectivity metric: (λ− 1)(P) :=
∑

e∈E(P)

(λ(e)− 1)ω(e)

We define π := (H, k, ε) as an instance of the k-way hypergraph partitioning problem with
balance constraint ε. In this thesis we consider k ∈ {2, 4, 8, 16, 32, 64, 128} and ε = 0.03.
These are common values in literature [17, 23, 38]. We use (λ− 1) as quality metric.

2.1.3 Algorithm Configuration Problem

The algorithm configuration problem can be defined as follows: Given a target algorithmA
with a parameter configuration space Θ, a (training) instance set Π and a cost metric c: Find
a configuration θ ∈ Θ which minimizes c on Π. The cost of a configuration θ is denoted by
c(θ) and can be restricted to one single instance π ∈ Π by c(θ, π). If A is randomized, the
cost can also be restricted further to a specific seed s by c(θ, π, s). The empirical cost of θ,
based on a restricted number of evaluations, is denoted by ĉ(θ) and can also be restricted
to a single instance π by ĉ(θ, π).

A synonym for cost metric is objective.

Let θ be a configuration for a hypergraph partitioner, π an instance for the hypergraph
partitioning problem and s a seed. For an evaluation of θ on π with s, the consumed
time is denoted by time(θ, π, s) and the connectivity (quality) of the partition found by
(λ − 1)(θ, π, s). Based on K runs of an instance π with a configuration θ and random
seeds si, the average running time is denoted by time(θ, π) and the average connectivity
by (λ− 1)(θ, π):

time(θ, π) := geometric_mean(
K⋃
i=1

time(θ, π, si))

(λ− 1)(θ, π) := geometric_mean(
K⋃
i=1

(λ− 1)(θ, π, si))

4

2.2 Hypergraph Partitioning

2.2 Hypergraph Partitioning

2.2.1 Multilevel Paradigm

Since hypergraph partitioning is NP-hard [26], heuristics are used to find good partitions
in an efficient way. State-of-the-art hypergraph partitioners such as KaHyPar [2, 17, 37],
hMetis [23, 24] and PaToH [38] use the multilevel paradigm. The goal of the multilevel
paradigm is to coarsen the input hypergraph to a smaller, structurally similar, hypergraph.
The partition of this coarse hypergraph is used to build a partition of the input hypergraph.
Coarsening is done by contracting (merging) nodes recursively in several iterations (called
levels). That way, a hierarchical structure of smaller hypergraphs is built. After a certain
termination criterion is met, an initial partitioning algorithm efficiently computes a high-
quality partition of the coarsest hypergraph. The partitioned coarsest hypergraph is then
uncontracted in reverse order. On each level, a local search algorithm is applied to improve
the quality of the partition. The phases of the multilevel paradigm are called coarsening,
initial partitioning and refinement phase respectively. A visualization of this process can
be found in Figure 2.1.

Figure 2.1: Multilevel Paradigm [37, slides]

The coarsening phase is a phase with a high number of different parameters. Coarsening
algorithms are designed to fulfill the following goals [24]:

(i) To make move-based local search algorithms more effective during the refinement
phase, small nets are needed. Therefore coarsening algorithms should reduce the
size of the nets.

5

2 Preliminaries

Figure 2.2: Figure from [17]. (a) An input hypergraph with natural cut edge n1 with cut size
1. (b) The contraction of vertex pair (u, v) obscures this cut edge. (c-f) Coarsening
algorithms which can lead to a contraction of (u, v) and thus obscures the structure.

(ii) Since the goal of coarsening is also to produce simpler instances for initial partition-
ing, the number of nets should be reduced by the coarsening algorithm. This is done
by preferring contractions which produce single-vertex nets.

(iii) The coarsest hypergraph should be structurally similar to the input hypergraph.
Vertex matchings or clusterings are used by multilevel hypergraph partitioning algorithms
for coarsening. To determine which vertices are to be matched or clustered, rating functions
are used. In order to fulfill goal one and two, rating functions identify highly connected
vertices. One commonly used (e.g. [2, 23, 38, 37]) rating function is heavy-edge: For two
adjacent vertices u and v, the rating function is defined as r(u, v) :=

∑
e∈(I(v)∩I(u))

ω(e)
|e|−1

.
Using maximal matchings to identify contraction vertices, natural existing clusters of ver-
tices can be destroyed [22]. To achieve goal three (structural similarity), instead of strict
maximal matching, the formation of vertex clusters is allowed. To avoid imbalanced parti-
tions, a constraint is used to prohibit too heavy vertices.
As depicted by Figure 2.2, the structure of the hypergraph may be obscured: If multi-
ple neighbors for a vertex have the same rating score, a tie-breaking strategy is needed.
Possible tie-breaking strategies are for example to choose a random neighbor or to prefer
unclustered neighbors. The contraction with the adjacent vertex with the highest score is
not allowed if this adjacent vertex is too heavy. Also in this situation, the structure of the
graph is obscured. These situations arise because all coarsening decisions are greedily de-
cided, based on local information. If a global view of the graph was available, the situations
before mentioned could have been avoided.
To partition a hypergraph into more than two blocks, two different approaches are possible:
The recursive approach and the direct approach. If the recursive approach is used, the orig-
inal hypergraph will be partitioned into two blocks. Then both blocks get partitioned into
two blocks themselves. This is done recursively until the original hypergraph is partitioned
into k blocks. In contrast, the direct approach partitions the original hypergraph directly
into k blocks.

6

2.2 Hypergraph Partitioning

2.2.2 KaHyPar-CA

KaHyPar-CA [17] is a state-of-the-art k-way n-level hypergraph partitioner and is known
for its global view on the hypergraph partitioning problem: KaHyPar-CA extracts the struc-
ture of the input hypergraph by partitioning its hypernodes into a set of disjoint sets of
subgraphs, called communities, such that the connections are internally dense but sparser
between them [13, 36]. This knowledge is exploited to maintain the structural similarity
during coarsening. KaHyPar-CA is thereby able to achieve partitions with a very good
quality. Another specialty of KaHyPar-CA is the n-level approach: On each level of coars-
ening, only one pair of vertices is contracted.
During the coarsening phase, KaHyPar-CA visits vertices in a random order and contracts
each vertex immediately with the highest-rated adjacent vertex. Another possible coarsen-
ing algorithm consists of saving all ratings in a priority queue and keep it up to date. The
rating function used by KaHyPar-CA is the heavy-edge rating function but can be modified
to penalty too heavy vertices by multiplying the rating function with 1/(c(u) · c(v)). The
termination criterion is parameterized by the parameter t, coarsening ends if the coarsest
hypergraph has at most k · t nodes. Furthermore, the constraint to prohibit imbalanced
partitions is parameterized by parameter s: KaHyPar-CA does not allow a vertex v with
c(v) > cmax := s · d c(V)

k·t e to participate in any further contractions.
As its initial partitioning algorithm, KaHyPar-CA uses KaHyPar-R [37], a recursive n-
level hypergraph partitioner. The parameters of KaHyPar-R for coarsening and refinement
are the same as for KaHyPar-CA, but some of them have a different default configuration.
The initial partitioning itself is done 20 times (configurable) by a pool of different initial
partitioning algorithms. The best initial partition is used for refinement.
The goal of local search algorithms during refinement phase is to improve the quality of
the partition by moving vertices from one block into another. The k-way local search
algorithm used by KaHyPar-CA for the refinement phase is identical with the local search
algorithm used by KaHyPar-K [2] and uses similar ideas as the k-way FM-algorithm of
Sanchis [35]. Sanchis’ algorithm works in phases: In each phase, the vertex with the
highest improvement is moved. To get out of local minima, this is even done if the highest
improvement is negative. The so far best solution is saved. The algorithm terminates if
no further moves are possible. The so far best found solution is then the final solution. If
necessary, a rollback operation to the state of this solution is performed.
KaHyPar-CA uses a version of Sanchis’ algorithm with several improvements. Note that
in the following only one improvement is mentioned, namely the adaptive stopping rule of
KaHyPar-K. The other improvements (mainly a gain cache, an exclusion of nets to improve
running time and the reduction of the number of required priority queues to maintain all
possible moves from k(k − 1) to k) can be found in the KaHyPar-K paper [2].
The key of the adaptive stopping rule is the analysis whether further improvements are still
likely during the current local search. Sanders and Osipov [30] model the gain values in
each step as independent identically distributed random variables, based on the previous

7

2 Preliminaries

p steps. The expectation µ is the average gain since the last improvement and σ2 is the
variance of the improvement of the current local search. Sanders and Osipov showed that
it is unlikely that local search can find additional improvements if p > σ2/(4µ2).
KaHyPar-K uses a refined version: On each level, at least β := log n steps after an im-
provement is found are performed. Furthermore, local search continues as long as µ > 0.
If after β steps µ is still 0, local search is stopped.
However, instead of the adaptive stopping rule, the simple stopping rule can be used: Local
search stops if after a constant number of moves no improvements are achieved.

2.3 Algorithm Configuration with SMAC

To the best of our knowledge, there is no work on algorithm configuration for hypergraph
partitioning algorithms. Configurations are selected manually based on extensive parame-
ter tuning experiments. In this section, approaches for the algorithm optimization problem
are analyzed and some important problems are discussed.

2.3.1 Preliminaries

One very basic but commonly used [7] strategy for algorithm configuration is grid search:
Let L be the list of all parameters to optimize and let Li ∈ L denote a single parameter. A
discrete set of values for each Li is chosen, e.g. by knowledge of the algorithm designer.
The configuration space is then the Cartesian product of all parameters. Every configuration
is evaluated and the best is chosen. The overall number of evaluated configurations is
Π
|L|
i=1|Li|. Thus the time needed for grid search grows exponentially with the number of

parameters. This effect is known as the curse of dimensionality [6]. Although grid search
is embarrassingly parallel, its practical use is limited to a few parameters by the curse of
dimensionality.
Since grid search is expensive, the set of values chosen for every parameter is relatively
small. If the space of good configurations within the configuration space Θ is sparse, then
it will be likely that these good configurations are "missed". This effect can be seen on the
left side of Figure 2.3.
However, some parameters may have only little impact on the cost function. The effective
dimensionality of the configuration space is then lower than |L|. For instance, cost function
c with c(x, y) = g(x) + h(y) ≈ g(x) has only an effective dimensionality of one instead
of two. Grid search is unable to exploit this, it relies on the knowledge of the algorithm
designer (or somebody else) to distinguish important from unimportant parameters: They
have to determine that only parameter xmatters and parameter y is only of little importance.
Instead of selecting configurations from a grid, it is possible to select configurations at
random. This is called random search. Bergstra and Bengio [7] have shown that random

8

2.3 Algorithm Configuration with SMAC

Figure 2.3: Figure from [7]. Optimization of a function c(x, y) = g(x) + h(y) with f(x, y) ≈
g(x). The green function above each square is g(x), and on the left of each square
h(y) is shown in yellow. Each dot represents a configuration evaluated by grid search
(left side) or random search (right side).

selection is capable of exploiting low effective dimensionality. An example for this ability
can be seen in Figure 2.3: Grid search takes only three different values for each parameter
(left side). On the right side, an equal number of configurations (nine) are selected at
random. That way, for each parameter nine different values are evaluated.
For this reason, random search is superior to grid search [7]. However, both grid search and
random search are very basic approaches and are used only due to their simplicity. However
more sophisticated methods for algorithm configuration have been developed. Bergstra and
Bengio recommend, among others, to use Sequential model-based Optimization (SMBO)
methods.
The roots of SMBO are optimization of global continuous ("black box") functions. The
goal is to find parameters such that the black box function is minimized. The problem is
that each evaluation is costly. Jones et al. [21] solved it by building a model of the black
box function. Based on the model, the black box function can be evaluated for promising
parameters.
SMBO works similarly: SMBO builds a model M of the cost function c based on all
runs of the run history R = {(θ, c(θ)) | θ ∈ Θ ∧ θ was already intensified} of the target
algorithm so far. The goal is to predict the cost of a given unintensified configuration θnew.
With this knowledge, promising challenger configurations are chosen. These challenger
configurations are evaluated and compared with the best configuration found so far, the
incumbent configuration θinc. If a challenger is better than the incumbent, the challenger
becomes the new incumbent. This process is called intensification. The runs done during
intensification are added toR to improve the model. When the time budget is exhausted, the
incumbent configuration is returned as the final configuration. This approach is described
by Algorithm 1.
Basic SMBO approaches have several drawbacks: For example, SMBO is unable to cancel

9

2 Preliminaries

Algorithm 1: Sequential Model-Based Optimization (SMBO) [18]
Data: Target algorithm A with parameter configuration space Θ, instance set Π, cost

metric c
Result: Optimized (incumbent) configuration θinc

1 (R, θinc)← Initialize(Θ,Π)
2 repeat

// tfit and tselect is the time spend for FitModel and SelectConfiguration respectively
3 (M, tfit)← FitModel(R)

4 (
−−→
θnew, tselect)← SelectConfigurations(M, θinc,Θ)

// Intensify chooses best configuration from
−−→
θnew ∪ {θinc}

5 (R, θinc)← Intensify(
−−→
θnew, θinc, R, titensify ← tfit + tselect,Π, c, A)

6 until total time budget exhausted
7 return θinc

evaluations of the target algorithm that exceed a maximum running time. Furthermore
SMBO supports only single instances (|Π| = 1). This is crucial since configurations will
be found which work only on the single training instance but not on others. This effect is
known as over-tuning.
However, Sequential Model-based Algorithm Configuration (SMAC) offers solutions for
these problems. SMAC is an instantiation of the SMBO approach and uses Gaussian Pro-
cess (GP) models [32] to build its model. SMAC has recently been used successfully in
various application fields, for example: path planning [8], mobile robot localization [27]
and real-time railway traffic management [31]. In the following, SMAC’s solutions for
the support of multiple instances (Section 2.3.2) and for terminating too long runs (Sec-
tion 2.3.3) are described. Additionally, the procedure of selecting promising configurations
(Section 2.3.4) is described. At the end of this section follows some information about par-
allelization of SMAC (Section 2.3.5), about training sets (Section 2.3.6) and about the
possibility to specify instance features to improve the model (Section 2.3.7).

2.3.2 Intensification

As described above, the intensification procedure decides whether the incumbent configu-
ration θinc or a new challenger configuration θnew is better. As a side effect, the procedure
adds runs to the run history R. The procedure implemented by SMAC1 is shown in Algo-
rithm 2 and described in the following.
The procedure consists of two parts: Lines 3–7 add a run for θinc to R, lines 10–17 add
runs for θnew and decide whether θinc or θnew is better.

1The actual implementation can be found here: https://github.com/automl/SMAC3/blob/
master/smac/intensification/intensification.py

10

https://github.com/automl/SMAC3/blob/master/smac/intensification/intensification.py
https://github.com/automl/SMAC3/blob/master/smac/intensification/intensification.py

2.3 Algorithm Configuration with SMAC

Algorithm 2: Intensify [18]

Data: Configurations to be evaluated
−−→
θnew, incumbent configuration θinc, run history R,

time bound tintensify, instance set Π, cost metric c, maximum number of runs for
incumbent configuration Rmax, minimum number of runs of challenger
configuration Rmin, target algorithm A

Result: Incumbent configuration θInc, updated R
1 for i← 1 to |

−−→
θnew| do

2 θnew ←
−−→
θnew[i]

3 if R contains less than Rmax runs with configuration θinc then
4 Π′ ← {π′ ∈ Π | R contains less than or equal number of runs using θinc and π′

than using θinc and any other π′′ ∈ Π}
5 π ← instance sampled uniformly at random from Π′

6 s← seed, drawn uniformly at random
7 R← ExecuteRun(A,R, θinc, π, s)

8 N ← Rmin

9 while true do
10 Smissing ← (instance, seed) pairs for which θinc was run before, but not θnew
11 StoRun ← random subset of Smissing of size min(N, |Smissing|)
12 foreach (π, s) ∈ StoRun do R← ExecuteRun(A,R, θnew, π, s)
13 Smissing ← Smissing \ StoRun
14 Πcommon ← instances for which θinc and θnew have been ran previously.

// if the arithmetic mean of the empirical cost of θnew is higher than of θinc
15 if c(θnew,Πcommon) > c(θinc,Πcommon) then break
16 else if Smissing = ∅ then θinc ← θnew; break
17 else N ← 2 ∗N
18 if time spent in this call to this procedure exceeds tintensify and i ≥ 2 then break
19 return (R, θinc)

The run for θinc will only be performed if R contains at most Rmax runs for θinc (line
3). The instance π for this run is not chosen uniformly at random but in such a way that
each instance from Π is executed equally often for θinc (lines 4+5). In lines 10-17, out
of all runs for θinc, a set StoRun with N = Rmin instance-seed-pairs is chosen at random
(line 10+11). The challenger configuration θnew is executed on StoRun (line 12). If the
arithmetic mean of the cost of θinc on StoRun is better or equal than the cost of θnew on
StoRun, θnew will be dropped (line 15). Otherwise, θnew will be further intensified with a
doubled N and different N instance-seed-pairs from runs of θinc (line 17). This will be
done until the challenger configuration is dropped or no instance-seed-pairs are left. In this
case the challenger becomes the new incumbent (line 16).

The intensification procedure will be executed until either all configurations from
−−→
θnew are

11

2 Preliminaries

evaluated or at least two challenger configurations have been evaluated and the time spent
on intensification for

−−→
θnew is longer than the time spent on generating

−−→
θnew (lines 1+18).

For an end user of SMAC, multiple parameters of the intensification procedure are config-
urable, not only the cost function c and the instance set Π:
If the target algorithm is randomized, a potential improvement of a challenger configuration
to the incumbent configuration can be obscured by randomization. To handle randomiza-
tion, it is possible to do more evaluations for each challenger configuration by increasing
Rmin. If the instance set Π is heterogeneous, Rmin can be increased for the same reason: A
challenger configuration may work well on a subset of Π and perform badly on another sub-
set. Thus the selection of the instances for the first Rmin runs affects the decision whether
a challenger is further intensified or not. Note that if Π is homogeneous, this will be rarely
the case since a challenger configuration which does not work well on a single instance
will also perform badly on another instances.
The number of maximum evaluations per configuration is parameterized by Rmax. It is
important that the final configuration is executed at least once on every instance. Thus
Rmax ≥ |Π| is required. If the target algorithm is randomized, Rmax can be set to a high
value to achieve more accurate results.

2.3.3 Adaptive Capping

To avoid spending too much time on intensification of time intensive configurations, each
call of the target algorithm will be terminated after exceeding a static cutoff time if not
finished. If a call of the target algorithm is terminated, the result for this specific run
is unknown. A high penalty value is saved for this run in the run history to mark this
configuration as "bad" and to avoid selection of other configurations in the neighborhood
of θi.
As explained in the previous subsection, a challenger configuration must be on average
better than the incumbent configuration on the set StoRun used for the current iteration of
intensification. If the optimization objective is running time, this can be exploited: If the
challenger configuration θnew consumes more time than the incumbent configuration θinc
for a subset of StoRun, the challenger is worse than the incumbent. The intensification of
the challenger can be terminated immediately. This mechanism is called Adaptive Capping
and was introduced in this form by Param-ILS [20] but is also implemented by SMAC.

2.3.4 Selection of Promising Configurations

Since it is not good to intensify configurations from the neighborhood of configurations
which are much worse than the incumbent, a criterion is needed to measure the expected
improvement of a configuration to the current incumbent configuration. This criterion is
called Expected Improvement (EI) criterion. SMAC defines the EI-function in such a way

12

2.3 Algorithm Configuration with SMAC

Figure 2.4: Two steps of SMBO for the optimization of a one dimensional noise-free function. The
red line is the noise-free (not randomized) true cost function c of the target algorithm
with a single parameter x. The blue circles are the results of the evaluation of the
target algorithm. The dotted line is the mean of the predicted cost function ĉ, the gray
area denotes its standard deviation. The green dashed line denotes the scaled expected
improvement (EI). The figure is taken from Hutter et al. [18].

that EI is high for configurations with expected high variance and an expected low mean
and vice versa [18].

An example is illustrated by Figure 2.4: It shows two steps of the optimization process.
Some runs (blue circles) were already done. The modeled cost function is denoted by the
black line, the expected variance is denoted by the gray area. The red line denotes the true
cost function. The EI is, in the first step, only high for the region around x = 0.7. There
is, according to the model, no other region where a configuration has a chance to be better
than the actual best configuration.

SMAC selects configurations which maximize the EI. In case of Figure 2.4a, it is the con-
figuration x = 0.705. The configuration is evaluated and as shown in Figure 2.4b, the
result is added to the model. The variance of the expected cost function is greatly reduced
around the area of the selected configuration by the evaluation. Now there are two different
regions with a high EI. They will be evaluated in the next step.

For larger configuration spaces as in Figure 2.4, it becomes costly to consider all possible
configurations. In order to handle this problem, it is possible to select a certain number of
configurations at random and select those with the highest EI. This will fail if the space of
good configurations is sparse. To solve this problem, a multi-start local search algorithm is
used by SMAC to find configurations which maximize the EI criterion [18].

13

2 Preliminaries

2.3.5 Parallelization of SMAC (pSMAC)

As the name suggests, SMAC is a sequential algorithm and is by default unable to execute
more than one target algorithm call at once. Since algorithm configuration is costly, a par-
allelized variant of SMAC is needed. This variant is called pSMAC [19]. The solution of
pSMAC is to use multiple processes of SMAC with a run history shared via files. Since
the run history is shared, all processes work on the same model. Because the selection
of promising configurations is randomized, each process intensifies other configurations.
However, the incumbent configurations are not shared. Therefore each process may pro-
duce a different final configuration.

2.3.6 Homogeneity and Size of Training Sets

The developers of SMAC recommend to use SMAC for homogeneous instance sets [11].
They compare the algorithm configuration problem with the similar algorithm selection
problem, introduced by Rice [33]. The goal of the algorithm selection problem is to select
the best algorithm for a given instance. Often, it is impossible to find an algorithm which
performs well on all instances [25]. Because of the similarity of the algorithm selection
problem and the configuration selection problem, the selection of a configuration which
performs well on all instances is also difficult. Instead of using only one configuration
which performs well on all instances, it is possible to use a portfolio of configurations
(multiple configurations) [42]. An overview of this subject is provided by Kotthoff [25].

The following example helps to understand why heterogeneous instance sets are so difficult
to optimize: Let C and D be two subsets of the training set with identical size. Assume
that the actual incumbent configuration θinc has an improvement of x% on C and 1

4
x%

on D on average, compared to the default configuration (with x � 0). Let θnew be a
challenger configuration found by SMAC with an improvement of 1

2
x% on C and 2x% on

D, compared to the default configuration. Thus, on average, θnew is twice as good as θinc.
During intensification, SMAC first runs θnew on Rmin random instances – suppose they
are all from C. Since 1

2
x% < x%, θinc is better than θnew on C. Thus, although θnew is on

average twice as good as θinc, θnew will be dropped by SMAC.

So regarding the first iteration of intensification, the decision whether a challenger con-
figuration is dropped or not depends on the randomly chosen instances. This is avoided
by usage of homogeneous training sets. However, it is possible to reduce this effect by
increasing Rmin, because then any θnew will be executed on more instances. Since this is
very costly, this should only be done with caution.

To avoid overtuning, the training set must be large enough. The developers of SMAC
recommend 50 instances for optimizing homogeneous training sets [11]. In contrast, for
heterogeneous instance sets, the developers recommend to use at least 300 instances but
more than 1000 instances are advisable [11].

14

2.4 Summarizing Benchmark Results

As an extreme example, McPhee et al. [29] used a training set with only one instance be-
cause their target algorithm consumed up to 24 hours and not enough computing time was
available. The final configuration found by SMAC was better than the default configuration
on only one out of four instances. Additionally the performance on one other instance was
substantially worse than the default configuration.

2.3.7 Features

To improve the model it is possible to specify a vector of attributes, called features, for
each training instance. However, this is not required and it is also possible to use some
domain independent features like the instance size. Since the features are only needed for
the training instances, the effort to calculate the features is usually not too high [18].

Note that SMAC applies a Principal Component Analysis (PCA) [14] to reduce the dimen-
sionality of the feature space. Only the first seven components are used by SMAC. This is
done to reduce the computational complexity of learning [18].

2.4 Summarizing Benchmark Results

SMAC requires a single number expressing the cost of a configuration θ. By default, SMAC
executes a configuration N times and takes the average cost value using the arithmetic
mean. In this thesis, we want to compare not absolute cost values (for example, the av-
erage connectivity of θ on all training instances) but relative improvements compared to
the default configuration. This is because the training instances are of various size with
different partitioning times and different minimum cuts. The results of each evaluation of
θ are therefore normalized to the default configuration, the cost of θ is then the average
improvement of θ compared to the default configuration.

As shown by Flemming and Wallace [12], the arithmetic mean is not an appropriate mea-
sure to compare normalized data. Consider the following example: All numbers of Ta-
ble 2.1 are normalized to R. According to the arithmetic mean, it seems that R is better
than M and Z. On the contrary, if the numbers are normalized to M instead of R, like in
Table 2.2, the results differ: According to the arithmetic mean, M seems to be better than R
and Z. Table 2.2 thus contradicts Table 2.1. This shows the problem of using the arithmetic
mean to compare normalized data.

An alternative to the arithmetic mean is the geometric mean. The geometric mean of N
numbers is defined by the N th root of the product of the numbers:

geometric_mean(x1, . . . , xn) = n

√√√√ n∏
i=1

xi

15

2 Preliminaries

Benchmark
Processor

R M Z
E 417 (1.00) 244 (0.59) 134 (0.32)
F 83 (1.00) 70 (0.84) 70 (0.85)
H 66 (1.00) 153 (2.32) 135 (2.05)
I 39,449 (1.00) 33,527 (0.85) 66,000 (1.67)
K 772 (1.00) 368 (0.48) 369 (0.45)

Arithmetic mean (1.00) (1.02) (1.07)
Geometric mean (1.00) (0.86) (0.84)

Table 2.1: Table taken from Fleming et al. [12]. R, M and Z are in this context configurations
and E, F, H, I and K are instances on which these configurations are evaluated. A
number before a parenthesis denotes the raw cost of a configuration on an instance. All
numbers are normalized to R, the normalized cost value is denoted by the numbers in
parentheses. Note that even the absolute values are rounded.

Benchmark
Processor

R M Z
E 417 (1.71) 244 (1.00) 134 (0.55)
F 83 (1.19) 70 (1.00) 70 (1.00)
H 66 (0.43) 153 (1.00) 135 (0.88)
I 39,449 (1.18) 33,527 (1.00) 66,000 (1.97)
K 772 (2.10) 368 (1.00) 369 (1.00)

Arithmetic mean (1.32) (1.00) (1.08)
Geometric mean (1.17) (1.00) (0.99)

Table 2.2: Table taken from Fleming et al. [12]. Identical to Table 2.1 with one exception: The
numbers are normalized to M instead to R.

In contrast to the arithmetic mean, the geometric mean is unaffected by normalization: It
is irrelevant to which configuration the raw data is normalized. This property can be seen
in Table 2.1 and Table 2.2: The cost of M compared to R is, normalized to R, 0.86. If the
data is normalized to M, the cost of R compared to M is 1.17 – this is the reciprocal of
0.86.2 A similar relationship between the performance of M and Z can also be found. This
is because:

geometric_mean

(
x1

y1

, . . . ,
xn
yn

)
= n

√√√√ n∏
i=1

xi
yi

=
1

n

√∏n
i=1

yi
xi

=
1

geometric_mean(y1

x1
, . . . , yn

xn
)

Further examples and a proof that the geometric mean is not only correct but is also the
only correct average of normalized numbers can be found in [12].

2An attentive reader may note that 1/0.86 ≈ 1.1628 6≈ 1.17 because of rounding errors.

16

2.4 Summarizing Benchmark Results

Despite the fact that the arithmetic mean is not appropriate, it can still be used to average
the logarithmic of the normalized values. This is due the fact that the geometric mean of n
numbers is the exponential of the arithmetic mean of the logarithmic numbers:

geometric_mean(x1, . . . , xN) = N

√√√√ n∏
i=1

xi =

(
exp

(
n∑
i=1

log xi

))1/n

= exp

(
1

n

n∑
i=1

log xi

)

= exp(arithmetic_mean(log(x1), . . . , log(xn)))

This relationship between geometric and arithmetic mean will be exploited later.

17

2 Preliminaries

18

3 Algorithm Configuration for
Hypergraph Partitioning

Our goal is to optimize KaHyPar-CA on a large heterogeneous application-oriented in-
stance set1. As described in Section 2.3.6, optimization for heterogeneous instance sets is
challenging. To make the optimization process for SMAC easier, we partitioned the in-
stance set into subsets with higher homogeneity according to their application origin (also
called type). The types are:

• VLSI: These instances are from the ISPD98 VLSI Circuit Benchmark Suite [3] and
from the DAC 2012 Routability-Driven Placement Contest [39].

• SPM: The sparse matrices of the SuiteSparse Matrix Collection [9] are translated
with the row-net model [38] into hypergraphs. Compared to the other subsets, this
subset is relatively heterogeneous.

• SAT: The SAT instances are from the international SAT Competition 2014 [5]. They
are translated with three different models into hypergraphs: literal [1], primal and
dual [28]. Since these models produce very different hypergraphs, we treat literal,
primal and dual as separate types.

Different application fields have different requirements: VLSI design for example is a field
where small quality improvements may lead to significant savings [40]. Thus the best
possible quality is wanted and running time is not of importance as long as it is not too
badly. On the other hand, hypergraph partitioning is also used to accelerate sparse matrix-
vector multiplications. This application field does not require the best possible partitions,
but fast partitioning. Since quality and running time are conflicting objective functions,
optimizing quality and running time simultaneously is challenging. The goal is to find a
configuration such that there exists no other configuration with better quality and better
running time. This configuration is called Pareto optimal. We call the objective to find
such a configuration Pareto.
To achieve these objectives, we define a cost function for every optimization objective
in Section 3.1. In Section 3.2 we analyze the required computing time for the optimiza-
tion process and how the required computing time can be reduced in particular. With this
knowledge a training set is selected for each type in Section 3.3. After that, in Section 3.4,
a benchmark set is built to verify the final configurations found by SMAC. Since we use

1The hypergraphs for the instance set can be found at: https://algo2.iti.kit.edu/schlag/
sea2017/benchmark_subset.txt.

19

https://algo2.iti.kit.edu/schlag/sea2017/benchmark_subset.txt
https://algo2.iti.kit.edu/schlag/sea2017/benchmark_subset.txt

3 Algorithm Configuration for Hypergraph Partitioning

pSMAC (see Section 2.3.5), multiple final configurations are found by SMAC. The topic
of Section 3.5 is to determine which final configurations are the best. Finally, a mechanism
is introduced in Section 3.6 to terminate intensification of badly performing configurations
early if the objective is quality or running time (and thus the adaptive capping mechanism
is not available).

3.1 Definition of Cost Functions

As described above, we want different cost functions c for the three objectives quality,
running time and Pareto. The goal of c is to aggregate the result of a single evaluation of
a challenger configuration θnew on the target algorithm to a single number. The cost of
θnew is calculated by taking the arithmetic mean of the cost values of multiple evaluations.
The definitions used for expressing running times and connectivities found by θnew can be
found in Section 2.1.3.

Imbalanced partitions are not valid. To reflect that, intensification for configurations which
produce imbalanced partitions is terminated. Instead, high penalty values are saved in the
run history for these configurations in order to prohibit intensification of configurations in
their neighborhood.

3.1.1 Quality

We define the cost function c for quality as optimization objective as:

c(θnew, π, s) = log

(
(λ− 1)(θnew, π, s)

(λ− 1)(θdefault, π)

)

The cost function expresses the relative quality improvement of an evaluation compared
to the default configuration. As described in Section 2.4, we want to use the geometric
mean instead of the arithmetic mean. Although SMAC takes the arithmetic mean, it is still
possible to take the geometric mean because of the relationship between arithmetic and
geometric mean. Let Πcommon be the instance-seed-pairs to be evaluated and suppose that
there are no imbalanced partitions, the cost of a new configuration θnew is:

c(θnew,Πcommon) =
1

|Πcommon|
∑

(π,s)∈Πcommon

log

(
(λ− 1)(θnew, π, s)

(λ− 1)(θdefault, π)

)

= log

(
geometric_mean

(
(λ− 1)(θnew, π, s)

(λ− 1)(θdefault, π)

))

20

3.2 Required Optimization Time

3.1.2 Running Time

If running time is the optimization objective, the adaptive capping mechanism (see Sec-
tion 2.3.3) can be used. Because we want to use it, the cost function c must be identical
with the raw running time. Thus c is defined as:

c(θnew, π, s) = time(θnew, π, s)

In contrast to the quality objective cost function, c is not log transformed. Thus not the
geometric mean but the arithmetic mean is taken. This has the drawback that evaluations
with a long running time have a significantly higher weight than evaluations with shorter
running times. It is therefore advisable to select only instances for the training set for which
θdefault has a comparable running time.

3.1.3 Pareto

We combine the relative quality improvement and the relative speedup to a single cost
function c to find configurations with quality improvements as well as speedups:

c(θnew, π, s) = log

w ·
(

(λ−1)(θnew,π,s)
(λ−1)(θdefault,π)

)x
+ y ·

(
time(θnew,π,s)

time(θdefault,π)

)z
w + y


It is possible to adjust the weight parameters w, x, y and z in order to weight quality and
running time. Quality improvements are harder to achieve as speedups: It is possible to do
less local search moves during the refinement phase in order to save computing time. On
the other hand, doing more local search moves does not necessarily increases the partition
results (e.g. if local search is stuck in 0-gain moves, more moves will not change the
partition quality). Thus we square the relative quality improvement (x = 2) but not the
relative speedup (z = 1). Furthermore, we set w is set to 10 and y to 1 based on empirical
results. Example function values can be found in Table 3.1. A quality improvement of
one percent is worth roughly 1.8%, a speedup of 25% roughly 2.2%. We think that this
is a good trade-off between quality and running time, but the weights can be changed if
necessary.
Note that c is also log transformed, for the same reason as the quality cost function.

3.2 Required Optimization Time

The total number of evaluations needed by SMAC is unknown and depends on the train-
ing set (heterogeneous training sets require more evaluations) and the configuration space

21

3 Algorithm Configuration for Hypergraph Partitioning

quality
Pareto .95 0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03

ru
nn

in
g

tim
e

0.25 -0.171 -0.150 -0.130 -0.110 -0.090 -0.071 -0.051 -0.032 -0.013
0.50 -0.144 -0.124 -0.104 -0.085 -0.066 -0.047 -0.028 -0.009 0.010
0.75 -0.118 -0.099 -0.080 -0.061 -0.042 -0.023 -0.004 0.014 0.032
1.00 -0.093 -0.074 -0.055 -0.037 -0.018 0.000 0.018 0.036 0.054
1.25 -0.068 -0.050 -0.031 -0.013 0.005 0.022 0.040 0.058 0.075
1.50 -0.044 -0.026 -0.008 0.009 0.027 0.044 0.062 0.079 0.096

Table 3.1: Example function values of the Pareto cost function with w = 10, x = 2, y = 1, z = 1.

(more parameters require more evaluations). In Section 3.2.1, we analyze which parame-
ters have what impact on the optimization time Afterwards, we study the required minimum
optimization time depending on some parameters in Section 3.2.2.
With this knowledge, it is then possible to minimize the required optimization time.

3.2.1 Parameters Affecting Optimization Time

There are multiple different parameters with impact on the overall optimization time:
• Selected training set Π

• Configuration space Θ

• Default configuration θdefault ∈ Θ with average running time time(θdefault) on Π

• Cost function c

• Number of minimum evaluations per configuration Rmin and the number of maxi-
mum evaluations per configuration Rmax

Half of the optimization time is spent by SMAC on model building and selection of chal-
lenger configuration, the other half on intensification of challenger configurations (see Al-
gorithm 2). If the evaluations of the target algorithm are costly, the relative time spent on
intensification is even higher. Thus reducing the running time for a single evaluation of a
challenger configuration greatly reduces the optimization time.
The number of evaluations required to find a good configuration depends on the difficulty
of the problem. For example, we know based on empirical results that optimizing the
running time of KaHyPar-CA is easier than achieving quality improvements. Also the
needed computing time for evaluating a configuration depends on the optimization ob-
jective: With running time as optimization objective, configurations found by SMAC are
relatively fast. On the contrary, if the quality optimization objective is used, configurations
found by SMAC are expensive. However, this effect can be limited by setting cutoff times.
A challenger configuration is evaluated at most Rmax times to become the new incumbent
configuration. This process is not parallelized. If the challenger configuration has roughly

22

3.2 Required Optimization Time

the same running time as the default configuration, this process will take about Rmax ·
time(θdefault). For example, if time(θdefault) is 90 seconds andRmax is 100, the challenger
configuration needs up to 2.5 hours to become the new incumbent.
Rmin denotes the minimum number of evaluations per challenger configuration. Most chal-
lenger configurations will be evaluated only Rmin times because they are worse than the
incumbent configuration. Thus increasing Rmin will greatly affect the overall optimization
time.
As a consequence, the average running time on the training set, the definition of the cost
function and the number of minimum evaluations per challenger configuration is very im-
portant. Since we are unable to determine the optimization time, we want to know the
minimum time required for optimization. We asses this in the following section.

3.2.2 Required Minimum Optimization Time

It is important to ensure that the final configuration is executed at least once on each in-
stance of the training set Π. This will be the case if the incumbent configuration is executed
at least |Π| times. The time needed for this process is considered as minimum optimiza-
tion time. Since the intensification of the incumbent configuration is not parallelized by
pSMAC (see Section 2.3.5), the calculated minimum optimization time cannot be reduced
by parallelization.
The incumbent configuration is evaluated every time the intensification procedure is called.
The number of calls of the intensification procedure is at most the number of challenger
configurations tested divided by two. Additionally, the incumbent configuration starts with
Rmin − 1 evaluations.2 The required number of tested configurations is therefore at least
2 · (|Π| − Rmin + 1). The number of evaluations per challenger configurations is at least
Rmin.3 Thus the number of required evaluations to achieve that the final configuration
is executed at least once on each instance of Π is at least 2Rmin · (|Π| − Rmin + 1). By
multiplication with the average running time, the minimum optimization time is calculated.
For example, if the training set has a size of 50 (like recommended in Section 2.3.6), the
average evaluation take 90 seconds andRmin is set to 1, the required minimum optimization
time is 2.5 hours. In contrast, if Rmin is set to 8, 17.2 hours are needed.
The minimum number of evaluations per configuration Rmin, the size of Π and the average
running time have roughly the same impact on the minimum required optimization time.

2As initial startup, SMAC evaluates the default configuration Rmin − 1 times.
3Actually, by usage of the adaptive cutoff mechanism (see Section 2.3.3) or the dynamic cutoff mechanism

(see Section 3.6), it is possible to execute a configuration less than Rmin times. However, not the number
of evaluations but the needed time is important. In case of the adaptive mechanism, if there are less
than Rmin evaluations, the time spent on intensification will be equal to the time needed by the default
configuration for Rmin evaluations. In case of the dynamic cutoff mechanism, only half of this time is
needed on average. Since there are also configurations with more than Rmin evaluations, this is not a
problem.

23

3 Algorithm Configuration for Hypergraph Partitioning

In Section 3.3, we will use the insights obtained in this section to build a training set with
a low optimization time.

3.3 Training Set Selection

After the definition of the cost functions in Section 3.1 and a discussion of the impact
of several parameters on the required optimization time in Section 3.2, the next step is
to select the training sets. Since we want to optimize KaHyPar for each type of instance
(VLSI, SPM, etc.), one training set per type is needed. As recommended in Section 2.3.6
for homogeneous instance sets, we choose around 50 instances for each training set.

It is important to select training sets which are representative of the whole instance set.
This is done in Section 3.3.1. To save computing time, it is also important to exclude
instances which are too huge. Additionally, we exclude all instances for which the default
configuration’s improvement potential is too low. Our approach to exclude these instances
can be found in Section 3.3.3.

3.3.1 Features

Every hypergraph has attributes, so–called features. The features of a hypergraph describe
the hypergraph. We will consider a training set as representative if the feature space of the
instance set is well covered.

Features of hypergraphs used by us are e.g. the number of edges and pins. All in all, 20
different hypergraph features are used, which are listed in Section A.1. Since we used 20
features, the feature space has 20 dimensions. It is therefore difficult to analyze whether
the feature space is covered well. We use a Principal Component Analysis (PCA) [14] to
reduce the dimensionality of the feature space down to five (the first five components are
responsible for roughly 90% of the variance). Before we apply the PCA, we log transform,
scale and center the feature space in order to improve the quality of the PCA.

An instance consists not only of a hypergraph but also of a specific value for k (the number
of blocks the input hypergraph must be partitioned into) and ε (the maximum allowed
imbalance). Because ε is set to 0.03 for all instances, ε is ignored in the feature analysis.
Since k has a significant impact on the partitioning process, we choose the values of k
manually.

Features are not only used to verify the representativeness of our training set but are also
used by SMAC for improving the model (see Section 3.3.1). Because SMAC supports up
to seven different features without a dimensionality reduction, we choose the first six com-
ponents of the PCA as well as k as features for SMAC. This reflects the great importance
of k.

24

3.3 Training Set Selection

Algorithm 3: Empirical Variance of Instance
Data: Instance π, default configuration θdefault, number of repetitions Rmin ∈ N, cost

function c
Result: Minimal detectable improvement with 95% confidence
// Take K times the geometric means of Rmin runs

1 Ĉ(θdefault, π)←
⋃K
i=1

{
geo_mean

(⋃Rmin
j=1 {c(θdefault, π, random seed)}

)}
// K � Rmin

2 c(θdefault, π)← geo_mean(Ĉ(θdefault, π))

3 ĉ(θdefault, π)← Q5%(Ĉ(θdefault, π)) // Q is the quantile function
4 return c(θdefault, π)/ĉ(θdefault, π)

3.3.2 Randomization Analysis

As explained in Section 2.3.2, SMAC is capable of optimizing randomized algorithms.
This is done by setting the minimum number of evaluations per configuration Rmin to an
appropriate value. SMAC will then take the mean cost of at least Rmin evaluations of the
target algorithm. If the mean cost of these Rmin evaluations of a challenger configuration
is not better than the cost of the incumbent configuration (on the same instance-seed-pairs),
the challenger configuration is discarded, otherwise the challenger is further intensified.
The goal of this section is to determine the minimum value for Rmin to ensure that a chal-
lenger configuration with a certain improvement compared to the incumbent configuration
is not discarded afterRmin evaluations. With this knowledge, we also want to determine the
instances for which the randomization of the partition results of KaHyPar-CA is especially
high to exclude them from training sets.
At first, we define the expected cost c(θ) of a configuration θ as the mean of an infinite
number of runs. We approximate this by performing K · Rmin runs with K � Rmin.
SMAC does not know this expected cost and uses the mean of Rmin runs to determine the
empirical cost ĉ(θ) of θ instead. The empirical cost ĉ(θ) can be lower or higher than the
expected cost c(θ). This affects the decision whether a challenger configuration θnew is
further intensified.
Let θnew be a challenger configuration and let θinc be an incumbent configuration with
c(θnew) < c(θinc). The challenger will be further intensified iff ĉ(θnew) < ĉ(θinc).
To determine ĉ(θinc), we analyze the set Ĉ(θinc) of all possible values for the empirical
cost of θinc. We take the 5% quantile of Ĉ(θinc), which is denoted by Q5%(Ĉ(θinc)). Then
ĉ(θinc) is with 95% confidence at least Q5%(Ĉ(θinc)).
Thus the challenger configuration θinc will be further intensified with a confidence of 95%
if its empirical cost is lower than Q5%(Ĉ(θinc)).
This insight is used by Algorithm 3. We calculate the minimum empirical cost of the
default configuration with 95% confidence. A challenger configuration must have a lower
cost than ĉ in order to be further intensified after Rmin runs. In line 4, we take the fraction

25

3 Algorithm Configuration for Hypergraph Partitioning

of the expected cost of c and ĉ to express the required improvement in percent instead of
absolute values.
With this knowledge, we are able to chose Rmin in such a way that challenger configura-
tions are not discarded if they have a certain improvement (with a confidence of 95%).
Note that we use the default configuration rather than the incumbent configuration in Algo-
rithm 3. This is required since the incumbent configurations are unknown. We assume that
incumbent configurations have roughly the same variation as the default configuration. So
the results obtained by Algorithm 3 can at least be taken as an indicator.
Algorithm 3 is limited to a single instance π but can be modified to handle a set of instances
Π: Instead of executing only runs for π in line 1, it is possible to execute runs for random
instances of Π.
For the selection of Rmin, we have to distinguish between the different optimization ob-
jectives because the cost functions are different. There is relatively low randomization for
running time as optimization objective, thus we set Rmin to one for running time. On the
other hand, randomization has an impact on the connectivity of partitions found. Based on
our results, we set as optimization objective Rmin to eight for quality and Pareto.
Furthermore we chose to exclude every instance π from training sets for which, using the
quality cost function, c(θdefault, π)/ĉ(θdefault, π) is higher than 1.5%.

3.3.3 Exclusion of Inappropriate Instances

After determining all instances for which the partitioning results of KaHyPar-CA have a
high variance, we go ahead and exclude further instances which are inappropriate for the
optimization process.
At first, we choose to exclude all instances for which the running time of the default config-
uration is higher than six minutes. To save even more computing time during optimization,
we choose the training sets in such a way that the average running time of the default
configuration is not higher than 120 seconds.
Since we want to optimize the coarsening phase, the initial partitioning phase and the re-
finement phase of KaHyPar-CA simultaneously, we exclude all instances for which the
initial partitioning phase consumes more than 40% of the whole partitioning time (regard-
ing the default configuration). For the same reason, all instances for which the default
configurations needs less than 15 seconds for the refinement phase are excluded.
We use Algorithm 3 to identify instances for which the partitioning results have a high
variance. Since Algorithm 3 is costly, we use as a preliminary requirement that the propor-
tion of best and mean cut of 10 runs of the default configuration using different seeds is at
least 0.95. This are arbitrary values, but only around 10 percent of all instances are further
excluded by Algorithm 3.
We want that only instances participate in training sets for which the default configuration
has an improvement potential. Instances with a difference between best and mean cut have

26

3.4 Finding a Better Benchmark Set

an improvement potential - at least the mean cut can be reduced to the value of the best cut.
With this knowledge, we only choose instances for which the proportion of best and mean
cut of 10 runs of the default configuration using different seeds is at most 0.995.
The selected training sets including their PCA analysis can be found in Section A.3. Note
that we had to weaken our selection requirements for the VLSI training set: Available VLSI
instances are mostly too small or too huge. For the same reasons, we were left with less
than the recommended 50 instances. Since the VLSI instances are relatively homogeneous,
this is not a problem.
We select the training set for optimizing the whole instance set by choosing around 20
instances from each training set for every type. We select these in total 100 instances in
such a way that the whole feature space is well covered. Note that far larger training sets
with at least 300 instances are recommended for optimization of heterogeneous instance
sets (see Section 2.3.6). Since evaluating configurations of KaHyPar-CA is expensive and
computing time is limited we decide to use despite the recommendation 100 instances. We
call this training set "full training set".
Note that we also tried to cluster the feature space of the instances using K-Means [15] to
improve the representativeness of the training sets. As recommended by Yeung and Ruzzo
[43], we applied K-Means without a Principal Component Analysis as preprocessing step.
By verification with silhouettes [34], we revealed that our data is not clustered.

3.4 Finding a Better Benchmark Set

It is important to test a final configuration found by SMAC on a benchmark set different
from the training set: It is unlikely but possible that the training set is not representative of
the whole instance set. We use a benchmark set to verify that the final configuration found
by SMAC works on all instances, and not only on the training set. The process of finding a
better benchmark set is described in this section.
We select the benchmark set at random, unlike the training sets. The reasons behind this
are twofold: Firstly, if the training sets are not representative, a benchmark set selected
with the same method as the training set will not be representative either. For the same
reason, we decide not to use a PCA to verify the representativeness of the benchmark set.
Secondly, benchmarking is not as time crucial as optimization4: We have the resources
to benchmark instances with a running time of above a few minutes. We do not want to
exclude them from the benchmark set. Instances for which the default configuration has
only a low improvement potential are not excluded since a quality loss is still possible.
Our method to find a new benchmark set with a specific size n can be found in Section 3.4.1.
After that, a method to verify the representativeness of a benchmark set can be found in
Figure 8.

4It makes a difference whether only a single configuration is tested during benchmarking or as many con-
figuration as possible are evaluated during optimization.

27

3 Algorithm Configuration for Hypergraph Partitioning

3.4.1 Random Selection of Benchmark Set

We want our benchmark selection algorithm to reflect that there are different types of in-
stances (e.g. VLSI, SPM, etc.). Thus Algorithm 4 first selects a type at random and then
a hypergraph (not instance) of this type for the benchmark set. This is repeated until the
benchmark set consists of the desired number of hypergraphs. For each hypergraph, all
k ∈ {2, 4, 8, 16, 32, 64, 128} are chosen to build the instances with ε set to 0.03.
To save computing time, we excluded hypergraphs for which a k ∈ {2, 4, 8, 16, 32, 64, 128}
exists for which a single evaluation of the default configuration consumes more than four
hours (line 2). Since only a small percentage of all hypergraphs is excluded, this is not an
issue.

Algorithm 4: Random Benchmark Set Selection
Data: Size of the benchmark set n, set of hypergraphs G, default configuration θdefault
Result: Benchmark set

1 Types← {SAT14Dual, SAT14Primal, SAT14Literal, SPM, V LSI}
2 G← {g ∈ G | ∀k ∈ {2, 4, 8, 16, 32, 64, 128} : time(θdefault, (g, k, 0.03)) < 4h}
3 Result← ∅
4 while |Result| < n do
5 type← select one element from Types at random
6 if G has a element with type types then
7 hypergraph← select one element from G with type type
8 G← G \ hypergraph
9 Result← Result ∪ {graph}

10 return {(g, k, ε) | g ∈ Result ∧ k ∈ {2, 4, 8, 16, 32, 64, 128} ∧ ε = 0.03}

3.4.2 Verifying Representativeness of the Benchmark Set

We want to calculate the probability whether a benchmark set of size n randomly generated
by Algorithm 4 is representative. For that, we compare KaHyPar-CA with its strongest
competitor, hMetis-R [23], regarding the minimum connectivity metric. For all of the
following comparisons, the Wilcoxon matched pairs signed rank test [41] is used with a
confidence level of 99%, based on ten runs per instance.
KaHyPar-CA has a significantly better minimum connectivity than hMetis-R on the whole
instance set. A representative benchmark set leads to the same conclusion on the whole
instance set. Hence KaHyPar-CA needs to have a significant better minimum connectivity
than hMetis-R on the generated benchmark set. We consider the probability of this as
probability that a random generated benchmark set is representative.
This procedure is implemented by Algorithm 5. Since there is a high number of different
subsets for each n, we limit the generation of benchmark sets to 1000 per n.

28

3.4 Finding a Better Benchmark Set

Algorithm 5: Probability of a benchmark set with n hypergraphs to be representative
Data: Size of benchmark set n, set of hypergraphs G, default configuration of

KaHyPar-CA θdefault, default configuration of hMetis-R θ′default
Result: Probability of a benchmark set with n hypergraphs is not considered as

representative
1 count← 0
2 for i← 1 to 1000 do
3 R← Random_Benchmark_Set_Selection(n, G, θdefault) // Algorithm 4
4 K ←

⋃
π∈R{mins∈{1,...,10}((λ− 1)(π, θdefault, s))} // min connectivities KaHyPar- CA

5 H ←
⋃
π∈R{mins∈{1,...,10}((λ− 1)(π, θ′default, s))} // min connectivities hMetis- R

6 if K is significantly better than H with 99% confidence then
7 count++
8 return 1− count

1000

1.0%

20.0%

30.0%
40.0%

0.1%

100.0%

50.0%

5.0%

10.0%

0 25 50 75 100 125
Number of Instances

E
rr

or
 P

ro
ba

bi
lit

y

Figure 3.1: Error rate for n instances according to Algorithm 5

29

3 Algorithm Configuration for Hypergraph Partitioning

For each n ∈ {2, 3, . . . , 150}, the error probability determined by Algorithm 5 is shown
by Figure 3.1. The low variance confirms that the evaluation of 1000 different benchmark
sets for each n is sufficient. As a trade-off between error probability and size of the new
benchmark set, we set the size of the benchmark set to 70. The error rate is then at around
one percent. The selected benchmark set can be found in Section A.2.

3.5 Validation of SMAC Configurations

In the previous section, a benchmark set was chosen to verify configurations found by
SMAC. Since we use pSMAC (see Section 2.3.5), one configuration per SMAC process
will be found. Because benchmarking configurations is expensive, we choose only a few
configurations for benchmarking.
One approach is to choose only the configuration with the lowest cost on the training set,
however it is not necessarily the best one as explained below:
One issue is over-tuning: Assume a partition of the training set Π into two disjoint non-
empty subsets B and C with Π = B ∪ C. Let θ be the configuration with minimum cost
on Π. Let the cost of θ be very low on B and relatively high on C. A configuration θ′ with
a slightly worse cost on Π than θ, but with low costs on B and C, is considered to be better
than θ by us. However, a configuration with characteristics like θ can only exist if either
the size of the training set is too small or the training set is heterogeneous.
Another issue are trade-offs which each configuration makes between quality and running
time. These trade-offs affect the decision which configuration is best in practice. Using a
cost function to map how good a configuration is to a single value obscures these trade-offs,
depending on the optimization objective:

• If the objective is quality, the mean quality gain is known (which is identical to the
cost value reported by SMAC), but not the loss in performance.5

• If the objective is running time, the mean partitioning time improvement is known
(which is identical to the cost value reported by SMAC), but the loss in quality is
unknown.

• If the objective is Pareto, the loss/gain of quality and performance are unknown.
Hence we select not only the best configurations with the lowest cost but the three different
configuration with the lowest costs.

3.6 Dynamic Capping Time

In the following we describe how badly performing executions of the target algorithm can
be terminated by SMAC in order to save computing time. Burger et al. [8] emphasize

5Although the loss in performance is capped by the dynamic cutoff time.

30

3.6 Dynamic Capping Time

the importance of correct measurement of performance and planning timeouts: For a spe-
cific scenario of Burger et al., nearly every evaluation of a challenger configuration was
terminated by SMAC due to a too small timeout.
Because of high variance of the partitioning times of KaHyPar-CA for different instances,
choosing a good cutoff time is difficult: In some cases, the partitioning time on the default
configuration on the biggest instances is up to 10 times higher than of the smallest instance.
If the optimization objective is running time, this is not a problem due to the adaptive
capping mechanism described in Section 2.3.3: In Section 3.3.2 we have set the minimum
number of evaluations Rmin to 1 for running time as optimization objective. This means
that during the first iteration of intensification, an evaluation of a challenger configuration
on an instance-seed-pair is terminated after the time it took the incumbent configuration to
partition this instance-seed-pair.
Also the difficulty of setting proper timeouts is not a problem for quality as optimization
objective because high cutoff times are wanted in order to achieve maximum quality.
On the other hand, for Pareto as optimization objective, this problem exists: The Pareto
function is designed in such a way that if the running time of a challenger configuration
is much worse than the running time of the default configuration, the challenger needs a
high quality improvement to become the new incumbent configuration. This is unlikely to
happen. Thus a call of the target algorithm should be terminated if the running time gets too
high. Since the adaptive capping mechanism works only for running time as optimization
objective (as described in Section 2.3.3), another mechanism is needed.
The key to solve this problem is to set the cutoff time not in relation to the current incum-
bent configuration but in relation to the default configuration:

cutoff_time(θdefault, π) = d · time(θdefault, π), d ∈ R, d ≥ 1

An evaluation of a challenger configuration θnew exceeding this time limit is terminated
immediately. Like in the adaptive capping mechanism, intensification is terminated for
θnew and a high penalty value is saved for this evaluation in the run history R to ensure that
no configuration in the neighborhood of θnew will be intensified in the future.
The constant d should be chosen carefully: A configuration will be dropped directly after
timing out, previous results are not considered. For example, even if the first 99 runs
worked fine and the 100th times out, the configuration will be dropped. To avoid these
problems, we chose high values for d: If the optimization objective is Pareto, we set d to 3,
for quality as optimization objective we set d to 5. Note that we use the adaptive capping
mechanism instead of the dynamic capping mechanism for running time as optimization
objective.
This weakness of dropping a configuration after the first timeout is also the strength of
the dynamic capping mechanism: For high values of Rmin (which denotes the minimum
number of evaluations per configuration), the dynamic capping mechanism is able to cancel
the first evaluation of a configuration. In contrast, the adaptive mechanism cannot. In case

31

3 Algorithm Configuration for Hypergraph Partitioning

of running time as optimization objective, this is not a problem since we chose Rmin = 1,
but for Pareto and quality we chose Rmin = 8, which we consider as high.

32

4 Experimental Evaluation

In this chapter, we execute SMAC to optimize KaHyPar-CA. Before SMAC can be exe-
cuted, it is important to define the configuration space Θ. After describing all optimization
parameters in Section 4.1, our environment and benchmarking method is described in Sec-
tion 4.2. Since we want to compare the configurations found by SMAC with the default
configuration of KaHyPar-CA, it is important to know what exactly the default configura-
tion is. This is done in Section 4.3. The actual results can be found in Section 4.4.

4.1 Tuning Parameters

In Section 2.2.2, KaHyPar-CA is described with special attention to some of its parameters.
These parameters often have a value range from 0 to (232 − 1) (unsigned 32 bit integer).
Since most of these values are not usable in practice, we restrict the value range of the
parameters to reasonable values.

Also, some parameter choices have no effect under certain circumstances. For instance, if
KaHyPar-CA uses the adaptive stopping rule for initial partitioning, then the configuration
for the simple stopping rule has no effect since the simple stopping is not used. Parameter
combinations for which this is the case are deactivated by us.

Additionally, we reduce the step size s of most parameters: Instead of a discrete parameter
x with value range [d, e], we use a discrete parameter x′ with value range [d′, e′] and a step
size s such that e = s(e′ − d′) + d and d = s · d′. Continuous parameters are discretized
using the same principle.

The parameters used for optimization are listed in the following. Since KaHyPar-CA uses
another full hypergraph partitioner for initial partitioning, namely KaHyPar-R, all listed
parameters are also available during initial partitioning if not stated otherwise.

4.1.1 Coarsening Parameters

In the following, the optimized coarsening parameters are listed. Please note that "choice
of" always refers to an enumeration parameter.

• The choice of the coarsening algorithm: Whether KaHyPar-CA visits vertices in
random order or uses a priority queue to determine the next vertex to visit.

33

4 Experimental Evaluation

• The choice of prefering unmatched vertices for contraction during coarsening if two
or more vertices have the best rating score. The alternative tie-breaking strategy is
random selection.

• The choice giving a penalty for vertices that are too heavy.

• Coarsening ends if the coarsest hypergraph has at most k · t nodes. We call the max-
imum allowed number of nodes after coarsening of KaHyPar-CA ct and the maxi-
mum allowed number of nodes after coarsening of its initial partitioner KaHyPar-R
ict. Since the input hypergraph for the initial partitioner KaHyPar-R has at most ct
nodes, it has no effect to configure ict higher than ct.

To reflect this, we configure ct as c̃t and set ct = ict + c̃t. The value range of ict
is set to [5, 200] and the value range of c̃t is [0, 150]. Using a step size of five, ict
translates to a discrete parameter ict′ with range [1, 40] and c̃t translates to a discrete
parameter c̃t

′
with range [0, 30].

• KaHyPar-CA does not allow that a vertex v with c(V) > cmax := s · d c(v)
k·t e partici-

pates in any further contractions, whereas s is a continuous (floating point) parame-
ter. We set the value range of s to [1, 7] with a step size of 1/4. As described, this
translates into a discrete value range of [4, 28].

4.1.2 Actual Initial Partitioning Parameters

After the coarsening of KaHyPar-CA and after the coarsening of KaHyPar-R as initial
partitioner, a pool of initial partitioning algorithms is executed multiple times. The number
of repetitions is parameterized. Since the effect of more repetitions decreases with higher
values, the effect of this parameter is marked as logarithmic. We do not use any step size
and set the value range of this discrete parameter to [1, 100].

Note that this is the only parameter for the actual initial partitioning phase optimized by us.

4.1.3 Refinement Parameters

KaHyPar-CA has support for two different stopping rules for refinement: The simple and
the adaptive stopping rule. The simple stopping rule is limited by us to the discrete range
[10, 500], the adaptive stopping rule has a continuous range of [1, 5]. Using a step size of
ten, the value range of the stopping rule translates to the discrete range [1, 50]. The adaptive
stopping rule is not transformed.

Since the simple stopping rule is very expensive even for small values, we choose to remove
it for the refinement phase of KaHyPar-CA.

34

4.2 Environment and Methodology

4.2 Environment and Methodology

All experiments are performed on nodes of bwUniCluster1. Each node consists of two Intel
Xeon E5-2670 processors clocked at 2.6 GHz and has 64 GB main memory with deacti-
vated swap. In order to ensure that each SMAC process has enough memory, we use only
eight of sixteen available cores on each node. The same system is used for benchmarking.
In order to increase the robustness and reproducibility of the results, only one core of each
node is used for benchmarking.

For each type, we run SMAC with the corresponding training set for each optimization
objective on three nodes (in total 24 cores) for two days (running time and Pareto as op-
timization objectives) or three days (quality as optimization objective). We also optimize
KaHyPar-CA for all types simultaneously using the full training set on three nodes for three
days (running time) or six days (quality and Pareto).

We compare a configuration θ on the benchmark set regarding three different metrics: The
average connectivity of θ, the minimum connectivity of θ and the average running time of θ.
For each instance of the benchmark set, ten runs are performed and the above listed metrics
are calculated using the arithmetic mean. To weigh instances correctly, the geometric mean
is used in the following when the mean over different instances is taken. We report the
improvements of the new configurations found by SMAC in percent. Additionally, the
arithmetic mean of the running time is reported.

The Wilcoxon matched pairs signed rank test [41] is used to determine whether the quality
improvements can be considered significant. At a confidence level of 99%, a Z-score with
|Z| < 2.58 is considered significant. A negative Z-score means that θ performs better than
the default configuration, a positive Z-score means that the default configuration performs
better than θ. The Z-scores can be found in Section A.5.

To give a more detailed analysis, we use improvement plots to compare our configurations
with the default configuration of KaHyPar-CA as well as with other hypergraph partition-
ers. We calculate the improvement of our configuration compared to the corresponding
algorithm for each instance in percent. For each algorithm, improvements are sorted in
descending order.

4.3 Default Configuration

Since we use the default configuration θdefault in many definitions, it is important to know
what exactly the default configuration is. A proper selection of the default configuration
is important to ensure that the adaptive capping mechanism (see Section 2.3.3) and the
randomization measurement (see Section 3.3.2) work well.

1http://www.scc.kit.edu/dienste/bwUniCluster.php

35

http://www.scc.kit.edu/dienste/bwUniCluster.php

4 Experimental Evaluation

As a starting point for our default configuration, we use the default configuration of KaHyPar-
CA 2. We discovered that the community detection is the bottleneck for some instances and
consumes a relatively large amount of the overall running time (over 50% for some in-
stances). To reduce the computing time consumed by community detection, we reduce the
number of iterations of the Louvain algorithm used for community detection from 100 to
10. As shown in Section 4.3 and Table 4.3, this speeds up KaHyPar-CA by up to 60%,
while quality is unchanged. The speedup is especially high for small instances. Thus we
use this changed configuration as default configuration for all of our experiments. We call
this new default configuration it10.

Benchmark Min λ− 1 Avg λ− 1

Set base sig. Impr. [%] base sig. Impr. [%]

SPM 8904 - -0.17 9224 - 0.05

VLSI 9150 - 0.18 9412 - 0

Dual 2251 - -0.09 2339 - -0.03

Literal 28394 - 0.56 29534 - 0.48

Primal 11277 - -0.32 11606 - 0.03

* 8929 - 0.03 9240 - 0.11

Table 4.1: Comparison of the quality improvements of our new default configuration over the orig-
inal default configuration of KaHyPar-CA regarding the average connectivity and the
minimum connectivity metric. The column labeled "sig." denotes whether there are
significant changes.

4.4 Results

As mentioned in Section 4.2, we report our results for executing SMAC for each training
set (SPM, VLSI, SAT Primal/Literal/Dual and the full training set) and for each optimiza-
tion objective (running time, quality and Pareto) separately. As described previously in
Section 3.5, three configurations are benchmarked for every optimization objective and ev-
ery type. We benchmark these configurations not only on the instances of our benchmark
set with equal type but also on the full benchmark set. Finally in Section 4.4.4, for each op-
timization objective we compare the best performing configuration on the full benchmark
set with PaToH and hMetis.

2Which can be found here: https://github.com/SebastianSchlag/kahypar/blob/
master/config/km1_direct_kway_sea17.ini.

36

https://github.com/SebastianSchlag/kahypar/blob/master/config/km1_direct_kway_sea17.ini
https://github.com/SebastianSchlag/kahypar/blob/master/config/km1_direct_kway_sea17.ini

4.4 Results

Benchmark Geometric Running Time Arithmetic Running Time

Set base time [s] new time [s] speedup base time [s] new time [s]

SPM 22 18.5 1.19 158.6 150.7

VLSI 42.3 28.3 1.50 215.8 158

Dual 24.8 24.4 1.02 81.8 82.4

Primal 16.9 10.7 1.58 71.3 37.2

Literal 72.6 46.3 1.57 508 451.1

* 31.2 23.3 1.34 209.6 179.1

Table 4.2: Comparison of the speedups of our new default configuration over the original default
conifguration of KaHyPar-CA. The column labeled "sig." denotes whether there are
significant changes.

4.4.1 Running Time

As shown in Table 4.3, SMAC is able to achieve high speedups for all types except Dual.
Since the running time cost function ignores quality, the quality loss is up to around 10
percent on average, depending on the type.
Table 4.3 provides some more insight: The quality loss of the configuration optimized on
the Dual training set is relatively low compared to the other configurations, on the other
hand a slight speedup is observed. This suggests that the default configuration is already
optimized for running time on Dual.
Surprisingly the configuration found by optimizing KaHyPar-CA on all types simultane-
ously has an average quality loss of around 1.3% on SPM while the configuration optimized
for SPM has an average quality loss of over 9%. Nevertheless both configurations have a
roughly similar speedup on SPM. We assume that the configuration optimized for all types
takes in general more "stable" decisions in order to work on all instances than the configu-
rations optimized for one type only.
We consider the configuration which is optimized for the full training set as the best con-
figuration. It is true that the configurations optimized for Literal and Primal are slightly
faster but have worse quality. In Section 4.4.4 we compare this configuration with PaToH
and hMetis.

4.4.2 Quality

As shown in Table 4.4, the configurations optimized for a specific type achieve not only
significant quality improvements on their type but also on the full benchmark set. The
quality improvements are achieved with an average slowdown of a factor of up to 4. This
is due to the fact that the quality cost function ignores running time as long as the dynamic

37

4 Experimental Evaluation

Training
B

enchm
ark

M
in
λ
−

1
A

vg
λ
−

1
G

eom
etric

R
unning

Tim
e

A
rithm

etic
R

unning
Tim

e
Set

Set
base

sig.
Im

pr.
[%

]
base

sig.
Im

pr.
[%

]
base

[s]
new

[s]
speedup

base
[s]

new
[s]

SPM
SPM

8919
x

-8.43
9219

x
-9.72

18.5
9.3

1.99
150.7

90.0
*

configuration
w

as
unable

to
partition

7
SA

T
instances

V
L

SI
V

L
SI

9134
x

-0.73
9411

x
-2.41

28.3
15.4

1.83
158.0

122.6
*

8926
x

-1.58
9230

x
-3.21

23.3
15.7

1.49
179.1

215.5

Prim
al

Prim
al

11314
x

-5.21
11603

x
-10.4

10.7
5.4

1.97
37.2

18.9
*

8926
x

-4.11
9230

x
-7.14

23.3
14.3

1.63
179.1

129.3

L
iteral

L
iteral

28235
x

-5.03
29393

x
-7.68

46.3
26.7

1.74
451.1

316.1
*

8926
x

-3.87
9230

x
-6.63

23.3
14.2

1.64
179.1

132.1

D
ual

D
ual

2253
x

-1.51
2339

x
-2.43

24.4
19.6

1.24
82.4

77.0
*

8926
x

-1.27
9230

x
-2.45

23.3
16.1

1.45
179.1

172.9

*

SPM
8919

x
-1.11

9219
x

-1.30
18.5

10.5
1.77

150.7
91.1

V
L

SI
9134

x
-4.68

9411
x

-7.50
28.3

16
1.77

158.0
112.0

Prim
al

11314
x

-4.14
11603

x
-9.25

10.7
5.6

1.90
37.2

19.5
L

iteral
28235

x
-5.06

29393
x

-7.61
46.3

26.3
1.76

451.1
317.3

D
ual

2253
x

-3.85
2339

x
-5.19

24.4
23.3

1.05
82.4

95.2
*

8926
x

-3.69
9230

x
-5.98

23.3
14.5

1.61
179.1

129

Table
4.3:

C
om

parison
ofourrunning

tim
e

optim
ized

configurations
w

ith
ourdefaultconfiguration.T

he
firstcolum

n
denotes

the
training

setforw
hich

the
configuration

is
optim

ized.T
he

fulltraining
setis

denoted
by

’*’.T
he

second
colum

n
denotes

w
hich

instances
are

used
forbenchm

arking,a
’*’denotes

thatthe
fullbenchm

ark
setis

used.T
he

fourth
colum

n
labeled

"sig."
denotes

w
hether

the
quality

changes
are

significant.Positive
values

forquality
im

provem
ents

and
speedups

indicate
thatournew

configuration
is

betterthan
the

defaultconfiguration,negative
values

the
opposite.

38

4.4 Results

capping mechanism (see Section 3.6) does not come into effect, which caps the running
time loss to a factor of 5. The dynamic capping mechanism is probably the reason why
the configuration optimized for all types has a lower quality on the full benchmark set than
the Primal and Literal configurations on the full benchmark set: In fact the configurations
optimized for Primal or Literal are much slower on the full benchmark set than the config-
uration optimized for the full training set.
Note that since SMAC optimizes average cost values and not minimum cost values the
mean connectivity improvements are with one exception by far better than the minimum
connectivity improvements.
We consider the configuration optimized on the full training set as the best configuration.
We decide so even though we know that the configurations optimized for Literal and Primal
produce nearly 1% better partitions on average, but the slowdown is too high. A compari-
son with PaToH and hMetis is provided in Section 4.4.4.

4.4.3 Pareto

Our results for Pareto are shown in Table 4.5. We achieve significant quality improvements
for VLSI, SPM and Dual. The speedups for these three types are different: While we also
manage to achieve a speedup of around 30% for VLSI, there are no speedups for SPM and
10% slower partitioning times for Dual. The reason for this is probably that different types
have different optimization potentials.
However, the quality improvements for Literal are not significant and there is no speedup.
Only 2 out of 24 SMAC processes were able to find a configuration with a cost lower
than the cost of the default configuration on the training set. The best has a reported im-
provement of 0.81%. Since the reported improvement is low, it is not surprising that the
quality improvements are not significant. We gave SMAC another three days to optimize
KaHyPar-CA on Literal, but no new configurations were found except one with a reported
improvement of 0.03%. We do not know why SMAC has so much difficulty in optimizing
KaHyPar-CA on Literal. Since the Literal instances participate in benchmark sets since the
first version of KaHyPar, KaHyPar-R, we assume that KaHyPar-CA is already optimized
for Literal.
SMAC was unable to find any configurations for Primal. We gave SMAC another three
days to optimize KaHyPar-CA on Primal, but still no configurations were found. If we
consider the quality improvement of the quality optimized configurations as the maximum
possible quality improvement, then the possible quality improvement for Primal is, accord-
ing to Table 4.4, only around 0.5% on average. This relatively small quality improvement
is gained with a 3 times higher partitioning time. Since the possible quality improvement
is low and since quality improvements have a high impact on our Pareto cost function (see
Section 3.1.3), we assume that the default configuration is already Pareto optimized.
As described in Section 2.3.6, it is difficult to optimize heterogeneous instance sets. Al-
though SMAC had six days for optimizing KaHyPar-CA on the full training set, only a few

39

4 Experimental Evaluation

Training
B

enchm
ark

M
in
λ
−

1
A

vg
λ
−

1
G

eom
etric

R
unning

Tim
e

A
rithm

etic
R

unning
Tim

e
Set

Set
base

sig.
Im

pr.
[%

]
base

sig.
Im

pr.
[%

]
base

[s]
new

[s]
speedup

base
[s]

new
[s]

SPM
SPM

8919
x

1.180
9219

x
2.150

18.5
40.4

-2.183
150.7

228.2
*

8926
x

1.000
9230

x
1.480

23.3
42.9

-1.841
179.1

262.5

V
L

SI
V

L
SI

9134
x

1.100
9411

x
1.780

28.3
79.0

-2.791
158.0

182.4
*

8926
x

0.790
9230

x
1.180

23.3
62.9

-2.701
179.1

223.9

Prim
al

Prim
al

11314
x

0.870
11603

x
0.550

10.7
40.5

-3.780
37.2

132.4
*

8926
x

1.740
9230

x
2.160

23.3
77.8

-3.343
179.1

457.6

L
iteral

L
iteral

28235
x

1.300
29393

x
1.920

46.3
134.5

-2.905
451.1

1157.8
*

8926
x

1.640
9230

x
1.910

23.3
65.7

-2.823
179.1

495.3

D
ual

D
ual

2253
x

1.410
2339

x
2.360

24.4
36.7

-1.505
82.4

113.6
*

8926
x

0.890
9230

x
1.210

23.3
32.8

-1.410
179.1

220.2

*

SPM
8919

x
0.810

9219
x

1.470
18.5

36.7
-1.982

150.7
198.7

V
L

SI
9134

x
1.160

9411
x

1.670
28.3

54.2
-1.915

158.0
198.5

Prim
al

11314
-

0.480
11603

-
-0.520

10.7
19.1

-1.785
37.2

39.6
L

iteral
28235

-
1.090

29393
-

1.540
46.3

77.9
-1.681

451.1
660.6

D
ual

2253
x

0.810
2339

x
1.770

24.4
42.8

-1.756
82.4

122
*

8926
x

0.880
9230

x
1.240

23.3
42.5

-1.826
179.1

248.4

Table
4.4:

C
om

parison
of

our
quality

optim
ized

configurations
w

ith
our

defaultconfiguration.
T

he
firstcolum

n
denotes

the
training

set
for

w
hich

the
configuration

is
optim

ized.
T

he
fulltraining

setis
denoted

by
’*’.

T
he

second
colum

n
denotes

w
hich

instances
are

used
forbenchm

arking,a
’*’denotes

thatthe
fullbenchm

ark
setis

used.T
he

fourth
colum

n
labeled

"sig."
denotes

w
hether

the
quality

changes
are

significant.Positive
values

forquality
im

provem
ents

and
speedups

indicate
thatournew

configuration
is

betterthan
the

defaultconfiguration,negative
values

the
opposite.

40

4.4 Results

configurations with reported improvements of 0.1% (compared to the default configuration)
were found. However, despite the difficulties, we achieved significantly better partitioning
results than the default configuration on the whole benchmark set with roughly the same
partitioning time.

On the other hand, the configuration found for optimizing only Dual has also significantly
better partitioning results than the default configuration on the whole benchmark set with
an overall better partitioning time. We consider the configuration optimized for Dual only
as the overall best Pareto optimized configuration.

4.4.4 Comparison with PaToH and hMetis

In this section, we compare our best running time, quality and Pareto optimized configura-
tions with hMetis and PaToH. As shown by Table 4.6 all of our selected configurations are
faster than hMetis on average, even our quality optimized configuration. Our quality and
Pareto optimized configurations produce the overall best partitions according to Table 4.7
and Table 4.8.

However, Table 4.7 and Table 4.8 also show that partitioning results of hMetis are strongly
dependent on the types of instances. For example for Dual instances, hMetis-R produces
partitions with on average 25% worse quality than KaHyPar-CA. On the other hand, results
of hMetis-R for VLSI, SPM and Primal are comparable to KaHyPar-CA. Thus the geomet-
ric mean is not necessarily appropriate for measuring the performance of hMetis. Instead
we consider the improvement plots found in Figure 4.1 which provide more information3:

Our quality optimized configuration is able to outperform hMetis on 60% to 70% of the
instances (depending on whether the minimum or the average connectivity metric is used).
Furthermore our Pareto optimized configuration produces comparable results regarding the
average connectivity metric and is on 65% of the instances better than hMetis regarding the
minimum connectivity metric. Furthermore our Pareto configuration is around 2.5 times
faster than hMetis according to Table 4.6.

However, our quality, Pareto and running time optimized configurations are still slower
than PaToH by an order of magnitude. It is unlikely that further optimizations will change
this since the gap is too big. Furthermore the quality loss of our running time optimized
configuration is so high that PaToH could be used instead. Instead, it may be worth it
to use another Pareto cost function with a higher weighted running time (see our Pareto
configuration in Section 3.2.1) to obtain faster configurations while maintaining quality.

3Further improvement plots can be found in the appendix: Section A.6

41

4 Experimental Evaluation

Training
B

enchm
ark

M
in
λ
−

1
A

vg
λ
−

1
G

eom
etric

R
unning

Tim
e

A
rithm

etic
R

unning
Tim

e
Set

Set
base

sig.
Im

pr.
[%

]
base

sig.
Im

pr.
[%

]
base

[s]
new

[s]
speedup

base
[s]

new
[s]

SPM
SPM

8919
-

0.950
9219

x
1.720

18.5
16.6

1.117
150.7

152.0
*

8926
-

0.270
9230

-
0.170

23.3
20.0

1.165
179.1

186.7

V
L

SI
V

L
SI

9134
x

0.830
9411

x
0.920

28.3
21.1

1.343
158.0

125.7
*

configuration
caused

im
balanced

partitions
for14

SA
T

instances
Prim

al
no

configurations
found

L
iteral

L
iteral

28235
-

0.170
29393

-
0.470

46.3
42.8

1.083
451.1

526.3
*

8926
-

0.090
9230

-
0.010

23.3
19.9

1.172
179.1

199.8

D
ual

SPM
8919

-
0.380

9219
-

1.000
18.5

16.1
1.151

150.7
106.3

V
L

SI
9134

x
0.630

9411
x

0.220
28.3

23.2
1.218

158.0
126.8

Prim
al

11314
-

-0.140
11603

-
-1.000

10.7
8.3

1.288
37.2

21.7
L

iteral
28235

-
-0.350

29393
-

-0.580
46.3

38.2
1.212

451.1
424.2

D
ual

2253
x

1.280
2339

x
1.480

24.4
27.1

-1.111
82.4

97.1
*

8926
x

0.370
9230

x
0.280

23.3
20.4

1.141
179.1

157.6

*

SPM
8919

x
0.740

9219
x

1.360
18.5

19.2
-1.037

150.7
194.2

V
L

SI
9134

-
0.210

9411
-

0.410
28.3

25.8
1.098

158.0
135.2

Prim
al

11314
-

-0.150
11603

-
-1.700

10.7
8.1

1.321
37.2

21.8
L

iteral
28235

-
0.180

29393
-

-0.120
46.3

39.5
1.172

451.1
443.6

D
ual

2253
x

0.440
2339

-
0.720

24.4
28.3

-1.164
82.4

102.2
*

8926
x

0.310
9230

-
0.220

23.3
21.9

1.061
179.1

184.3

Table
4.5:

C
om

parison
ofourPareto

optim
ized

configurations
w

ith
ourdefaultconfiguration.T

he
firstcolum

n
denotes

the
training

setfor
w

hich
the

configuration
is

optim
ized.

T
he

fulltraining
setis

denoted
by

’*’.
T

he
second

colum
n

denotes
w

hich
instances

are
used

forbenchm
arking,a

’*’denotes
thatthe

fullbenchm
ark

setis
used.T

he
fourth

colum
n

labeled
"sig."

denotes
w

hetherthe
quality

changes
are

significant.
Positive

values
for

quality
im

provem
ents

and
speedups

indicate
thatour

new
configuration

is
betterthan

the
defaultconfiguration,negative

values
the

opposite.

42

4.4 Results

Algorithm/Configuration SPM VLSI Primal Literal Dual *

it10 18.5 28.3 10.7 46.3 24.4 23.3
KaHyPar-CA 22.0 42.3 16.9 72.6 24.8 31.2

hMetis-R 49.6 79.9 34.9 133.0 97.6 71.7
hMetis-K 47.7 55.3 23.7 109.3 58.2 53.6
PaToH-Q 4.0 5.0 3.7 10.4 4.9 5.2
PaToH-D 0.8 1.0 0.6 1.7 1.3 1.0
Runtime 10.5 16.0 5.6 26.3 23.3 14.5
Pareto 16.1 23.2 8.3 38.2 27.1 20.4
Quality 36.7 54.2 19.1 77.9 42.8 42.5

Table 4.6: Comparison of the average running times of different partitioners with our configura-
tions. We use the geometric mean to average across instances on our benchmark set.
The ’*’ refers to the full benchmark set.

Algorithm/Configuration SPM VLSI Primal Literal Dual *

it10 8919.5 9133.9 11314.0 28235.0 2252.9 8926.4
KaHyPar-CA 0.17 - -0.17 - 0.32 - -0.56 - 0.09 - -0.03 -

hMetis-R -4.87 - -0.69 x -0.22 - -4.12 x -26.63 - -8.01 x
hMetis-K -4.33 x -1.69 x -1.15 - -8.36 x -15.64 - -6.48 x
PaToH-Q -3.37 x -9.24 x -7.86 x -12.52 x -9.73 x -8.47 x
PaToH-D -4.05 x -10.48 x -7.42 x -13.07 x -11.32 x -9.23 x
Runtime -1.11 x -4.68 x -4.14 x -5.06 x -3.85 x -3.69 x
Pareto 0.38 - 0.63 x -0.14 - -0.35 - 1.28 x 0.37 x
Quality 0.81 x 1.16 x 0.48 - 1.09 - 0.81 x 0.88 x

Table 4.7: Comparison of the minimum connectivities of different partitioners with our configu-
rations. We use the geometric mean to average across instances on our benchmark set.
The ’*’ refers to the full benchmark set. The first row denotes the average minimum
connectivities of our default configuration. The other rows denote the quality change
in percent. Positive numbers indicate that the corresponding algorithm performs better
than our default configuration and negative numbers the opposite. An ’x’ denotes that
quality changes are significant, a ’-’ the opposite.

Algorithm/Configuration SPM VLSI Primal Literal Dual *

it10 9219.4 9411.3 11602.6 29393.1 9229.8
KaHyPar-CA -0.05 - -0.00 - -0.03 - -0.48 - 0.03 - -0.11 -

hMetis-R -2.90 - 0.55 - 0.36 - -3.06 x -25.50 - -6.77 -
hMetis-K -3.24 x -0.82 x -1.74 - -7.77 x -16.57 - -6.25 x
PaToH-Q -0.13 x -6.48 x -5.51 x -8.93 x -6.27 x -5.36 x
PaToH-D -4.68 x -12.32 x -10.62 x -13.87 x -12.40 x -10.67 x
Runtime -1.30 x -7.50 x -9.25 x -7.61 x -5.19 x -5.98 x
Pareto 1.00 - 0.22 x -1.00 - -0.58 - 1.48 x 0.28 x
Quality 1.47 x 1.67 x -0.52 - 1.54 - 1.77 x 1.24 x

Table 4.8: Comparison of the average connectivites, with the same structure as Table 4.7.

43

4 Experimental Evaluation

●

●

●●
●●
●●●

●●
●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●
●●●●●

●●●●●●●●●
●●●●●

●●●●
●●●●

●●
●

●●●●●●●●●●●●●●●●●

●●●●●●
●●●

●●●●●●
●●●●●

●●●●
●●●●●●●●●●●

●●●●●●
●●●●●●●●●

●●●●
●●●●●●●

●●●●●●●●
●●●●●

●●●●●●
●●●

●
●●●●

●●●●
●●●●●

●●●
●

●

●

●●
●●●

●●
●
●●
●●●●●●●

●●●●●
●●●●●●

●●●●●●
●●●

●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●
●●●●●●

●●●●
●●●●

●●●●
●●

●●●●●●●

●●
●●●●●●

●●●●●●
●●●●●●●

●●●●●●
●
●●●●●●●

●●●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●
●●●●●●

●●●●●●●●●
●●●

●●●●
●●
●
●●●

●●

●●
●●
●●●●

●
●
●

●
●●
●●●●●●●

●●

●

●

●●
●
●●●

●●●
●

●
●●
●●●●

●●●●●
●●●●

●●●●●●●●
●●
●●●●●●●●●●

●●●●●
●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●●●●●
●●●●●●

●●●●
●●●●

●●●●●●●
●●
●●●●●

●
●●●●

●●●●●●●●●●

●●
●
●●●●

●●●
●●●●●

●●●
●
●●●●●

●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●
●●●●●●

●●●●●●●●
●●●●●

●●●●●
●●●●●●●●

●●●●●●●●
●●●●●

●●●●●
●●●●●

●●●
●●●●

●●●

●●●●●
●
●●●

●●
●
●●●

●●
●
●
●
●●
●●●●●

●●

●●

●

●

●
●●

●
●
●●
●●●

●●●
●
●●
●●●●●●●

●●●●●
●●●

●●●●●●●
●●●●●

●●●●●●●●●●●
●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●
●●●●●

●●●●●●
●●●●

●●●
●●●●●

●
●●●●

●●

●●●●●●

●●
●●●

●
●●●

●●●●●●
●●●●●●

●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●
●●●●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●
●●●●●

●●
●●●●●

●
●
●
●●
●●
●
●●●

●●
●

●

●

●

●●
●
●●●●

●●●●●●
●●●●●●

●●●●
●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●
●●●●

●●●●●●●●●
●
●●●●●●

●●●
●●
●

●●●●●●●●●●●●●●●●

●●●
●●●●●

●●●●●
●●●●

●●●●●●●●●
●●●●●●●●

●●●
●●●●●●●●

●●●●●●
●●●●●●●●●●●

●●●●●
●●●

●●
●●●●●

●●●●●
●●●●

●●●●●●●
●●●●●

●
●●

●

●

●
●●
●

●●●
●●●●

●●
●●●●

●●●
●●
●●●

●●●●●
●●●●

●●●●●●●
●●●●

●●●●●
●●●●●●

●●●●
●●●●●●

●●●●●●
●●●●●●●●

●●●
●●●●

●●●
●●
●●
●●●

●

●●●●●●●●

●
●
●●●

●●
●●●●●●●●●

●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●●●●●●
●●
●
●●●

●●●
●
●
●●●

●●●●
●●
●●

infeasible solutions

−60
−40
−20
−10

−5
−1

0

1
5

10
20
40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t [

%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

all_runtime~min_km1~full_benchmark_set~(490 Instances)

●

●●

●●

●●
●
●
●●●●●●●

●●●●●●
●●●●

●●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●
●●●

●
●
●●●

●●

●●

●
●●●

●●●
●
●●●

●●●●●●
●●●●●●●●

●●●●
●●●●

●●●●●●
●●●●

●●●●●
●●●●●●●●

●●●
●●●

●
●●●

●

●

●

●

●●

●●●
●●
●
●●
●●●●

●●●
●●●●●●●

●●●●●●●
●●●

●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●

●●●●●●
●●●●

●●
●●
●
●

●

●●

●●●●
●●●●

●
●●●●●

●●●●●
●●●

●●
●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●●●
●●●●●●●●

●●●●
●●
●
●●●●

●●
●●●

●●
●●●

●●

●●●
●●●

●●●

●

●

●●
●
●●●●●●●●

●

●

●

●

●

●●
●
●●●●

●
●●●●

●●●●
●●
●●●●

●●●●●●●
●●●●

●●●
●●●●●●●●●

●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●

●●●●●
●●●●

●●●●
●●●

●
●
●

●

●●

●●
●
●
●●
●●●●●●●

●●●●
●●●●

●●●●●●●●●
●●●●●●●●

●●●
●●●●●

●●●●●●●
●●●●

●●●●
●●●●●●●●●

●●●●●●
●●●●●

●●●●
●●●●

●●●●
●●

●●
●●●●●

●
●●●●

●●●
●●●

●
●●
●●
●●●●●

●●

●●

●

●
●

●
●●
●●
●

●●●
●
●●●●

●●
●●●●●

●●●●●●●●
●●●●●●●●

●●●●
●●●●●●●●●●●●

●●●●
●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●

●●●●●●
●●●●

●●●●
●
●●●

●

●
●●
●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●
●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●

●●●●
●●●●●

●●●●●●●●
●●●●●●

●●●
●●
●●
●●●

●
●●
●●
●●●

●●
●

●

●

●
●

●

●●●
●●
●
●●●

●●●●●●●
●●●●

●●●●●
●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●

●●●●●
●●●●●

●●●●
●●
●
●
●●

●●
●●●●●

●●●●●●●
●●●

●●●
●●●●●●●●●●

●●●●●
●●●

●●●●●●
●●●●

●●●●●●
●●●●

●●●●●●
●●
●●
●●●

●

●

●
●
●

●
●
●●

●●●
●●●

●●
●●●

●●
●●●

●●●●●
●●
●●●●

●●●●●
●●
●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●

●●●●
●●●●●●

●●●●●
●●●●●

●●●●●●●●
●●●●●●

●●
●●
●●●

●
●
●

●●

●●●●
●●●

●●●
●●●●●●●●●

●●●●●●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●

●●●
●●●

●●●●
●●
●●●●

●
●●●●●

●
●

infeasible solutions

−60
−40
−20
−10

−5
−1

0

1
5

10
20
40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t [

%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

all_runtime~avg_km1~full_benchmark_set~(490 Instances)

●

●
●●

●
●●●

●●●●
●●●●●●

●●●●
●●●●

●●●●
●●●

●●
●●●●●●

●●●●
●●●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●
●●●●●

●●●

●●●●●●●●●●●●●●●

●
●●●

●●
●●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●
●●●●

●●●●●●●
●
●●●

●●●●●
●●●●

●

●

●

●
●
●●
●
●
●●●●

●
●
●●
●●●

●●●
●●●

●●●
●●●●

●●●
●●●●●

●●●●●
●●●●●

●●●●●●●●
●●●●●●

●●●●●●●
●●●●●●●●

●●●●●
●●●●●

●●
●●●●●●●

●●●●●●●●
●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●
●●●●●●●●●

●●●●●●●●
●●●●

●●
●

●●●●●●●●●●●●

●●
●●●

●●●●●●
●●●●

●●●●●
●●●●●●●

●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●

●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●

●●●●●
●●●●●

●●●●●●●●●
●●●●●

●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●

●●●●●
●●●●●●

●●●●●
●●●

●●●
●
●

●●
●
●●

●●
●●
●●●

●●
●

●

●
●●
●●●●●

●●●●

●●
●

●●
●

●●●●●
●

●
●

●●
●●
●●
●●
●●
●●
●●●●●

●
●●●●

●●
●●
●●●●

●●●●●●
●●●●●●

●●●●●●●●
●●●●●●●

●●●
●●●●

●●●
●●
●
●●●●●

●●
●●
●●

●●●●●●●●●●●●

●●
●
●●●

●●
●●●●

●●●
●●●●

●●●●●
●●●●

●●●●●
●●●●●

●●●●●●●
●●●●●

●●●●
●●●●●●●

●●●●●●●●●●●●
●●●●●●●

●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●

●●●●
●●●●●●●●

●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●●

●●●●
●●●●

●●●
●
●●
●●●

●●●
●●●

●

●●
●●●

●
●

●●

●●●
●●
●●●

●

●●

●

●

●

●●

●
●

●

●
●

●
●●●

●
●●
●●●●

●●
●●
●●
●●
●●●

●
●●●

●

●●●●●●

●●●
●●●

●●●●
●●
●●●●

●●
●●●●●●●●●

●●●●
●●●

●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●
●●●●●

●●●●●●●●●●●
●●●●●●

●●●●●●●
●●●

●●●●
●●●●

●●●

●●●
●●
●●●

●●
●

●

●

●●
●●
●

●●

●●●
●●●●

●●
●
●●●●●

●●
●●●●●●

●●●●●
●●●●●

●●●●
●●●●●●

●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●
●●●●●●

●●●●●●●●
●●●●●●●●

●●●●
●●●●

●●●●●
●●
●●
●

●●●●●●●●●●●●●●●●●●●●

●
●●●

●●●●
●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●●●●●
●●●●●

●●●
●●●●●●●

●●●●●●●●
●●●●●●

●●●●●●
●●●●

●●●
●●●●

●

●

●

●

●

●●
●
●●
●●

●●

●●
●●
●●

●●●●
●
●●
●

●●
●

●

●●●●●●●

●●
●
●
●
●●●

●●●●
●●●

●●●●●●
●●●●●●●

●●●
●●
●●●●●●●

●●●●●●●●
●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●

●●
●
●
●●●●

●
●●
●●
●●
●●●●

●●●

infeasible solutions

−60
−40

−20
−10

−5

−1

0

1

5
10
20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t [

%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

dual_pareto~min_km1~full_benchmark_set~(490 Instances)

●

●●
●

●●
●●●

●
●●
●●●●●●

●●●
●●●●●●●

●●●●
●●●●●●

●●●●●
●●●●●●●●

●●●●●●●
●●
●●●

●●●●●●●●●●
●●●

●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●
●●●●

●●●●●●●●●●
●●●

●●●●
●●●

●●

●●
●

●●
●

●●
●●●●

●●●●●●●
●●●●●●●

●●●●●●
●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●
●●●●●●●●●

●●●●
●●●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●

●●●●●●
●●

●

●

●

●

●●
●●
●●●●

●●●
●
●●●●

●●●●
●●●●●●

●●●●
●●
●●●●●●

●●●
●●●●●●

●●●●●
●●●●●

●●●●●●●
●●●●●●●●●●●●

●●●●●●●●
●●●●●

●●●●●●●
●●●●●●●●●●

●●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●●●●
●●●●●●●

●●●
●●●●●●●●

●●●●●●●
●●●●

●●●
●●●

●●●
●●
●●

●●●●

●●

●●●
●●
●●●●●

●●●
●●●

●●●●●●●
●●●●●●●●●●●●●

●●
●●●●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●●●●
●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●●●●

●●●●
●●●●●

●●●●●
●●●●

●●●●
●●●

●●
●●●

●●
●●
●●●

●●
●●●

●●●●

●

●

●
●●
●●●●●

●●●●

●
●
●
●
●●●

●●●
●●

●●●●●
●●
●●●●

●●●
●●●

●●●●
●
●
●●●●●

●●●●●●
●●●

●●●●
●●●●●

●●●●●●
●●●

●●●●●●
●●●

●●●●●
●●●●●●●

●●●●●
●●●●●

●●●
●●
●●●●●●

●●●●●
●
●●
●●
●●
●●●

●●●

●●
●●
●●
●●
●●●

●●●●
●●●●●●●

●●●●●●●●●●
●●●●

●●●●●●●●
●●●●●●●●●

●●●●
●●●●●●●●

●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●

●●●●●●
●●●●●●●●

●●●●●●
●●
●●●●●

●●●
●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●

●●●
●●●●●●

●●●
●
●
●
●●●

●
●●●●

●●●
●●
●●●●

●

●
●
●

●●
●●●●

●●
●

●●

●

●●
●
●
●●
●●

●●●●
●

●●
●●
●●●

●●
●
●●●●●

●●●●●
●●●●

●●●●●
●●●●●●●●●

●●●●●●
●●●●

●●●●
●●
●●●

●●●●●
●●●●●●●

●●●●●
●●●

●
●

●●
●

●
●●●

●
●●●●

●●●●
●●●

●●●
●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●
●●●●●●●

●●●●●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●

●●●●
●●●●●●●●●●

●●
●●
●
●●●●●

●
●●
●
●
●●
●●●●

●

●

●

●●●
●●
●●●

●●
●●●

●●
●●
●●●●

●●●●●●
●●●●

●●●●
●●●●●●●

●●●
●●
●●●●●●●

●●●●
●●●●●●●●

●●●●●●●●●●●
●●●●●●●

●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●
●●●●●

●●●●●●●●●
●●●●

●●●
●●●●●

●●●●●●●●●
●●●

●●●
●

●●

●●
●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●●
●●●

●●●●●●
●●●●●

●●
●
●

●
●

●

●

●
●

●
●
●●
●

●●

●
●
●●●

●●
●●
●
●●●●

●

●●●
●●●

●
●●
●

●●●

●

●●
●●●

●●●●
●
●●●●

●●●●
●●●●

●●●●●●●
●●●

●●●●●
●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●
●●●●

●●●●●

●●●
●
●●
●●●●

●●●●●
●●●

●
●

infeasible solutions

−60
−40

−20
−10

−5

−1

0

1

5
10
20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t [

%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

dual_pareto~avg_km1~full_benchmark_set~(490 Instances)

●

●

●●
●

●
●●●

●●●●
●●●●●

●
●●●

●●●●●
●●●●●●●

●●●●
●●●

●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●

●●●●
●●●●●●

●●●●
●●●●●●

●●

●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●
●●●●

●●●●●●●●●●
●●●●●●

●●
●●●●●●●

●●●
●●
●●
●●●

●

●●
●

●

●●
●●●●

●●
●●●

●●
●●●

●●●
●●●

●●●
●
●●●

●●●●
●●●●●

●●●●●●
●●●●

●●●●●●●●
●●●●

●●●●●●
●●●●●●

●●●●●
●●●●●

●●●●
●●●●●●●●

●●●●●●●●●●●
●●●●●

●●●●●●
●●●●●●●

●●●●●●
●●●●●●●●●

●●
●●●●

●●
●

●●●●●●●●●●●●●●●

●●●
●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●

●●●●●●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●●
●●●●●●●●

●●●●●●
●●●●●●●

●●●●●
●●●

●●●
●●

●●
●●●

●

●●
●●
●●●●

●
●

●

●
●●
●●●●●

●●●●

●

●●
●●
●

●●
●●
●●●

●
●

●●●
●●
●●
●
●●●●●●

●●●
●●●

●●●●●●
●
●●●●

●●●●●●●●
●●●●●

●●●●●●
●●
●●
●●●

●●●
●
●●●

●●●
●●
●
●

●●●●●●●●●●

●●
●●●

●●●
●●●●●●●

●●
●
●●●●●●

●●●●●
●●●●●●●

●●●●●●
●●●●●●●

●●●●●●
●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●

●●●●●●
●●●●●●●●●●●

●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●

●●●●●●
●●●●●●●

●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●

●●●●●●
●●●●●●●●●●

●●●●●
●●●

●●●●
●
●●
●●
●●●

●●●●●

●

●●●
●
●●

●●

●●●●
●●●●

●

●●

●

●

●

●●

●●
●
●

●

●
●
●●●

●●●
●●●

●
●●
●
●●●●

●

●●●●●●●

●●
●
●●●●

●●●
●●●

●●●●●●●●●
●●●●

●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●

●●●
●●●●●

●●●
●●●●●

●●
●●●●

●
●●
●●
●●●

●●
●

●

●

●●
●●
●●

●●
●●●●

●●
●●●●

●●●
●●
●●●●

●●●●
●●●●●●●●●

●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●●●●
●●●●●

●●
●
●

●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●●●●●●

●●●●●
●●●

●●●●●●
●●
●●●●

●
●●
●

●●

●

●

●
●
●●●

●
●

●●●
●●
●

●●
●
●●
●●
●

●●

●●●●●●●

●●
●
●●●

●●●
●●●●●

●●●
●●●●

●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●
●●●●●●●●

●●●
●
●
●●●●

●●
●●
●●●

●●●●●
●

infeasible solutions

−60
−40

−20
−10

−5

−1

0

1

5
10
20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t [

%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

all_quality~min_km1~full_benchmark_set~(490 Instances)

●
●
●

●●●
●

●●

●●
●
●
●●
●●●

●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●●●●

●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●
●●●●●

●●●●●
●●●●●●●

●●●●●
●●●●●●

●●●●●
●●●●●●●●●●

●●●●
●●
●●●●●●

●●

●
●
●●●●

●●●●●
●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●●●

●●●●
●●●●●●●●

●●●●
●●●●●●●

●●●●
●●●●●

●
●●

●
●

●
●

●

●

●
●

●●
●●●●●

●
●●●●

●●
●

●●●
●●
●●●

●●
●●●●●

●●●
●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●●●●
●●●●

●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●
●●●●●

●●●●●●
●●●●●●

●●●●●●●●●
●●●●●●●

●●●●●
●●●●●●●

●●●●●●
●●●●●

●●●●●●
●●●

●●●●●
●●●

●●●
●

●●●

●●●
●
●●
●
●●●●●●●●●●●●

●●●●●
●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●

●●●●●●●●●
●●●●●●

●●●●●●●●●●●●
●●●●●

●●●●●●●
●●●●●●

●●●●●●●●
●●●●●●

●●●●●●
●●●●●●●●

●●●●●
●●●●

●●●●
●
●●
●●
●●●●

●

●●
●●
●●●●●

●

●

●
●●
●●●●●●

●●●

●

●●

●●
●●●●

●
●
●●●●●

●
●
●●

●●●●●●
●●●●

●●
●●
●●●●●●

●●●●●●●
●●
●●●●●●●●

●●●●
●●●●●●●

●●●●●●●●●
●●●●●

●●●●●●
●●●●●●●

●
●●●

●●●
●●
●
●●●●

●●●
●

●

●●●●

●
●●●

●●●
●●
●●●●

●●●●
●●●●●●●

●●●●●●●●
●●●●●●

●●●●●
●●●●

●●●●●●●●●
●●●●●●●●●●

●●●●●●
●●●●●●●●●

●●●●●●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●●●●
●●●●●

●●
●●●●●

●●●●●●●●
●●●●●●●●●●●●

●●●●●●●
●●●

●●●●●●
●●●●●

●●●●●
●●●

●
●
●
●●●●●

●●●
●
●●●●●●

●

●●

●●
●●
●●●

●●

●●

●
●

●

●●●
●

●●
●●●

●
●

●●
●●●

●
●●
●●●●

●●●●●●●●
●●
●
●●●●●

●●●●
●●
●●
●
●●●

●●●●
●●●●●

●
●●●

●

●●

●●

●
●●
●
●●
●●
●●
●●●

●●●●●
●●●●●●●

●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●
●●●●

●●●●●●●
●●●●●

●●●●●●●●●
●●●●

●●●●
●●●

●●●
●●●

●●●
●

●

●

●
●●
●
●●

●
●●
●
●●●

●●
●●●●●●

●●●
●●
●●●●

●●●●●●●
●●●●●●

●●●●●●
●●
●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●

●●●●●●●●
●●●●●●●●

●●●●●
●●●●●●●●●

●●●●●●
●●●●

●●●●●
●●
●

●●

●●●
●●●

●●●
●●●●

●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●
●●●●

●●●
●●●●

●●●●●●
●●
●●●

●●●●

●

●
●

●

●

●

●
●

●●

●●
●

●●●
●

●

●●●●
●●

●●

●●
●●

●●●

●●
●●
●
●●●●

●●●●
●●●

●●
●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●

●●●●●●●
●●●●●

●●
●
●●●

●●
●
●●●

●●●
●●●●●

●
●

infeasible solutions

−60
−40

−20
−10

−5

−1

0

1

5
10
20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t [

%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

all_quality~avg_km1~full_benchmark_set~(490 Instances)

Figure 4.1: Performance plots for our overall best configurations against hMetis and PaToH. Top:
Our best running time optimized configuration is taken as base line. Mid: Our Pareto
optimized configuration is taken as base line. Bottom: Our quality optimized configu-
ration is taken as base line.

44

5 Discussion

5.1 Conclusion

We presented our approach to optimizing the hypergraph partitioner KaHyPar-CA [17]
using SMAC [18]. We defined cost functions for different optimization objectives (running
time, quality and Pareto). Instances chosen for training sets fulfill various requirements:

• We ensured that all phases of KaHyPar (coarsening, initial partitioning and refine-
ment) are optimized simultaneously by exclusion of instances for which initial par-
titioning consumes more than 40% of the total partitioning time and by exclusion of
instances with a refinement phase shorter than 15 seconds (both regarding the default
configuration).

• By considering the effects of randomization, we excluded all instances for which
the default configuration’s improvement potential is too low. In order to ensure that
improvements of challenger configurations compared to the incumbent configuration
are not obscured by randomization, we excluded all instances for which the default
configuration has a high variance.

• To save computing time, we excluded all instances for which the default config-
uration has a running time higher than six minutes. Additionally we selected the
instance set in such a way that the average running time of the default configuration
is not higher than 120 seconds.

• We used a Principal Component Analysis to determine whether our selected training
instances are representative.

Since we restricted most instances from participating in training sets, we considered the
possibility that our training sets are not representative. Thus we evaluated final configu-
rations found by SMAC on a benchmark set different from the training set. We selected
our benchmark set randomly, unlike the training sets: If the training sets are not repre-
sentative, a benchmark set selected using the same method as the training set will not be
representative either. We compare partitioning results of KaHyPar-CA with hMetis-R us-
ing significance tests to decide whether a randomly generated benchmark set is considered
representative or not.
We analyzed the parameters of SMAC and found that there is a minimum optimization
time which is not reduced by parallelization using pSMAC. To save computing time, we
introduced our dynamic capping mechanism to cap poorly performing evaluations of chal-
lenger configurations. The key was to set the cutoff time in relation to the running time of

45

5 Discussion

the default configuration for each instance instead of using a single static cutoff time for all
instances.
Despite the difficulties of optimizing for heterogeneous instance sets, we achieved signifi-
cant quality improvements of 0.88% on average and average speedups of 1.66, depending
on the optimization objective. Furthermore our quality and Pareto optimized configurations
produce better partitions than hMetis [23, 24] and are faster than hMetis.

5.2 Future Work

Although we optimized KaHyPar-CA for a considerable number of parameters, there are
still many unoptimized ones, especially the community detection parameters. Since we
achieved speedups of 34% on average by optimizing one community parameter manually,
we assume that there is still a lot of improvement potential. Furthermore new variants
of KaHyPar have been developed, namely KaHyPar-E [4] and KaHyPar-MF [16]. They
introduce new parameters which can also be optimized.
We optimized KaHyPar-CA only for ε = 0.03. By adding instances with different values
for ε, it is possible to optimize KaHyPar-CA for other values of ε.
Another open problem is the optimization of other hypergraph partitioners such as hMetis
[23] and PaToH [38]: The strength of PaToH is its speed. A running time optimization of
PaToH may lead to even faster configurations. On the other hand, the strength of hMetis
is quality but the partitioning times are high. A Pareto optimization of hMetis may reduce
the partitioning times of hMetis while maintaining quality.

46

A Appendix

A.1 Features of Hypergraphs

These are the used features of hypergraphs, in total 22.

• number of hypernodes

• number of nets

• number of pins

• average net size

• standard deviation of {|e| | e ∈ E}
• minimum net size

• 90th percentile of the size of {|e| | e ∈ E}
• first quantile of {|e| | e ∈ E}
• median of {|e| | e ∈ E}
• third quantile of {|e| | e ∈ E}
• maximum net size, max{|e| | e ∈ E}
• average hypernode size

• standard deviation of {|v| | v ∈ V }
• average hypernode degree

• standard deviation of {d(v) | v ∈ V }
• minimum hypernode degree

• 90th percentile of {d(v) | v ∈ V }
• maximum hypernode degree

• first quantile of {d(v) | v ∈ V }
• median of {d(v) | v ∈ V }
• third quantile of {d(v) | v ∈ V }
• density

47

A Appendix

A.2 New Benchmark Set

type hypergraph |V | |E| |Pins| avg d(v)
circuit_3 12127 12127 48137 3.96941
bibd_49_3 18424 1176 55272 47
ca-CondMat 23133 23133 186936 8.08092
astro-ph 16706 16046 242502 15.1129
us04 28016 163 297538 1825.39
lp_nug20 72600 15240 304800 20
shallow_water2 81920 81920 327680 4

SPM Franz11 30144 47104 329728 7
RFdevice 74104 74104 365580 4.93334
2D_54019_highK 54019 54019 996414 18.4456
Dubcova2 65025 65025 1030225 15.8435
li 22695 22695 1350309 59.4981
pdb1HYS 36417 36417 4344765 119.306
tmt_unsym 917825 917825 4584801 4.99529
Chebyshev4 68121 68121 5377761 78.9442
kkt_power 2063494 2063494 14612663 7.08151

VLSI

ibm03 23136 27401 93573 3.41495
ibm04 27507 31970 105859 3.3112
ibm05 29347 28446 126308 4.44027
ibm08 51309 50513 204890 4.05618
ibm09 53395 60902 222088 3.64665
ibm10 69429 75196 297567 3.95722
ibm12 71076 77240 317760 4.11393
ibm18 210613 201920 819697 4.05951
ibm17 185495 189581 860036 4.53651
superblue19 522482 511685 1713796 3.34932
superblue16 698339 697458 2280417 3.26961
superblue2 1010321 990899 3227167 3.25681
superblue6 1011662 1006629 3387521 3.36521
superblue12 1291931 1293436 4773600 3.69063

Primal

bob12s02 26294 77920 181812 2.33332
6s16 31483 91888 214404 2.33332
gss-19-s100 31435 94548 222806 2.35654
MD5-28-4 8281 62544 243722 3.89681
MD5-30-5 8905 68103 266105 3.90739
ctl_3791_556_unsat_pre 8806 90812 331537 3.65081
sat14_slp-synthesis-aes-top29 94998 302862 740744 2.44581
atco_enc2_opt1_05_21 56533 526872 2097393 3.98084
ACG-20-5p0 324716 1390931 3269132 2.35032
UTI-20-10p1 260342 1391257 3358569 2.41405
ACG-20-10p1 381708 1632906 3841867 2.35278
atco_enc3_opt1_04_50 1613160 6429816 16042866 2.49507
countbitssrl032 37213 55724 130020 2.33329
bob12s02 52588 77920 181812 2.33332
6s11-opt 66552 97312 227060 2.33332
MD5-30-4 17810 68106 266116 3.90738
aaai10-planning-ipc5-pathways-17-step21 107838 308235 690466 2.24006
slp-synthesis-aes-top29 189996 302862 740744 2.44581
atco_enc2_opt1_05_21 112732 526872 2097393 3.98084

Literal dated-10-17-u 459088 1070757 2471122 2.30783
9dlx_vliw_at_b_iq3 139578 968295 2788367 2.87967
q_query_3_L80_coli.sat 501134 1183233 3415429 2.88652
post-cbmc-aes-ee-r2-noholes 532170 1575975 4240496 2.69071
transport-transport-city-sequential-25nodes-1000size-
3degree-100mindistance-3trucks-10packages-
2008seed.030-NOTKNOWN

705500 1934720 4605620 2.38051

velev-vliw-uns-2.0-uq5 303338 2465731 7141423 2.89627
q_query_3_L150_coli.sat 973984 2456708 7147094 2.90922
AProVE07-01 28770 7502 76290 10.1693
gss-18-s100 94269 31364 222003 7.07827
6s9 100384 34317 234228 6.82542
MD5-30-4 68106 8905 266116 29.8839
6s130-opt 144361 49327 336841 6.82873
aaai10-planning-ipc5-pathways-17-step21 308235 53919 690466 12.8056

Dual hwmcc10-timeframe-expansion-k45-pdtvisns3p02-tseitin 488120 163622 1138944 6.96082
minandmaxor128 746444 249327 1741700 6.98561
manol-pipe-c10nid_i 750877 252516 1752045 6.93835
atco_enc1_opt1_05_21 561784 59517 2167217 36.4134
UCG-15-10p0 1005834 199304 2392967 12.0066
UR-15-10p1 1019200 199996 2430990 12.1552
UTI-20-10p1 1391257 260342 3358569 12.9006
post-cbmc-aes-ee-r2-noholes 1575975 266199 4240496 15.9298
hypergraph |V | |E| |Pins| avg d(v)

Table A.1: These 70 hypergraphs are used for benchmarking.

48

A.3 Training Sets

A.3 Training Sets

hypergraph k time [s] avg (λ− 1) ĉ1time[%] ĉ1λ−1[%] ĉ8time[%] ĉ8λ−1[%]

9dlx_vliw_at_b_iq3 4 106.3 84380.5 24.97 2.25 8.54 1.05
9dlx_vliw_at_b_iq3 8 160.6 144347.2 30.93 2.43 11.15 0.62
9dlx_vliw_at_b_iq3 16 195.0 192573.0 24.72 1.88 7.6 0.61
9dlx_vliw_at_b_iq3 32 211.3 232039.9 23.2 1.72 7.6 0.56
9dlx_vliw_at_b_iq3 64 224.0 284696.5 15.05 1.56 4.95 0.44
ACG-20-10p1 16 53.5 25884.1 1.04 1.42 0.78 0.45
ACG-20-10p1 32 63.2 34849.9 1.29 2.18 0.43 0.73
ACG-20-10p1 64 78.2 46004.6 1.41 2.62 0.79 0.82
ACG-20-5p0 32 54.6 31679.2 1.22 2.36 0.63 0.94
ACG-20-5p0 64 69.2 43307.0 1.41 2.53 1.25 0.87
ACG-20-5p0 128 91.5 63832.2 1.36 2.34 0.42 0.68
ACG-20-5p1 16 47.4 23836.4 1.8 1.58 1.06 0.51
ACG-20-5p1 32 55.4 31623.6 2.68 2.44 1.83 0.74
ACG-20-5p1 64 69.0 43341.6 1.2 2.42 0.73 0.77
ACG-20-5p1 128 92.4 64401.4 1.27 2.25 0.52 0.71
c10bi_i 32 42.9 48909.7 5.56 3.25 2.56 1.26
c10bi_i 64 56.8 68998.1 4.32 1.64 2.62 0.49
itox_vc1130 64 50.0 79468.8 8.4 2.06 3.26 0.74
manol-pipe-c10nid_i 32 80.1 67789.2 5.89 4.35 2.51 1.08
manol-pipe-c10nid_i 64 105.6 101249.0 4.8 2.03 2.27 0.65
manol-pipe-c10nid_i 128 139.3 146543.8 4.16 1.2 2.2 0.45
manol-pipe-c8nidw 32 91.5 69785.9 7.05 3.2 3.09 1.17
manol-pipe-c8nidw 64 112.0 104189.7 3.72 1.56 1.58 0.65
manol-pipe-c8nidw 128 149.1 156006.3 3.34 1.43 1.58 0.43
manol-pipe-g10bid_i 32 83.8 72075.5 4.6 3.73 2.09 0.89
manol-pipe-g10bid_i 64 113.0 108860.9 5.44 2.18 2.59 0.7
manol-pipe-g10bid_i 128 148.5 152571.4 4.65 1.4 2.13 0.45
minandmaxor128 8 41.4 41715.7 10.22 2.84 3.48 1.1
minandmaxor128 16 48.6 59677.9 5.78 1.7 2.53 0.63
minandmaxor128 32 61.4 74124.5 4.03 1.25 1.45 0.45
minandmaxor128 64 79.3 87225.8 3.42 1.4 1.53 0.49
minandmaxor128 128 102.5 106780.1 2.97 2.21 1.86 0.83
openstacks-. . . 3.025-NOTKNOWN 8 57.8 24311.7 65.69 3.76 22.18 1.25
openstacks-. . . 3.025-NOTKNOWN 32 121.3 82627.5 18.41 1.77 6.3 0.44
openstacks-. . . 3.025-NOTKNOWN 64 109.1 121969.5 6.9 1.33 2.65 0.55
openstacks-. . . 3.025-NOTKNOWN 128 119.9 145747.9 5.31 1.27 1.78 0.37
post-cbmc-aes-ee-r2-noholes 128 143.3 46756.4 2.01 3.96 0.86 1.09
slp-synthesis-aes-top29 32 48.2 45436.9 13.97 1.68 5.03 0.69
slp-synthesis-aes-top29 64 63.3 57081.0 8.48 1.51 3.47 0.53
UCG-20-5p0 16 45.9 27892.2 1.92 3.35 1.06 0.99
UR-20-5p0 16 47.8 32118.1 1.99 2.94 0.78 1.19
UR-20-5p0 32 57.1 40492.9 1.92 2.63 0.87 0.9
UR-20-5p0 64 73.8 55603.3 2.25 2.03 1.46 0.73
UTI-20-10p1 64 67.1 50078.6 1.88 2.15 1.48 0.56

Σ 44 instances ∅82.3 ∅7.52 ∅2.22 ∅3.02 ∅0.73

Table A.2: Our selected instances for the Literal training set. We report the average running times
of the default configuration as well as the average connectivities of the partitions found
by the default configuration. The randomization is determined using Algorithm 3 and is
denoted in percent by ĉ1 for Rmin = 1 and ĉ8 for Rmin = 8. This is done for running
time as cost function as well as for quality. We use the geometric mean to average
numbers for all values of this table.

49

A Appendix

●

●

●

●●●

●●●

●

●●●

●

●●

●

●
●●

●

●

●

●

●●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●●●●●●

●

●

●

●●

●

●

●●

●

●●

●●
●●●
●●

●

●

●

●●
●

●
●
●

●
●

−4

−2

0

2

4

6

−8 −4 0

PC1

P
C

2

●●
●

●●●●●● ●
●●●

●

●● ●

●●●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●
●
●

●

●●●●●●

●

●

●

●

●
●

●
●

●

●

●●●●●●●●●

●

●
● ●●

●

●

●●

●

●

−5.0

−2.5

0.0

2.5

5.0

−8 −4 0

PC1

P
C

3 ●

●

●
●●●

●●
●

●

●●●

●

●●

●

●
●●

●

●

●

●

●

●

●●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●●●●●●

●

●

●

●
●●

●

●

●

●

●●

●●●●●●●

●

●

●

●●

●

●

●
●

●●

−2

0

2

4

6

−8 −4 0

PC1

P
C

4

●

●

●

●●●

●●●

●

●●●
●

●●

●

●●●

●

●

●

●

●

●

●
●

● ●

●●●●

●

●●
●

●

●

●

●
●

●

●
●●●●

●

●

●

●

●
●

●

●●●●●●

●

●

●

●

●

●
●
●

●

●

●●
●●●●●●●

●

●

●

●●● ●●
●

●

●

−6

−4

−2

0

2

−8 −4 0

PC1

P
C

5

● ●
●

●●● ●●● ●
●●●

●

●●●

●●●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●
●

●
●

●●●●●●

●

●

●

●

●
●

●
●

●

●

●●●●●●●●●

●

●
●●●

●

●

●●

●

●

−5.0

−2.5

0.0

2.5

5.0

−4 −2 0 2 4 6

PC2

P
C

3 ●

●

●
●●●

●●
●

●

●●●

●

●●

●

●
●●

●

●

●

●

●

●

●●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●●●●●●

●

●

●

●
●●

●

●

●

●

●●

●●●●●●●

●

●

●

●●

●

●

●
●

●●

−2

0

2

4

6

−4 −2 0 2 4 6

PC2

P
C

4

●

●

●

●●●

●●●

●

●●●
●

●●

●

●●●

●

●

●

●

●

●

●
●

● ●

●●●●

●

●●
●

●

●

●

●
●

●

●
●●●●

●

●

●

●

●
●

●

●●●●●●

●

●

●

●

●

●
●

●
●

●

●●
●●●●●●●

●

●

●

●●●●●
●

●

●

−6

−4

−2

0

2

−4 −2 0 2 4 6

PC2

P
C

5 ●

●

●
●●●

●●
●

●

●●●

●

●●

●

●
●●

●

●

●

●

●

●

●●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●●●●●●

●

●

●

●
●●

●

●

●

●

●●

●●●●●●●

●

●

●

●●

●

●

●
●

● ●

−2

0

2

4

6

−5.0 −2.5 0.0 2.5 5.0

PC3

P
C

4

●

●

●

●●●

●●●

●

●●●
●

●●

●

●●●

●

●

●

●

●

●

●
●

● ●

●●●●

●

● ●
●

●

●

●

●
●

●

●
●●●●

●

●

●

●

●
●

●

●●●●●●

●

●

●

●

●

●
●

●
●

●

●●
●●●●●●●

●

●

●

●●● ●●
●

●

●

−6

−4

−2

0

2

−5.0 −2.5 0.0 2.5 5.0

PC3

P
C

5

●

●

●

●●●

●●●

●

●●●
●

●●

●

● ●●

●

●

●

●

●

●

●
●

● ●

●● ●●

●

● ●
●

●

●

●

●
●

●

●
●●●●

●

●

●

●

●
●

●

●●●●●●

●

●

●

●

●

●
●

●
●

●

●●
●●●●●●●

●

●

●

●●● ●●
●

●

●

−6

−4

−2

0

2

−2 0 2 4 6

PC4

P
C

5

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Principal component

C
um

ul
at

iv
e

P
ro

po
rt

io
n

of
 v

ar
ia

nc
e

ex
pl

ai
ne

d

Figure A.1: The PCA plots for our selected literal hypergraphs. Red dots represent selected hy-
pergraphs, all other literal hypergraphs are represented by blue dots.

50

A.3 Training Sets

hypergraph k time [s] avg (λ− 1) ĉ1time[%] ĉ1λ−1[%] ĉ8time[%] ĉ8λ−1[%]

as-caida 16 34.4 4063.9 13.99 2.83 3.61 1.01
as-caida 32 65.3 5808.4 8.3 1.58 3.71 0.59
as-caida 64 131.9 7646.2 6.98 1.2 2.93 0.48
as-caida 128 133.7 10050.5 5.59 1.01 2.45 0.31
av41092 16 52.9 7574.8 16.68 3.26 5.0 1.06
av41092 32 67.1 12688.3 18.54 2.59 4.77 0.82
av41092 64 71.6 18973.8 15.89 1.89 5.47 0.52
av41092 128 60.2 27036.6 7.65 1.37 2.67 0.49
bibd_49_3 16 26.0 5382.0 66.77 1.93 14.91 0.48
bibd_49_3 32 51.6 7098.2 62.44 2.09 19.05 0.67
bibd_49_3 64 29.5 9118.2 8.22 0.92 4.57 0.32
bloweya 2 27.1 4999.7 29.96 2.64 10.06 0.52
c-64 16 112.5 24448.0 54.59 4.09 16.39 1.25
c-64 32 173.2 31234.1 57.31 3.14 16.37 1.34
cnr-2000 32 98.2 14685.9 12.47 3.48 5.79 1.15
H2O 8 121.9 47852.3 9.21 1.74 4.06 0.71
H2O 16 195.6 75439.1 13.55 1.32 5.23 0.41
H2O 32 308.0 112899.7 11.04 1.33 4.3 0.5
H2O 64 412.1 164474.7 7.32 0.72 2.45 0.29
HTC_336_9129 8 53.1 9361.7 16.81 3.33 6.64 1.33
HTC_336_9129 16 77.2 12067.8 20.23 2.29 7.05 0.78
HTC_336_9129 32 110.6 14348.6 22.91 1.87 5.79 0.47
HTC_336_9129 64 158.4 16947.5 36.73 1.98 11.36 0.48
HTC_336_9129 128 184.5 21303.5 32.78 1.1 12.9 0.37
language 2 115.3 13552.5 20.44 1.48 6.59 0.36
language 4 338.5 28518.9 15.65 1.91 5.36 0.65
mono_500Hz 8 43.2 25262.0 5.72 2.59 2.33 0.83
mono_500Hz 16 71.9 38092.5 6.59 1.83 1.84 0.53
mono_500Hz 32 115.2 55839.1 8.88 1.1 3.13 0.4
mono_500Hz 64 171.6 79787.8 7.19 0.88 2.74 0.25
nd12k 2 69.7 10533.3 5.72 1.68 2.34 0.78
nd12k 4 105.1 22472.1 9.85 1.41 4.24 0.65
nd12k 8 143.4 38844.6 10.33 2.26 3.12 0.71
nd12k 16 182.5 62339.4 5.92 1.41 2.39 0.6
pds-90 32 101.3 17616.9 11.12 3.3 3.22 1.26
pds-90 64 137.7 24674.6 7.97 2.02 3.73 0.53
pds-90 128 170.8 32349.6 5.83 1.14 2.32 0.37
pre2 64 155.5 75732.5 3.02 1.88 1.39 0.67
pre2 128 222.0 102345.6 2.55 1.14 1.09 0.41
sparsine 4 91.9 36807.5 23.97 2.43 8.3 1.1
sparsine 8 166.0 57666.5 34.9 2.34 11.1 0.83
sparsine 16 322.0 86957.6 23.86 2.6 8.97 0.94
StocF-1465 2 74.9 4728.2 0.56 2.17 0.33 1.01
StocF-1465 4 81.2 10250.0 0.69 2.15 0.42 0.83
StocF-1465 8 107.9 45935.0 1.02 1.49 0.71 0.61
StocF-1465 16 146.2 92115.7 1.65 2.02 1.08 0.87
StocF-1465 32 197.4 146332.8 1.59 1.28 0.88 0.39
us04 16 25.3 1015.9 12.71 2.52 4.05 0.83
us04 32 44.6 1828.6 27.32 2.98 7.21 0.98

Σ 49 instances ∅101.4 ∅15.6 ∅1.99 ∅5.35 ∅0.69

Table A.3: Our selected instances for the SPM training set. We report the average running times of
the default configuration as well as the average connectivities of the partitions found by
the default configuration. The randomization is determined using Algorithm 3 and is
denoted in percent by ĉ1 for Rmin = 1 and ĉ8 for Rmin = 8. This is done for running
time as cost function as well as for quality. We use the geometric mean to average
numbers for all values of this table.

51

A Appendix

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

−2

0

2

4

−10 −5 0 5

PC1

P
C

2

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

−6

−3

0

3

6

−10 −5 0 5

PC1

P
C

3 ●

●
●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

● ●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

−7.5

−5.0

−2.5

0.0

2.5

5.0

−10 −5 0 5

PC1

P
C

4

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−2

0

2

−10 −5 0 5

PC1

P
C

5

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

−6

−3

0

3

6

−2 0 2 4

PC2

P
C

3 ●

●
●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

● ●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

−7.5

−5.0

−2.5

0.0

2.5

5.0

−2 0 2 4

PC2

P
C

4

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−2

0

2

−2 0 2 4

PC2

P
C

5 ●

●
●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

−7.5

−5.0

−2.5

0.0

2.5

5.0

−6 −3 0 3 6

PC3

P
C

4

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−2

0

2

−6 −3 0 3 6

PC3

P
C

5

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−2

0

2

−7.5 −5.0 −2.5 0.0 2.5 5.0

PC4

P
C

5

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Principal component

C
um

ul
at

iv
e

P
ro

po
rt

io
n

of
 v

ar
ia

nc
e

ex
pl

ai
ne

d

Figure A.2: The PCA plots for our selected SPM hypergraphs. Red dots represent selected hyper-
graphs, all other SPM hypergraphs are represented by blue dots.

52

A.3 Training Sets

hypergraph k time [s] avg (λ− 1) ĉ1time[%] ĉ1λ−1[%] ĉ8time[%] ĉ8λ−1[%]

superblue16 8 133.4 17504.3 10.11 4.63 2.78 1.52
superblue6 8 169.3 14037.3 8.36 3.06 3.11 1.42
ibm12 4 5.0 4181.0 6.4 5.33 2.48 1.26
ibm12 8 7.8 6651.3 7.51 2.6 4.81 1.18
ibm16 4 11.7 4462.7 3.35 2.77 1.06 1.1
ibm16 16 25.7 12192.8 3.92 3.45 2.75 0.86
ibm16 32 37.8 18490.4 4.62 2.02 3.69 0.77
ibm17 2 8.5 2391.8 2.4 3.53 0.84 1.71
ibm17 4 13.5 6172.7 3.09 4.46 1.58 1.62
ibm17 8 20.9 11044.6 2.88 4.53 1.25 1.42
ibm17 16 30.9 17008.2 4.58 3.48 2.74 1.28
ibm17 32 44.5 23385.2 5.02 2.07 2.74 0.51
ibm18 2 9.7 1972.6 4.75 2.74 1.7 1.83
ibm18 4 13.6 3280.4 3.38 2.78 2.56 1.22
ibm18 8 22.1 6269.2 7.07 2.9 3.61 0.7
ibm18 16 33.6 10221.9 7.42 2.23 3.1 0.77
ibm18 32 52.2 15648.6 10.01 1.68 4.6 0.49
ibm18 64 78.0 23610.5 9.6 1.18 5.33 0.36

Σ 18 instances ∅24.9 ∅5.77 ∅3.07 ∅2.81 ∅1.11

Table A.4: Our selected instances for the VLSI training set. We report the average running times
of the default configuration as well as the average connectivities of the partitions found
by the default configuration. The randomization is determined using Algorithm 3 and is
denoted in percent by ĉ1 for Rmin = 1 and ĉ8 for Rmin = 8. This is done for running
time as cost function as well as for quality. We use the geometric mean to average
numbers for all values of this table.

53

A Appendix

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

−2

0

2

−5.0 −2.5 0.0 2.5 5.0

PC1

P
C

2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

−2

−1

0

1

−5.0 −2.5 0.0 2.5 5.0

PC1

P
C

3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1

0

1

2

−5.0 −2.5 0.0 2.5 5.0

PC1

P
C

4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2

−1

0

1

2

−5.0 −2.5 0.0 2.5 5.0

PC1

P
C

5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

−2

−1

0

1

−2 0 2

PC2

P
C

3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1

0

1

2

−2 0 2

PC2

P
C

4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2

−1

0

1

2

−2 0 2

PC2

P
C

5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1

0

1

2

−2 −1 0 1

PC3

P
C

4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2

−1

0

1

2

−2 −1 0 1

PC3

P
C

5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2

−1

0

1

2

−1 0 1 2

PC4

P
C

5

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ●

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Principal component

C
um

ul
at

iv
e

P
ro

po
rt

io
n

of
 v

ar
ia

nc
e

ex
pl

ai
ne

d

Figure A.3: The PCA plots for our selected VLSI hypergraphs. Red dots represent selected hy-
pergraphs, all other VLSI hypergraphs are represented by blue dots. Four features are
identical for all hypergraphs and are therefore removed for this instance set.

54

A.3 Training Sets

hypergraph k time [s] avg (λ− 1) ĉ1time[%] ĉ1λ−1[%] ĉ8time[%] ĉ8λ−1[%]

sat14_ACG-20-5p1 8 48.3 5353.3 8.32 3.84 3.02 1.43
sat14_ACG-20-5p1 16 70.5 8169.1 4.69 1.2 1.58 0.37
sat14_ACG-20-5p1 32 91.5 10978.4 3.58 2.36 1.46 0.61
sat14_ACG-20-5p1 64 117.5 14901.2 2.6 2.22 1.17 0.73
sat14_ACG-20-5p1 128 155.8 21327.3 2.58 1.43 1.69 0.56
sat14_c10bi_i 4 32.8 1480.9 27.39 4.09 8.99 1.1
sat14_c10bi_i 8 45.1 2696.8 12.75 2.64 4.86 1.06
sat14_c10bi_i 16 74.1 4478.4 9.48 3.42 3.83 1.16
sat14_c10bi_i 32 126.9 6877.4 13.69 2.49 5.19 0.74
sat14_c10bi_i 64 184.6 9910.4 10.94 1.47 4.23 0.64
sat14_c10bi_i 128 221.0 14420.3 6.29 1.19 2.1 0.42
sat14_itox_vc1130 16 59.1 1534.0 8.26 3.74 2.89 1.16
sat14_itox_vc1130 32 89.7 2553.9 8.64 2.59 2.62 0.96
sat14_itox_vc1130 64 139.8 4200.1 8.52 1.58 2.75 0.64
sat14_itox_vc1130 128 206.1 6465.9 8.25 1.38 2.41 0.37
sat14_manol-pipe-c10nid_i 4 79.8 1854.9 51.15 2.17 14.23 1.01
sat14_manol-pipe-c10nid_i 8 91.9 3755.3 17.5 4.24 7.03 1.31
sat14_manol-pipe-c10nid_i 16 146.3 6757.9 18.58 2.87 6.5 1.0
sat14_manol-pipe-c10nid_i 32 225.2 10267.8 15.37 2.59 5.34 0.87
sat14_minandmaxor128 2 48.5 840.3 12.69 3.18 3.26 0.92
sat14_minandmaxor128 16 156.2 3969.6 7.91 4.5 2.97 1.32
sat14_minandmaxor128 32 207.7 5578.3 5.67 2.77 2.31 0.79
sat14_minandmaxor128 64 266.1 7717.8 5.49 1.98 1.59 0.8
sat14_minandmaxor128 128 330.8 10705.0 4.53 1.52 1.49 0.63
sat14_openstacks-p30_3.085-SAT 16 170.6 8846.2 4.16 3.66 1.55 0.92
sat14_SAT_dat.k70-24_1_rule_1 4 108.1 1774.2 2.53 1.27 1.04 0.68
sat14_SAT_dat.k70-24_1_rule_1 8 141.2 4171.4 2.3 1.23 0.74 0.43
sat14_SAT_dat.k70-24_1_rule_1 16 208.5 8827.8 2.36 3.8 1.11 0.93
sat14_SAT_dat.k80-24_1_rule_1 4 123.1 1753.0 2.14 0.66 0.67 0.37
sat14_SAT_dat.k80-24_1_rule_1 8 154.3 4107.4 2.3 0.97 0.57 0.42
sat14_SAT_dat.k80-24_1_rule_1 16 221.5 8841.5 2.29 1.26 0.7 0.48
sat14_slp-synthesis-aes-top29 4 33.7 2917.0 11.72 4.58 5.3 1.45
sat14_slp-synthesis-aes-top29 8 57.2 4741.6 11.25 3.53 4.15 1.24
sat14_slp-synthesis-aes-top29 16 93.4 7023.4 15.81 2.62 5.07 0.74
sat14_slp-synthesis-aes-top29 32 146.3 9074.1 14.63 2.34 4.46 0.83
sat14_slp-synthesis-aes-top29 64 252.2 11708.7 12.62 1.92 4.57 0.86
sat14_UCG-20-5p0 8 43.3 5051.6 6.5 3.54 1.98 1.3
sat14_UCG-20-5p0 16 66.7 8125.3 3.82 1.02 1.22 0.39
sat14_UCG-20-5p0 32 87.7 11373.4 3.1 1.68 1.45 0.51
sat14_UCG-20-5p0 64 116.1 16341.1 2.64 2.1 1.2 0.62
sat14_UCG-20-5p0 128 162.3 23359.4 2.03 1.25 1.13 0.4
sat14_UR-15-10p1 8 50.6 5571.2 3.86 2.43 1.71 0.98
sat14_UR-15-10p1 16 65.4 7555.8 3.1 1.45 1.29 0.55
sat14_UR-15-10p1 32 81.9 10300.3 3.08 2.24 1.03 0.94
sat14_UR-15-10p1 64 106.2 14985.4 2.61 2.25 1.13 0.57
sat14_UR-15-10p1 128 146.9 21350.8 2.1 0.99 1.58 0.37
sat14_UR-20-5p0 4 50.6 4711.0 8.11 4.81 3.25 1.48
sat14_UR-20-5p0 8 62.3 6332.4 5.24 2.24 1.65 1.05
sat14_UR-20-5p0 16 78.1 8345.5 3.79 1.53 1.12 0.57
sat14_UR-20-5p0 32 96.7 10949.7 3.54 2.38 1.46 0.8
sat14_UR-20-5p0 64 122.1 15363.3 2.57 2.75 1.08 0.99
sat14_UR-20-5p0 128 164.3 22431.7 1.93 1.25 1.07 0.37

Σ 52 instances ∅106.3 ∅7.75 ∅2.36 ∅2.79 ∅0.8

Table A.5: Our selected instances for the Dual training set. We report the average running times of
the default configuration as well as the average connectivities of the partitions found by
the default configuration. The randomization is determined using Algorithm 3 and is
denoted in percent by ĉ1 for Rmin = 1 and ĉ8 for Rmin = 8. This is done for running
time as cost function as well as for quality. We use the geometric mean to average
numbers for all values of this table.

55

A Appendix

●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●
●●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●●●●●●

●

●

●

●

●

●

●

●
●

●

●●

●●●●●●●

●

●

●

●●

●

●

●
●

●

●

−6

−4

−2

0

2

−8 −4 0

PC1

P
C

2

●

●

●

●

●

●

●●

●●

●●●

●

●●

●

●
●●

●

●

●

●

●

●
●●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●●●●●●

●

●

●

●

●●

●

●

●

●
●●
●●●
●●●●

●
●

●

●●

●

●

●
●

●
●

−6

−3

0

3

6

−8 −4 0

PC1

P
C

3

●

●

●

●

●

●

●●

●

●

●●●

●
●●

●

●
●●

●

●

●

●

●

●

●●

●
●

●●●●

●

●●

●
●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●●●●●●●

●

●

●

●
●

●
●

●

●

●

●●

●●
●●●
●●

●

●

●

●●

●

●

●
●

●

●

−2

0

2

4

−8 −4 0

PC1

P
C

4

●

●

●

●

●

●
●●●

●

●●●

●

●●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●●

●
●

●●

●●●●●●●

●

●

●

●●● ●●
●

●

●

−1

0

1

2

3

−8 −4 0

PC1

P
C

5

●

●

●

●

●

●

●●

●●

●●●

●

●●

●

●
●●

●

●

●

●

●

●
●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●●●●●●

●

●

●

●

● ●

●

●

●

●
●●

●●●
●●●●

●
●

●

●●

●

●

●
●

●
●

−6

−3

0

3

6

−6 −4 −2 0 2

PC2

P
C

3

●

●

●

●

●

●

●●

●

●

●●●

●
●●

●

●
●●

●

●

●

●

●

●

●●

●
●

●● ●●

●

● ●

●
●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

● ●●●●●●

●

●

●

●
●

●
●

●

●

●

●●

●●
●●●

●●

●

●

●

●●

●

●

●
●

●

●

−2

0

2

4

−6 −4 −2 0 2

PC2

P
C

4

●

●

●

●

●

●
●● ●

●

●●●

●

●●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●●

●
●

●●

●●●●●●●

●

●

●

●● ●● ●
●

●

●

−1

0

1

2

3

−6 −4 −2 0 2

PC2

P
C

5

●

●

●

●

●

●

●●

●

●

●●●

●
●●

●

●
●●

●

●

●

●

●

●

●●

●
●

●●●●

●

●●

●
●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●●●●●●●

●

●

●

●
●

●
●

●

●

●

●●

●●
●●●
●●

●

●

●

●●

●

●

●
●

●

●

−2

0

2

4

−6 −3 0 3 6

PC3

P
C

4

●

●

●

●

●

●
●●●

●

●●●

●

●●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

● ●

●
●

●●

●●●●●●●

●

●

●

●● ●● ●
●

●

●

−1

0

1

2

3

−6 −3 0 3 6

PC3

P
C

5

●

●

●

●

●

●
●●●

●

●●●

●

●●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

● ●

●
●

●●

●●●●●●●

●

●

●

●● ●● ●
●

●

●

−1

0

1

2

3

−2 0 2 4

PC4

P
C

5

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Principal component

C
um

ul
at

iv
e

P
ro

po
rt

io
n

of
 v

ar
ia

nc
e

ex
pl

ai
ne

d

Figure A.4: The PCA plots for our selected dual hypergraphs. Red dots represent selected hyper-
graphs, all other dual graphs are represented by blue dots.

56

A.3 Training Sets

hypergraph k time [s] avg (λ− 1) ĉ1time[%] ĉ1λ−1[%] ĉ8time[%] ĉ8λ−1[%]

sat14_10pipe_q0_k 8 205.8 468346.5 53.14 3.17 18.86 1.38
sat14_10pipe_q0_k 16 229.6 707716.5 16.02 1.48 4.88 0.48
sat14_9dlx_vliw_at_b_iq3 4 96.1 129364.5 33.34 3.39 9.35 1.33
sat14_9dlx_vliw_at_b_iq3 8 127.1 189082.3 37.42 2.1 9.72 0.61
sat14_9dlx_vliw_at_b_iq3 16 156.4 244050.6 20.04 2.42 5.67 0.53
sat14_9dlx_vliw_at_b_iq3 32 167.6 295464.6 15.09 1.54 5.23 0.64
sat14_ACG-20-10p1 32 47.9 40365.8 2.36 2.61 1.53 0.9
sat14_ACG-20-10p1 64 59.2 55457.6 2.32 3.05 1.17 0.89
sat14_ACG-20-10p1 128 76.5 82055.2 1.43 2.65 0.73 0.93
sat14_ACG-20-5p0 128 67.5 80409.0 2.08 2.41 1.37 0.68
sat14_manol-pipe-c10nidw 32 75.8 104923.7 5.02 2.41 2.3 0.82
sat14_manol-pipe-c10nidw 64 97.7 164003.0 4.52 2.03 2.24 0.62
sat14_manol-pipe-g10bid_i 32 44.0 70003.0 3.34 2.48 1.71 1.01
sat14_minandmaxor128 32 39.4 71757.4 5.38 1.06 2.02 0.29
sat14_minandmaxor128 64 48.1 87349.7 5.16 1.04 1.83 0.28
sat14_minandmaxor128 128 61.3 106363.6 3.06 1.24 1.26 0.51
sat14_openstacks-p30_3.085-SAT 16 75.2 74461.2 6.87 2.38 2.67 0.94
sat14_openstacks-p30_3.085-SAT 32 106.0 159307.0 4.01 1.41 1.72 0.51
sat14_openstacks-p30_3.085-SAT 64 161.7 317836.8 4.09 0.78 1.46 0.31
sat14_openstacks-p30_3.085-SAT 128 332.0 495191.7 5.67 1.14 1.9 0.39
sat14_openstacks-. . . 3.025-NOTKNOWN 32 59.4 131407.1 9.61 1.59 2.95 0.57
sat14_openstacks-. . . 3.025-NOTKNOWN 64 91.7 180360.9 8.84 0.82 3.63 0.28
sat14_openstacks-. . . 3.085-SAT 16 74.8 74453.3 6.09 2.51 2.18 1.1
sat14_openstacks-. . . 3.085-SAT 32 106.0 159213.9 4.19 1.42 1.91 0.49
sat14_openstacks-. . . 3.085-SAT 64 161.7 317718.7 4.83 0.76 1.75 0.34
sat14_q_query_3_L80_coli.sat 16 218.7 361910.7 13.59 3.41 3.16 0.86
sat14_q_query_3_L80_coli.sat 32 265.5 504127.3 19.13 1.15 5.73 0.42
sat14_SAT_dat.k75-24_1_rule_3 8 102.9 9101.2 1.12 2.94 0.45 1.2
sat14_SAT_dat.k75-24_1_rule_3 32 148.6 40806.2 2.62 1.88 0.84 0.53
sat14_SAT_dat.k75-24_1_rule_3 64 179.9 79026.7 2.68 2.15 1.26 0.82
sat14_SAT_dat.k80-24_1_rule_1 4 100.0 3519.7 0.91 0.81 0.4 0.53
sat14_SAT_dat.k85-24_1_rule_2 2 100.9 1167.5 1.01 0.31 0.48 0.26
sat14_SAT_dat.k90.debugged 16 142.4 19641.4 1.55 4.43 0.8 1.4
sat14_velev-vliw-uns-4.0-9 2 302.3 77051.0 37.7 2.2 11.76 0.74
sat14_velev-vliw-uns-4.0-9 4 261.1 299981.3 48.12 3.75 14.37 1.25
sat14_velev-vliw-uns-4.0-9 8 362.2 456443.7 51.65 2.31 15.92 0.76

Σ 36 instances ∅115.2 ∅11.44 ∅2.03 ∅3.94 ∅0.71

Table A.6: Our selected instances for the Primal training set. We report the average running times
of the default configuration as well as the average connectivities of the partitions found
by the default configuration. The randomization is determined using Algorithm 3 and is
denoted in percent by ĉ1 for Rmin = 1 and ĉ8 for Rmin = 8. This is done for running
time as cost function as well as for quality. We use the geometric mean to average
numbers for all values of this table.

57

A Appendix

●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●
●●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●●●●●●

●

●

●

●

●

●

●

●
●

●

●●

●●
●●●
●●

●

●

●

●●

●

●

●
●

●

●

−2

0

2

4

6

−8 −4 0

PC1

P
C

2

●

●

●

●

●

●

●●

●●

●●●

●

●●

●

●
●●

●

●

●

●

●

●
●●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●●●●●●

●

●

●

●

●●

●

●

●

●
●●
●●●●●●●

●
●

●

●●

●

●

●
●

●
●

−5.0

−2.5

0.0

2.5

5.0

−8 −4 0

PC1

P
C

3

●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●
●●

●

●

●

●

●

●

●●

●
●

●●●●

●

●●

●
●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●●●●●●●

●

●

●

●
●

●
●

●

●

●

●●

●●●●●●●

●

●

●

●●

●

●

●
●

●

●

−4

−2

0

2

−8 −4 0

PC1

P
C

4

●

●

●

●

●

●
●
●
●

●

●●●

●
●●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●●

●

●

●●

●●●●●●●

●

●

●

●●● ●●
●

●

●

−1

0

1

2

3

−8 −4 0

PC1

P
C

5

●

●

●

●

●

●

●●

● ●

●●●

●

●●

●

●
●●

●

●

●

●

●

●
●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●●●●●●

●

●

●

●

●●

●

●

●

●
●●

●●●●●●●

●
●

●

●●

●

●

●
●

●
●

−5.0

−2.5

0.0

2.5

5.0

−2 0 2 4 6

PC2

P
C

3

●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●
●●

●

●

●

●

●

●

●●

●
●

●●●●

●

●●

●
●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●●●●●●●

●

●

●

●
●

●
●

●

●

●

●●

●●●●●●●

●

●

●

●●

●

●

●
●

●

●

−4

−2

0

2

−2 0 2 4 6

PC2

P
C

4

●

●

●

●

●

●
●
●

●

●

●●●

●
●●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

● ●

●

●

●●

●●●●●●●

●

●

●

●●● ●●
●

●

●

−1

0

1

2

3

−2 0 2 4 6

PC2

P
C

5

●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●
●●

●

●

●

●

●

●

●●

●
●

●●●●

●

● ●

●
●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

● ●●●●●●

●

●

●

●
●

●
●

●

●

●

●●

●●●●●●●

●

●

●

●●

●

●

●
●

●

●

−4

−2

0

2

−5.0 −2.5 0.0 2.5 5.0

PC3

P
C

4

●

●

●

●

●

●
●

●
●

●

●●●

●
●●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●●

●

●

●●

●●●●●●●

●

●

●

●●● ●●
●

●

●

−1

0

1

2

3

−5.0 −2.5 0.0 2.5 5.0

PC3

P
C

5

●

●

●

●

●

●
●
●

●

●

●●●

●
●●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●●

●

●

●●

●●●●●●●

●

●

●

●●● ●●
●

●

●

−1

0

1

2

3

−4 −2 0 2

PC4

P
C

5

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Principal component

C
um

ul
at

iv
e

P
ro

po
rt

io
n

of
 v

ar
ia

nc
e

ex
pl

ai
ne

d

Figure A.5: The PCA plots for our selected primal hypergraphs. Red dots represent selected hy-
pergraphs, all other primal hypergraphs are represented by blue dots.

58

A.3 Training Sets

type hypergraph k time [s] avg (λ− 1) ĉ1time[%] ĉ1λ−1[%] ĉ8time[%] ĉ8λ−1[%]

Dual

ACG-20-5p1 8 48.3 5353.3 1.0832 1.0384 1.0302 1.0143
ACG-20-5p1 16 70.5 8169.1 1.0469 1.012 1.0158 1.0037
ACG-20-5p1 32 91.5 10978.4 1.0358 1.0236 1.0146 1.0061
ACG-20-5p1 64 117.5 14901.2 1.026 1.0222 1.0117 1.0073
ACG-20-5p1 128 155.8 21327.3 1.0258 1.0143 1.0169 1.0056
UR-20-5p0 4 50.6 4711.0 1.0811 1.0481 1.0325 1.0148
UR-20-5p0 8 62.3 6332.4 1.0524 1.0224 1.0165 1.0105
UR-20-5p0 16 78.1 8345.5 1.0379 1.0153 1.0112 1.0057
UR-20-5p0 32 96.7 10949.7 1.0354 1.0238 1.0146 1.008
UR-20-5p0 64 122.1 15363.3 1.0257 1.0275 1.0108 1.0099
itox_vc1130 16 59.1 1534.0 1.0826 1.0374 1.0289 1.0116
itox_vc1130 32 89.7 2553.9 1.0864 1.0259 1.0262 1.0096
itox_vc1130 64 139.8 4200.1 1.0852 1.0158 1.0275 1.0064
itox_vc1130 128 206.1 6465.9 1.0825 1.0138 1.0241 1.0037
ACG-20-5p1 8 48.3 5353.3 1.0832 1.0384 1.0302 1.0143
ACG-20-5p1 16 70.5 8169.1 1.0469 1.012 1.0158 1.0037
ACG-20-5p1 32 91.5 10978.4 1.0358 1.0236 1.0146 1.0061
ACG-20-5p1 64 117.5 14901.2 1.026 1.0222 1.0117 1.0073
ACG-20-5p1 128 155.8 21327.3 1.0258 1.0143 1.0169 1.0056
UCG-20-5p0 8 43.3 5051.6 1.065 1.0354 1.0198 1.013
UCG-20-5p0 16 66.7 8125.3 1.0382 1.0102 1.0122 1.0039
UCG-20-5p0 32 87.7 11373.4 1.031 1.0168 1.0145 1.0051
UCG-20-5p0 64 116.1 16341.1 1.0264 1.021 1.012 1.0062
UCG-20-5p0 128 162.3 23359.4 1.0203 1.0125 1.0113 1.004
SAT_dat.k70-24_1_rule_1 4 108.1 1774.2 1.0253 1.0127 1.0104 1.0068
SAT_dat.k70-24_1_rule_1 8 141.2 4171.4 1.023 1.0123 1.0074 1.0043
SAT_dat.k70-24_1_rule_1 16 208.5 8827.8 1.0236 1.038 1.0111 1.0093
SAT_dat.k80-24_1_rule_1 4 123.1 1753.0 1.0214 1.0066 1.0067 1.0037
SAT_dat.k80-24_1_rule_1 8 154.3 4107.4 1.023 1.0097 1.0057 1.0042
SAT_dat.k80-24_1_rule_1 16 221.5 8841.5 1.0229 1.0126 1.007 1.0048
9dlx_vliw_at_b_iq3 16 195.0 192573.0 1.2472 1.0188 1.076 1.0061
9dlx_vliw_at_b_iq3 4 106.3 84380.5 1.2497 1.0225 1.0854 1.0105
9dlx_vliw_at_b_iq3 8 160.6 144347.2 1.3093 1.0243 1.1115 1.0062
9dlx_vliw_at_b_iq3 32 211.3 232039.9 1.232 1.0172 1.076 1.0056
9dlx_vliw_at_b_iq3 64 224.0 284696.5 1.1505 1.0156 1.0495 1.0044
ACG-20-5p1 16 47.4 23836.4 1.018 1.0158 1.0106 1.0051
ACG-20-5p1 32 55.4 31623.6 1.0268 1.0244 1.0183 1.0074
ACG-20-5p1 64 69.0 43341.6 1.012 1.0242 1.0073 1.0077
ACG-20-5p1 128 92.4 64401.4 1.0127 1.0225 1.0052 1.0071
UCG-20-5p0 16 45.9 27892.2 1.0192 1.0335 1.0106 1.0099
openstacks-sequencedstrips-
nonadl-nonnegated-os-
sequencedstrips-p30_3.025-
NOTKNOWN

8 57.8 24311.7 1.6569 1.0376 1.2218 1.0125

Literal openstacks-sequencedstrips-
nonadl-nonnegated-os-
sequencedstrips-p30_3.025-
NOTKNOWN

32 121.3 82627.5 1.1841 1.0177 1.063 1.0044

openstacks-sequencedstrips-
nonadl-nonnegated-os-
sequencedstrips-p30_3.025-
NOTKNOWN

64 109.1 121969.5 1.069 1.0133 1.0265 1.0055

openstacks-sequencedstrips-
nonadl-nonnegated-os-
sequencedstrips-p30_3.025-
NOTKNOWN

128 119.9 145747.9 1.0531 1.0127 1.0178 1.0037

minandmaxor128 8 41.4 41715.7 1.1022 1.0284 1.0348 1.011
minandmaxor128 16 48.6 59677.9 1.0578 1.017 1.0253 1.0063
minandmaxor128 32 61.4 74124.5 1.0403 1.0125 1.0145 1.0045
minandmaxor128 64 79.3 87225.8 1.0342 1.014 1.0153 1.0049
minandmaxor128 128 102.5 106780.1 1.0297 1.0221 1.0186 1.0083
SAT_dat.k75-24_1_rule_3 8 102.9 9101.2 1.0112 1.0294 1.0045 1.012
SAT_dat.k75-24_1_rule_3 32 148.6 40806.2 1.0262 1.0188 1.0084 1.0053
SAT_dat.k75-24_1_rule_3 64 179.9 79026.7 1.0268 1.0215 1.0126 1.0082
9dlx_vliw_at_b_iq3 4 96.1 129364.5 1.3334 1.0339 1.0935 1.0133
9dlx_vliw_at_b_iq3 8 127.1 189082.3 1.3742 1.021 1.0972 1.0061
9dlx_vliw_at_b_iq3 16 156.4 244050.6 1.2004 1.0242 1.0567 1.0053
9dlx_vliw_at_b_iq3 32 167.6 295464.6 1.1509 1.0154 1.0523 1.0064
openstacks-p30_3.085-SAT 16 75.2 74461.2 1.0687 1.0238 1.0267 1.0094
openstacks-p30_3.085-SAT 32 106.0 159307.0 1.0401 1.0141 1.0172 1.0051
openstacks-p30_3.085-SAT 64 161.7 317836.8 1.0409 1.0078 1.0146 1.0031
ACG-20-10p1 64 59.2 55457.6 1.0232 1.0305 1.0117 1.0089

Primal minandmaxor128 32 39.4 71757.4 1.0538 1.0106 1.0202 1.0029
minandmaxor128 64 48.1 87349.7 1.0516 1.0104 1.0183 1.0028
minandmaxor128 128 61.3 106363.6 1.0306 1.0124 1.0126 1.0051
openstacks-sequencedstrips-
nonadl-nonnegated-os-
sequencedstrips-p30_3.025-
NOTKNOWN

32 59.4 131407.1 1.0961 1.0159 1.0295 1.0057

openstacks-sequencedstrips-
nonadl-nonnegated-os-
sequencedstrips-p30_3.025-
NOTKNOWN

64 91.7 180360.9 1.0884 1.0082 1.0363 1.0028

59

A Appendix

openstacks-sequencedstrips-
nonadl-nonnegated-os-
sequencedstrips-p30_3.085-SAT

16 74.8 74453.3 1.0609 1.0251 1.0218 1.011

Primal openstacks-sequencedstrips-
nonadl-nonnegated-os-
sequencedstrips-p30_3.085-SAT

32 106.0 159213.9 1.0419 1.0142 1.0191 1.0049

openstacks-sequencedstrips-
nonadl-nonnegated-os-
sequencedstrips-p30_3.085-SAT

64 161.7 317718.7 1.0483 1.0076 1.0175 1.0034

VLSI

ibm12 4 5.0 4181.0 1.064 1.0533 1.0248 1.0126
ibm12 8 7.8 6651.3 1.0751 1.026 1.0481 1.0118
ibm16 4 11.7 4462.7 1.0335 1.0277 1.0106 1.011
ibm16 16 25.7 12192.8 1.0392 1.0345 1.0275 1.0086
ibm16 32 37.8 18490.4 1.0462 1.0202 1.0369 1.0077
ibm17 2 8.5 2391.8 1.024 1.0353 1.0084 1.0171
ibm17 4 13.5 6172.7 1.0309 1.0446 1.0158 1.0162
ibm17 8 20.9 11044.6 1.0288 1.0453 1.0125 1.0142
ibm17 16 30.9 17008.2 1.0458 1.0348 1.0274 1.0128
ibm17 32 44.5 23385.2 1.0502 1.0207 1.0274 1.0051
ibm18 2 9.7 1972.6 1.0475 1.0274 1.017 1.0183
ibm18 4 13.6 3280.4 1.0338 1.0278 1.0256 1.0122
ibm18 8 22.1 6269.2 1.0707 1.029 1.0361 1.007
ibm18 16 33.6 10221.9 1.0742 1.0223 1.031 1.0077
ibm18 32 52.2 15648.6 1.1001 1.0168 1.046 1.0049
ibm18 64 78.0 23610.5 1.096 1.0118 1.0533 1.0036
superblue6 8 169.3 14037.3 1.0836 1.0306 1.0311 1.0142
superblue16 8 133.4 17504.3 1.1011 1.0463 1.0278 1.0152

SPM

HTC_336_9129 8 53.1 9361.7 1.1681 1.0333 1.0664 1.0133
HTC_336_9129 16 77.2 12067.8 1.2023 1.0229 1.0705 1.0078
HTC_336_9129 32 110.6 14348.6 1.2291 1.0187 1.0579 1.0047
HTC_336_9129 64 158.4 16947.5 1.3673 1.0198 1.1136 1.0048
HTC_336_9129 128 184.5 21303.5 1.3278 1.011 1.129 1.0037
StocF-1465 2 74.9 4728.2 1.0056 1.0217 1.0033 1.0101
StocF-1465 4 81.2 10250.0 1.0069 1.0215 1.0042 1.0083
StocF-1465 8 107.9 45935.0 1.0102 1.0149 1.0071 1.0061
StocF-1465 16 146.2 92115.7 1.0165 1.0202 1.0108 1.0087
StocF-1465 32 197.4 146332.8 1.0159 1.0128 1.0088 1.0039
av41092 16 52.9 7574.8 1.1668 1.0326 1.05 1.0106
av41092 32 67.1 12688.3 1.1854 1.0259 1.0477 1.0082
av41092 64 71.6 18973.8 1.1589 1.0189 1.0547 1.0052
av41092 128 60.2 27036.6 1.0765 1.0137 1.0267 1.0049
mono_500Hz 8 43.2 25262.0 1.0572 1.0259 1.0233 1.0083
mono_500Hz 16 71.9 38092.5 1.0659 1.0183 1.0184 1.0053
mono_500Hz 32 115.2 55839.1 1.0888 1.011 1.0313 1.004
mono_500Hz 64 171.6 79787.8 1.0719 1.0088 1.0274 1.0025
language 2 115.3 13552.5 1.2044 1.0148 1.0659 1.0036
pre2 64 155.5 75732.5 1.0302 1.0188 1.0139 1.0067
pre2 128 222.0 102345.6 1.0255 1.0114 1.0109 1.0041

Σ 107 instances ∅77 ∅1.0814 ∅1.0217 ∅1.0304 ∅1.0075

Table A.7: Our selected instances for the full training set. We report the average running times of
the default configuration as well as the average connectivities of the partitions found by
the default configuration. The randomization is determined using Algorithm 3 and is
denoted in percent by ĉ1 for Rmin = 1 and ĉ8 for Rmin = 8. This is done for running
time as cost function as well as for quality. We use the geometric mean to average
numbers for all values of this table.

60

A.3 Training Sets

●

●
●

●

●

●

●●

● ●

●

●
●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●●
●

●

●
●
●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●●

●
● ●●

●

●●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

−8

−4

0

4

−15 −10 −5 0 5

PC1

P
C

2

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

−4

−2

0

2

4

6

−15 −10 −5 0 5

PC1

P
C

3

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

●

●
●

●●
●

●
●

●
●

●
●

●

●
●

●●
●

●●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●●
●

●

● ●●●

●

●

● ●

●
●

●

●

● ●

●

● ●

●●
●

●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

● ●
●

●
●

●

● ●●

● ●●

●

●

●

●

●
●

● ●●● ●●● ●●● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●●
●

●●
●

●
●

●
●

●
●

●●
●

●

●

●

●
● ●

●

● ●
●

● ●
●

●

●

●

●

●

●
● ●●

● ●●

●
●●

● ●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

● ●●

● ●●

● ●●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4

−2

0

2

4

−15 −10 −5 0 5

PC1

P
C

4

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

● ●● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

●

●●

●
●

●

●
●

●

●
●

●●

●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2

0

2

4

−15 −10 −5 0 5

PC1

P
C

5

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

−4

−2

0

2

4

6

−8 −4 0 4

PC2

P
C

3

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

●

●
●

● ●
●

●
●

●
●

●
●

●

●
●

● ●
●

● ●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

● ●
●

●

●●● ●

●

●

●●

●
●

●

●

●●

●

●●

● ●
●

●

●
●

●

●
●

●

●
●

●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●
●

●
●

●

●●●

●●●

●

●

●

●

●
●

●●● ●●● ●●● ●●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

● ●
●

● ●
●

●
●

●
●

●
●

● ●
●

●

●

●

●
●●

●

●●
●

●●
●

●

●

●

●

●

●
●●●

●●●

●
●●

●●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●●●

●●●

●●●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4

−2

0

2

4

−8 −4 0 4

PC2

P
C

4

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●●

●
●

●

●
●

●

●
●

● ●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2

0

2

4

−8 −4 0 4

PC2

P
C

5

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

●

●
●

● ●
●

●
●

●
●

●
●

●

●
●

● ●
●

● ●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

● ●
●

●

●●● ●

●

●

●●

●
●

●

●

●●

●

●●

● ●
●

●

●
●

●

●
●

●

●
●

●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●
●

●
●

●

●●●

●●●

●

●

●

●

●
●

●●● ●●● ●●● ●●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

● ●
●

● ●
●

●
●

●
●

●
●

● ●
●

●

●

●

●
●●

●

●●
●

●●
●

●

●

●

●

●

●
●●●

●●●

●
●●

●●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●●●

●●●

●●●

●
●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−4

−2

0

2

4

−4 −2 0 2 4 6

PC3

P
C

4

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●● ●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

●●

●
●

●

●
●

●

●
●

● ●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2

0

2

4

−4 −2 0 2 4 6

PC3

P
C

5

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●● ●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●

● ●

●
●

●

●
●

●

●
●

● ●

● ●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2

0

2

4

−4 −2 0 2 4

PC4

P
C

5

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Principal component

C
um

ul
at

iv
e

P
ro

po
rt

io
n

of
 v

ar
ia

nc
e

ex
pl

ai
ne

d

Figure A.6: The PCA plots for our selected hypergraphs for the whole instance set. Red dots
represent selected hypergraphs, all other hypergraphs are represented by blue dots.

61

A Appendix

A.4 Configurations

Parameter SPM VLSI Primal Literal Dual *
c-type heavy lazy heavy lazy heavy lazy heavy lazy ml style heavy lazy
i-c-type ml style ml style ml style ml style ml style heavy lazy
c-heavy_node no penalty penalty penalty penalty no penalty penalty
i-c-heavy_node no penalty penalty penalty penalty penalty no penalty
c-tie-breaking random random random random unmatched random
i-c-tie-breaking random random random random unmatched random
c-s 1.00 6.25 1.00 1.00 4.25 1.00
i-c-s 1.00 2.75 1.00 1.25 1.00 1.00
c-t 340 165 350 320 350 340
i-c-t 200 25 200 200 200 200
i-runs 1 1 1 1 2 2
i-r-fm-stop-policy adaptive adaptive adaptive adaptive simple adaptive
i-r-fm-stop-value 1.01 1.10 1.33 1.27 30 1.00
r-fm-stop-alpha 1.00 1.50 2.31 3.35 1.02 1.26
louvain-iterations 10 10 10 10 10 10

Parameter SPM VLSI Primal Literal Dual *

Table A.8: Our running time optimized configurations.

Parameter SPM VLSI Primal Literal Dual *
c-type heavy lazy heavy lazy ml style heavy lazy heavy lazy
i-c-type heavy lazy heavy lazy heavy lazy ml style ml style
c-heavy_node penalty penalty no penalty penalty penalty
i-c-heavy_node penalty penalty penalty penalty penalty
c-tie-breaking random random unmatched random random
i-c-tie-breaking unmatched random no unmatched unmatched random
c-s 2.75 7.00 configuration 1.25 3.00 1.00
i-c-s 3.5 2.50 found 1.50 1.00 1.25
c-t 205 195 245 330 105
i-c-t 165 45 110 195 90
i-runs 24 19 19 12 10
i-r-fm-stop-policy adaptive simple adaptive simple simple
i-r-fm-stop-value 1.51 30 2.43 50 100
r-fm-stop-alpha 4.47 1.21 2.14 1.59 1.28
louvain-iterations 10 10 10 10 10 10

Parameter SPM VLSI Primal Literal Dual *

Table A.9: Our Pareto optimized configurations.

62

A.4 Configurations

Parameter SPM VLSI Primal Literal Dual *
c-type heavy lazy heavy lazy ml style ml style heavy lazy heavy lazy
i-c-type heavy lazy heavy lazy heavy lazy heavy lazy heavy lazy ml style
c-heavy_node penalty penalty no penalty no penalty penalty penalty
i-c-heavy_node penalty no penalty no penalty no penalty no penalty no penalty
c-tie-breaking random random unmatched unmatched random random
i-c-tie-breaking random random random random unmatched unmatched
c-s 4.50 4.50 2.50 3.25 4.25 7.00
i-c-s 6.25 1.00 1.00 1.75 2.25 2.00
c-t 200 330 255 245 175 235
i-c-t 195 185 145 120 110 140
i-runs 62 63 71 52 26 37
i-r-fm-stop-policy simple simple simple simple simple simple
i-r-fm-stop-value 160 500 300 440 230 280
r-fm-stop-alpha 2.43 1.04 3.94 4.90 2.00 2.44
louvain-iterations 10 10 10 10 10 10

Parameter SPM VLSI Primal Literal Dual *

Table A.10: Our quality optimized configurations.

63

A Appendix

A.5 Significance Tests

Optimization Training Benchmark min (λ− 1) avg (λ− 1)

Objective Set Set Z p Z p

Pareto

SPM
SPM -2.54 0.0111 -3.15 0.00161

* 0.51 0.607 1.44 0.15

VLSI
VLSI -3.26 0.00111 -4.12 3.77e-05

* -0.88 0.378 -0.62 0.538

Literal
Literal -0.10 0.924 0.10 0.922

* -1.51 0.132 0.41 0.679

Dual

SPM -0.80 0.424 -1.47 0.14
VLSI -3.05 0.00232 -3.37 0.000742
Primal -0.67 0.501 0.88 0.378
Literal 0.29 0.774 0.83 0.406
Dual -3.85 0.000116 -4.28 1.91e-05

* -3.08 0.00209 -2.63 0.00853

*

SPM -3.53 0.000419 -3.11 0.00189
VLSI -1.78 0.0755 -2.53 0.0113
Primal 0.53 0.597 2.29 0.0223
Literal 0.97 0.332 1.21 0.225
Dual -2.65 0.00794 -2.56 0.0104

* -2.61 0.00915 -1.87 0.0618

Quality

SPM
SPM -3.95 7.76e-05 -5.40 6.62e-08

* -7.21 5.46e-13 -8.38 5.15e-17

VLSI
VLSI -5.51 3.62e-08 -7.06 1.66e-12

* -4.96 6.94e-07 -6.71 1.96e-11

Primal
Primal -4.52 6.18e-06 -4.28 1.88e-05

* -11.54 7.83e-31 -14.97 1.2e-50

Literal
Literal -3.07 0.00217 -5.57 2.57e-08

* -8.61 7.17e-18 -12.10 9.94e-34

Dual
Dual -4.58 4.71e-06 -6.23 4.73e-10

* -6.11 9.96e-10 -7.38 1.63e-13

*

SPM -3.79 0.000153 -4.57 4.92e-06
VLSI -5.25 1.54e-07 -6.61 3.83e-11
Primal -0.79 0.427 0.39 0.698
Literal -2.03 0.0425 -1.79 0.0727
Dual -3.56 0.000375 -5.06 4.23e-07

* -6.65 2.98e-11 -7.48 7.22e-14

Running Time

SPM
SPM 6.66 2.76e-11 6.89 5.39e-12

* 17.11 1.25e-65 17.83 3.91e-71

VLSI
VLSI 4.36 1.28e-05 7.21 5.77e-13

* 8.40 4.58e-17 12.59 2.5e-36

Literal
Literal 6.83 8.26e-12 7.31 2.77e-13

* 13.62 2.99e-42 16.15 1.2e-58

Primal
Primal 6.39 1.7e-10 7.52 5.61e-14

* 14.07 5.88e-45 16.11 2.01e-58

Dual
Dual 4.12 3.81e-05 5.90 3.67e-09

* 8.76 2.01e-18 12.95 2.49e-38

*

SPM 3.19 0.00142 3.87 0.000111
VLSI 8.14 4.02e-16 8.58 9.14e-18
Primal 5.47 4.39e-08 7.27 3.67e-13
Literal 6.68 2.42e-11 7.07 1.58e-12
Dual 4.92 8.79e-07 6.56 5.22e-11

* 13.14 1.9e-39 15.31 6.63e-53

Table A.11: Results of Wilcoxon matched pairs signed rank test comparing our default configura-
tion with benchmarked configurations. At a confidence level of 99%, a |Z| > 2.58 is
considered as significant. A negative Z-score indicates that the corresponding config-
uration is better than the default configuration. The full benchmark set as well as the
full training set are denoted by ’*’.

64

A.5 Significance Tests

Benchmark Algorithm/ min (λ− 1) avg (λ− 1)

Set Configuration Z p Z p

SPM

runtime 3.19 0.00142 3.87 0.000111
Pareto -0.80 0.424 -1.47 0.14
quality -3.79 0.000153 -4.57 4.92e-06

KaHyPar-CA -0.38 0.704 -0.12 0.908
hMetis-R 1.77 0.0763 0.26 0.795
hMetis-K 4.28 1.85e-05 3.33 0.000873
PaToH-Q 5.79 6.9e-09 3.07 0.00214
PaToH-D 5.96 2.45e-09 6.06 1.36e-09

VLSI

runtime 8.14 4.02e-16 8.58 9.14e-18
Pareto -3.05 0.00232 -3.37 0.000742
quality -5.25 1.54e-07 -6.61 3.83e-11

KaHyPar-CA 1.44 0.149 0.15 0.882
hMetis-R 3.13 0.00173 -0.84 0.4
hMetis-K 5.24 1.64e-07 3.71 0.00021
PaToH-Q 8.58 9.42e-18 8.14 4.02e-16
PaToH-D 8.51 1.69e-17 8.59 8.59e-18

Primal

runtime 5.47 4.39e-08 7.27 3.67e-13
Pareto -0.67 0.501 0.88 0.378
quality -0.79 0.427 0.39 0.698

KaHyPar-CA -1.46 0.143 -0.25 0.806
hMetis-R 1.42 0.157 -0.48 0.632
hMetis-K 1.80 0.0716 1.06 0.287
PaToH-Q 6.91 4.76e-12 6.13 9.04e-10
PaToH-D 7.05 1.8e-12 7.29 3.22e-13

Literal

runtime 6.68 2.42e-11 7.07 1.58e-12
Pareto 0.29 0.774 0.83 0.406
quality -2.03 0.0425 -1.79 0.0727

KaHyPar-CA 1.14 0.254 0.78 0.436
hMetis-R 3.86 0.000114 2.83 0.00461
hMetis-K 5.70 1.22e-08 4.93 8.04e-07
PaToH-Q 8.10 5.31e-16 6.41 1.5e-10
PaToH-D 8.02 1.1e-15 8.10 5.55e-16

Dual

runtime 4.92 8.79e-07 6.56 5.22e-11
Pareto -3.85 0.000116 -4.28 1.91e-05
quality -3.56 0.000375 -5.06 4.23e-07

KaHyPar-CA -0.82 0.414 -0.04 0.966
hMetis-R 1.77 0.0764 1.12 0.262
hMetis-K 0.55 0.584 0.38 0.703
PaToH-Q 7.57 3.76e-14 6.56 5.35e-11
PaToH-D 8.08 6.51e-16 8.23 1.87e-16

*

runtime 13.14 1.9e-39 15.31 6.63e-53
Pareto -3.08 0.00209 -2.63 0.00853
quality -6.65 2.98e-11 -7.48 7.22e-14

KaHyPar-CA 0.18 0.861 0.49 0.623
hMetis-R 5.45 4.99e-08 1.63 0.103
hMetis-K 8.35 6.86e-17 6.43 1.29e-10
PaToH-Q 16.65 2.94e-62 13.29 2.66e-40
PaToH-D 16.80 2.55e-63 17.12 1.03e-65

Table A.12: Results of Wilcoxon matched pairs signed rank test comparing our default config-
uration with our best configurations as well as hMetis and PaToH. At a confidence
level of 99%, a |Z| > 2.58 is considered as significant. A negative Z-score indicates
that the corresponding configuration is better than the default configuration. The full
benchmark set is denoted by ’*’.

65

A Appendix

A.6 Improvement Plots

In Section 4.4.4, we compare our best configurations against hMetis and PaToH on the full
benchmark set. The missing improvement plots for using only subsets of the benchmark
set with the same type are provided here. Note that the name of the configuration as well
as the subset of the benchmark set is provided in the headline of each plot.

● ●
● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ● ●
● ●

● ● ● ● ● ● ●
●

● ● ●

● ● ● ● ● ●

● ● ●
● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ●

● ●
● ● ● ● ● ●

● ●
● ●

● ● ● ●
●

● ● ● ● ●

●

● ●

●
● ●

● ● ● ●
● ● ● ● ● ● ●

● ●
●

● ● ● ● ● ●
●

● ● ● ● ● ● ● ●
●

● ● ●
● ●

● ● ● ● ●
● ●

●

●

●

● ● ●

● ●

● ● ● ● ● ●

● ● ● ●
● ●

● ● ● ● ● ● ●
● ● ● ● ●

● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ●
●

● ● ●
●

●
● ● ●

● ●
● ● ● ● ●

● ●

●
●

● ●

●

● ● ●

● ●

● ● ●

● ●
●

●
●

●
● ●

● ● ●

●

● ●

●
● ●

●
● ●

● ● ●
● ● ● ● ● ●

● ●
●

● ● ● ● ●
● ● ● ● ● ●

●
● ● ● ●

●

●

●
● ●

●

● ●

●

●

●

●
●

●

●
● ● ● ●

● ● ●
●

● ● ● ● ● ● ●
● ●

●
●

●
● ● ●

●

● ●

●

● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ●

● ●
● ●

● ● ● ● ● ● ● ●
●

●
●

●
● ●

●
● ● ●

●
●

● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

● ●
● ● ● ● ● ● ●

●

●

● ● ● ● ● ●

● ● ●
● ●

●

● ●
● ● ●

● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ●

●

●

●

●
●

●
●

●
●

●

●
● ●

●

●
●

● ● ● ●
●

●

● ●

●

● ● ● ● ●
● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

● ● ●
●

●

infeasible solutions

−60
−40

−20
−10

−5

−1

0

1

5
10
20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t $

[%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

all_runtime~min_km1~only_spm_instances~(112 Instances)

●
●

● ●

● ●
●

● ● ●
● ● ● ● ●

● ● ● ● ●
● ●

● ● ● ● ● ●
● ● ● ● ● ●

● ●
●

●

● ● ●

● ●
● ● ●

● ● ● ● ● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ●

● ●

●

●

●
●

● ● ● ● ●
● ●

● ● ●
● ● ●

● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ●
● ● ● ●

● ● ●

●
●

●

●

● ●
●

● ● ●

● ●
●

● ● ● ● ● ● ● ● ●
● ● ●

● ● ● ●
● ● ● ● ● ● ●

●
● ●

●
● ●

● ● ●

● ● ●

● ●
● ●

● ● ●

●

●

● ●

●
●

●

● ●
●

● ●

●
●

●
● ●

● ●
● ● ● ● ●

●
● ● ● ●

●
● ● ● ●

●

●
●

●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

● ●
●

● ● ● ● ● ● ● ● ● ● ●
●

●
●

● ●

●

●

●
● ● ●

● ●

●

●

●

●
● ●

● ● ● ●
● ●

●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ●

●
● ●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ●
●

● ●
● ● ● ● ● ● ● ● ●

●
●

●
●

● ●
●

● ● ●
● ●

● ● ●
● ● ● ● ● ● ●

● ●
●

● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

●

●

●

● ● ● ● ●
●

●
●

● ● ● ●
● ● ● ●

●
● ● ● ●

● ● ● ●
● ● ● ● ● ● ●

● ●

● ●

●

●

●

● ●
●

●
●

●

● ●
●

● ● ● ● ●
● ●

●

●
● ● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ● ● ●

● ●
● ●

● ●
●

● ● ●

●

infeasible solutions

−60
−40

−20
−10

−5

−1

0

1

5
10
20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t [

%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

all_runtime~avg_km1~only_spm_instances~(112 Instances)

●

● ● ●
●

● ●
● ● ● ● ● ● ● ● ● ●

●
●

● ●

● ●

●
●

● ● ●

●

●
●

●

●
●

● ●
● ● ●

● ● ●
● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ●

●
● ●

● ●

● ●
● ● ●

●
●

●

●

●
● ● ● ●

● ● ● ● ● ●
● ● ●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
● ●

●
●

● ●
●

● ● ●

● ●

● ●

● ● ●

●
● ●

●

●
●

●
● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

● ● ● ● ● ●
● ● ●

● ● ● ● ● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ●

● ● ● ●
● ● ●

● ●

● ●

●
●

●

●
●

●
● ● ●

● ●
● ●

● ● ● ● ● ● ● ●
●

● ● ●

●
● ● ●

●

● ● ●

● ● ● ●

●

●

●

●

●

●

●
●

●
●

● ●

●
●

●
●

● ● ● ● ● ● ● ● ● ●
● ●

● ●
● ●

● ●

●

infeasible solutions

−40

−20
−10

−5

−1

0

1

5
10
20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t $

[%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

all_runtime~min_km1~only_vlsi_instances~(98 Instances)

●

●

● ●
●

● ● ● ● ●
● ● ● ● ● ● ●

● ●
● ●

● ●
● ●

●
● ●

●

●

●

●

●
●

● ● ● ●
● ● ● ● ●

● ● ● ● ●
● ●

● ● ● ● ●
● ●

●

●

● ●

● ●

● ●

●

●

●

●
●

● ●
● ●

● ● ● ● ● ● ● ● ● ●

●
●

●

●

●

●

● ● ●

●

● ●

●

●

● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

●
● ●

● ● ● ●
● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

● ● ●
●

● ●
●

●

●

●
●

● ●
● ● ● ● ● ● ● ● ●

● ●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

● ● ● ●
● ●

●
●

infeasible solutions

−60
−40

−20
−10

−5

−1

0

1

5
10
20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t [

%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

all_runtime~avg_km1~only_vlsi_instances~(98 Instances)

●

●

● ●
● ●

● ● ● ●
● ●

● ●
● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ●

●

●
●

● ● ●
●

● ●

●

● ●

● ● ● ● ●
● ●

● ● ● ● ●
●

●
● ●

● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

●
● ●

● ● ●
●

●

● ●

●

● ●

●
●

● ●
● ●

●
● ●

● ● ●
● ●

●
●

●
●

● ●
● ●

●
● ● ●

●

●
● ● ● ● ●

● ● ● ●
● ● ●

●
●

●

●

●

● ●

●

●

● ● ● ●

●

●

●

●
●

●

● ●

●

●

●

● ● ● ● ● ● ●
● ●

● ●
●

● ● ● ●
● ●

● ● ● ● ● ●

●

● ●

●

●

● ●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

● ● ● ●
●

● ●

● ● ● ● ● ●
●

● ● ● ●
● ●

●
●

● ● ●

●

●

●

●

● ●
●

●
● ●

●

● ● ● ● ● ●
● ●

●

●
● ● ●

● ● ●

● ●

●

●
●

● ● ● ●

● ●

●
●

●

●
●

●
● ● ● ●

● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ●
● ● ● ●

●
●

●

● ● ●

● ●

●
●

● ● ● ● ● ●
● ●

● ● ● ● ●
●

● ● ● ●
● ● ● ● ● ● ● ● ● ●

●
●

● ●
● ● ●

● ●
● ● ● ●

● ● ● ●

●

infeasible solutions

−60
−40

−20
−10

−5

−1

0

1

5
10
20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t $

[%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

all_runtime~min_km1~only_primal_instances~(84 Instances)

●

● ●
●

● ● ●
●

●
●

● ● ● ● ●
●

● ● ● ● ● ●
● ● ●

● ●
●

●

● ●
●

●

● ●

● ● ●

●

●

● ● ● ● ● ●
●

●
● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

● ●
●

● ● ●

●

●

●

● ●

●

●

●

●
●

● ● ● ● ●

● ●

● ●
●

● ● ●
● ● ● ● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●
● ● ●

●

●

●

●

●

●

● ●

●

● ●

●

●

●
●

●
●

● ● ●
● ●

● ● ● ● ● ● ● ●
● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ●

● ●
● ●

● ●
●

●
● ●

●

●
●

● ●
●

●
●

●
●

● ● ● ● ● ● ●

●

● ●

●

●

●

●

● ●
●

● ● ● ●
●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

● ●
● ● ●

●
●

●

●

●

●

●

●

● ●

● ●

● ●
●

●
● ●

●
● ●

● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ●
●

● ● ●
● ● ● ●

●
●

●

●

●

●

●
●

● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

●
● ● ● ●

● ● ●

●
● ● ● ●

●

infeasible solutions

−60
−40

−20
−10

−5

−1

0

1

5
10
20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t [

%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

all_runtime~avg_km1~only_primal_instances~(84 Instances)

66

A.6 Improvement Plots

●

● ●
● ● ●

● ● ●
● ● ● ● ●

● ●
● ● ● ●

●

●

● ● ●

● ●

● ● ●
●

● ● ● ●

● ● ●
●

●
●

● ●

●

●

●

●
●

● ● ●

●
●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ●

● ● ●
●

●

●
● ● ● ● ● ●

● ●
●

● ● ● ● ● ● ●

● ●
● ● ● ● ● ● ●

● ● ●
● ● ●

●
● ●

●

● ●

● ●

●

●

●

●

● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

●

●

● ●

●
●

●

●
● ●

● ● ●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
● ● ● ●

●
●

● ● ● ●
● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

● ● ● ● ●

● ● ● ● ●
● ● ● ● ●

●

● ●
●

●

●

●

● ● ● ● ●
● ●

● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

● ● ●
● ● ● ● ● ● ● ●

●
●

● ●
●

● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ●
● ● ●

● ● ●
● ●

● ●
● ●

●
●

●
●

● ● ● ●

● ●
●

● ●
●

● ●

● ● ●
●

●

●

●

●

● ●
● ●

● ●
●

● ●
● ● ● ● ●

●

●

●

●
●

● ● ●

● ● ●
● ● ● ● ● ●

● ● ● ● ●
● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ●
●

●
●

●
●

●
● ● ● ● ● ● ●

infeasible solutions

−60
−40
−20
−10

−5
−1

0

1
5

10
20
40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t $

[%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

all_runtime~min_km1~only_literal_instances~(98 Instances)

●

● ●

● ● ●
● ● ● ●

● ● ● ● ● ● ●
●

● ● ● ●
● ●

● ● ● ●
● ● ●

●
●

●

● ●

●

●

●
●

●

●

●

● ●

●

● ● ● ● ● ●

● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●
●

●

●

●
●

● ●

● ●
●

● ● ● ●
● ● ● ● ● ●

● ●
●

● ●
● ● ●

●

●
●

●

●

●

●

●

● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ●

●

●
●

●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
●

● ●
● ● ● ●

● ● ●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

● ●
● ●

●
●

● ● ●
● ●

● ● ●
●

● ●
● ● ● ● ● ● ● ● ● ● ● ●

● ●
●

●

●

●
● ● ●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
● ● ●

● ●
● ●

●
●

● ● ● ● ● ●
● ●

●

●

●

●

● ● ●
● ● ● ● ● ● ● ●

● ●
● ●

● ● ●
●

● ●

●

●

●

● ●
● ● ●

●

●

●

●

●

●

●
● ●

● ●

● ●

● ● ● ● ● ●
● ● ● ●

●

●

●

● ●
● ●

● ● ●
● ● ● ●

● ● ●
● ●

● ● ● ●
● ● ● ● ●

●
● ● ●

● ● ●
● ● ● ● ●

●

infeasible solutions

−60
−40
−20
−10

−5
−1

0

1
5

10
20
40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t [

%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

all_runtime~avg_km1~only_literal_instances~(98 Instances)

●
●

●

● ●

●
● ● ● ● ● ●

● ● ● ● ● ● ●
● ●

● ●
● ● ●

● ● ● ●
● ●

● ● ● ● ●
● ● ● ●

●

●

● ● ●

●

● ●
●

● ● ● ● ● ● ● ● ●

●
● ● ● ● ●

●
● ●

● ●
●

●

● ● ●
●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

●

●
● ●

● ●

●
● ●

●
●

●
● ● ● ● ●

● ●

●
● ● ●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ●

●

●
●

●

● ● ●
●

● ● ● ● ● ●
● ● ● ● ● ●

● ●

●
●

● ●

●

●
●

● ● ●

●
●

●

●

●

●

●
●

● ● ● ● ● ● ●

● ●

●

●

●
● ●

●

● ● ● ●
●

●
● ● ● ● ● ●

●
● ●

●
●

●

●
●

● ●
●

● ● ● ● ●
● ● ●

● ● ●
● ●

● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

● ●

●

●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

● ● ● ● ●
● ●

●

●

●

●

● ● ●

●

●
●

● ●
● ● ● ● ●

● ●
●

● ● ● ● ●

● ●

●
● ● ●

●

●

●

●
●

●
●

● ●

●
● ● ●

●

●

● ● ●
● ●

● ●

●

● ●

● ● ● ● ●

● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
● ● ● ●

● ● ● ● ● ●

● ● ● ●
●

●
●

● ● ● ●

infeasible solutions

−40

−20
−10

−5

−1

0

1

5
10
20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t $

[%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

all_runtime~min_km1~only_dual_instances~(98 Instances)

●
● ●

●
● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

● ● ● ● ● ● ●

●

●

● ● ● ●

●
● ● ●

● ●
●

●

● ● ● ●

●

●

●

●

●

●
●

● ●
● ●

● ●
● ● ●

● ● ● ● ● ● ● ●

● ● ● ●

●

●

●

●
●

●
● ● ●

● ●
●

●
●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ●
● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
● ● ● ● ● ● ●

● ●

●

● ●
● ●

● ●
●

● ● ● ● ● ● ●
●

● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

● ● ● ●

● ●
●

●

● ● ● ●

● ● ● ●

●
● ● ●

● ● ●
● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

●
● ●

● ● ●
● ●

●

● ●

●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ●

●

● ● ● ● ●

● ● ●

●
● ●

●
● ●

● ●

●

●

●

●

● ● ●
●

● ●

● ●
●

● ● ● ● ●

●

●

●

●

● ●

● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ●
● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ●

● ●
●

● ●

●
●

●

infeasible solutions

−60
−40

−20
−10

−5

−1

0

1

5
10
20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t [

%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

all_runtime~avg_km1~only_dual_instances~(98 Instances)

●

●

● ● ● ● ● ● ● ●
●

●

●
● ●

● ● ● ● ● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ●

● ● ● ●

●
● ●

● ● ●
● ●

● ● ●
● ●

● ● ● ● ●
● ● ● ● ●

● ● ● ●
●

● ● ●

● ● ●

● ●

●
● ● ● ●

● ● ● ●

●

●

● ● ● ● ● ● ● ● ●
● ●

●
●

●
● ●

● ●
●

● ● ●
● ● ●

●

●

● ● ● ● ●

●

●

● ● ● ●
● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ●
● ● ●

● ● ●

● ● ●

● ●
●

● ● ● ●

● ● ●

●
●

● ● ●

●
●

●

●

●
●

●
●

● ●
●

● ● ●

●

● ●
● ● ●

● ● ●
●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●
● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

● ● ● ● ● ●

●
●

●

●
● ● ●

● ●

●

●

●

●

●
●

●

● ● ●

●
●

●
●

●

● ● ●
●

● ● ●

● ●
● ●

● ●
● ● ● ● ● ● ● ● ● ●

● ●

● ● ● ● ●
●

●
●

●

●

● ● ●
● ●

●
● ●

●

●

● ●
● ● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
●

●

● ● ● ● ●

●
● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ●
● ● ● ● ● ● ● ● ●

● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ●
● ●

●

●

●
●

●
●

●

● ● ●

●

● ● ● ● ●
● ● ● ● ● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

●

infeasible solutions

−60
−40

−20
−10

−5

−1

0

1

5
10
20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t $

[%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

dual_pareto~min_km1~only_spm_instances~(112 Instances)

●

●

● ● ●
● ● ● ●

● ●

●
● ●

●
● ●

●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
●

● ●
●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

● ●
● ● ● ● ● ● ● ● ● ● ●

● ●
●

● ● ● ● ●
● ● ● ●

● ●

●

●

●
● ●

● ●
● ● ● ●

● ● ●

● ●
●

● ●
●

● ● ● ●
●

●
● ● ● ● ● ● ●

●
● ● ●

● ● ● ● ● ●
●

●
●

● ● ●

● ●
●

● ●

●

● ●
●

●
●

●

● ● ●
● ● ●

● ● ● ● ● ● ● ●
●

● ● ● ● ● ●
●

● ●
● ● ● ● ● ● ● ● ●

● ● ● ● ●
●

● ●
●

●
● ●

● ●
●

● ● ● ●

●
●

●
●

● ●

● ● ●

● ●
●

●
● ●

● ● ●
●

● ●
●

● ●

● ●

●
● ● ● ●

●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ●
● ● ● ● ● ● ● ● ● ●

● ●

● ●
●

●

●

●

●
● ● ●

● ●

●

●

●
● ●

●
●

●

●
●

● ● ● ● ●
●

● ● ● ● ●
● ● ●

●
●

● ●
●

● ●
●

●

● ●

●

● ● ● ● ●
● ●

● ● ● ●
● ● ●

● ● ● ● ● ● ● ● ● ●
● ●

●
●

● ● ●

●

●

●

●
● ●

● ● ● ● ●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ●
● ● ● ● ●

● ●

●

●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ●
● ● ●

● ● ● ●

●

●

●

●

●
●

● ●

● ●
●

●

●
●

● ●

● ●

●

● ● ● ● ●
● ● ● ●

● ● ● ●
● ● ● ● ●

● ●
● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●

infeasible solutions

−60
−40

−20
−10

−5

−1

0

1

5
10
20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t [

%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

dual_pareto~avg_km1~only_spm_instances~(112 Instances)

●

●
● ●

● ●
● ● ● ● ●

● ● ● ●
● ●

●

● ●
● ● ●

● ●

●
●

●

●

●

● ●

● ●
● ● ● ● ● ● ● ● ●

● ● ● ● ● ●
●

● ●
●

●
● ●

● ● ●
●

● ● ●

●

●
●

●

●
●

● ● ● ● ● ●
●

●
●

● ● ●
●

● ● ● ● ● ●
● ●

●
● ●

● ●

● ● ●
● ●

● ● ● ● ● ●
●

● ●
● ●

● ●

●
●

●
●

●
●

●
● ● ● ● ●

● ●

●

● ●

●
● ●

●
●

●
● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ●

● ●
● ●

● ● ● ● ● ● ● ●
● ● ● ● ●

● ●
● ● ●

●
●

●
● ●

●

●
●

● ●

●

●

●

●
● ● ● ● ●

● ● ● ● ●
● ● ● ● ●

● ●
● ●

● ●
● ● ●

● ●
●

● ●

●

●
● ●

● ● ●
●

● ● ●
● ●

● ● ● ● ● ● ● ●
● ●

●
● ●

● ● ● ●
● ● ● ●

● ●

●

● ● ●
● ●

● ● ● ● ● ●
● ●

● ● ● ● ● ● ●
● ● ● ● ●

● ●
●

●

●

●

●

●
●

●
●

● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

●

●
●

●

infeasible solutions

−10
−5

−1

0

1

5
10

20

40

60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t $

[%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

dual_pareto~min_km1~only_vlsi_instances~(98 Instances)

●

●

●

● ●

● ●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ●
● ● ● ● ●

●
●

●
●

●

● ●
●

●
● ●

● ● ● ● ● ●

●
● ● ●

●

●

●
●

●

● ● ●
● ● ●

●
● ● ● ● ●

● ●
●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ●
● ●

● ● ● ●
●

●

●

● ●

● ●
● ● ●

● ●
● ● ● ● ● ● ● ●

●
●

●

●

● ● ●

●
● ●

● ●
● ● ● ●

● ●

● ● ● ●

● ●

● ●

●

●
●

● ●
● ● ● ● ● ● ● ● ● ● ● ●

● ● ●
● ● ●

● ● ● ● ●
● ● ● ● ●

● ● ● ●
●

● ●
●

●

●

● ●

● ●

●

●

●

●

●

●

● ● ●
● ●

● ● ● ● ● ●
● ●

● ● ● ● ●
● ● ●

● ● ● ●

●

●

● ●
●

● ●
●

●

● ● ● ● ● ● ●
● ● ●

●
● ●

●
● ● ●

●

● ● ●
● ● ● ●

● ● ● ● ● ● ● ● ●
● ●

● ● ●
● ● ● ●

●

●

●
●

●

● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ●
● ●

● ● ● ●

●

infeasible solutions

−20

−10
−5

−1

0

1

5
10

20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t [

%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

dual_pareto~avg_km1~only_vlsi_instances~(98 Instances)

67

A Appendix

●

● ● ●
●

● ●
● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●
● ● ● ●

● ●
● ● ● ●

● ● ●

● ● ●
●

● ● ● ● ●

●

●

●
● ●

● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ●

●

●

●

●

● ●

●

●

●
●

● ● ●
●

●
●

●
●

● ● ● ● ● ●
● ● ● ●

● ● ●
● ●

● ● ● ●
●

● ●

● ● ● ●

● ● ●
● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●
● ● ● ● ● ● ● ●

●

●

●
●

●
●

● ●
●

● ●

● ●
● ● ● ●

● ●

●
●

● ●

●

●
●

●
●

●

●

●
● ● ● ●

●
● ● ●

●
●

●

●
●

●

●

● ●

●
●

●

●

● ● ●
●

●

● ●
●

●
● ●

● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ●
●

● ● ● ●
● ● ● ●

●
●

●

●

●

●

●
●

●
●

●
● ● ●

● ● ● ● ● ● ● ●
● ● ● ●

● ● ●
●

● ● ● ●
● ●

● ● ● ●
●

● ●
●

● ● ● ● ●

●

● ● ● ● ● ● ●
●

●
● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ●

● ● ● ●

● ●

●

●

●

●
●

● ●

●
●

●
● ●

● ● ● ●

●
● ●

● ● ● ● ● ● ● ● ●
● ●

● ●
● ● ● ●

● ● ● ●
● ● ● ● ●

● ● ● ● ● ●
● ●

●

infeasible solutions

−40

−20
−10

−5

−1

0

1

5
10
20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t $

[%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

dual_pareto~min_km1~only_primal_instances~(84 Instances)

●

●

●
● ● ●

●

● ● ● ● ● ● ● ●
● ●

● ● ●
● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

●

●

● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ●
●

● ●

●

●

●

●

● ● ● ●

●

● ● ● ● ● ●
●

● ● ● ● ● ● ●
● ● ●

●
● ●

● ● ● ● ●
● ● ● ● ● ● ●

●
● ● ● ●

●
●

●

●

●

●

●
● ● ●

● ●
● ● ● ● ● ● ● ● ● ●

●
● ● ●

●

●

● ●
● ● ● ● ● ● ●

● ●

●

●

●

●

●
●

● ● ● ●
●

● ●

●
● ●

●

● ●

● ●
●

●

●

●

●

●
●

● ●
●

●
●

● ● ●
●

●
● ●

●
●

●
●

●

●

● ●

●

●

● ●
●

●
● ● ● ● ● ●

●

●

● ● ● ●
● ●

●

● ●

●
●

●
● ● ● ● ●

● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ●

●
●

● ●
●

● ●
● ●

● ● ● ●
● ● ●

●

●
●

●

●

●
●

● ● ●
●

● ●

● ● ● ●
● ● ● ● ● ● ● ●

● ●
● ● ●

● ● ● ● ● ●
●

● ● ● ●
● ●

●
● ● ● ● ●

●

●

●
●

●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ●

● ●
●

●

●

●

●

● ● ●

●

●

●

●

● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ●

● ● ● ● ●
● ● ● ● ●

● ●
● ● ●

●

●

infeasible solutions

−40

−20
−10

−5

−1

0

1

5
10
20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t [

%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

dual_pareto~avg_km1~only_primal_instances~(84 Instances)

●
●

●
● ● ●

● ●
● ●

● ●

● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ●

● ● ● ● ●
● ● ● ● ●

● ●
●

● ●

●

● ●
●

● ●
● ● ● ● ●

● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ●
●

●
● ●

●

●

●

●
● ● ●

●
●

●
●

● ● ● ●
● ● ● ● ●

● ●
●

●
● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●
●

● ●
● ● ● ●

● ● ●
● ●

● ● ●
● ● ● ● ● ●

●

●
●

● ● ● ● ● ● ● ●
● ●

●

●

● ●

●
●

●

●

●

●
● ●

● ● ●
● ● ● ● ● ● ●

●
●

● ●

●

● ●

● ●
● ● ● ●

● ●
●

●
●

●
● ● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●
● ● ● ● ● ● ●

● ●
● ●

● ● ●
● ●

● ● ●
●

●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●
●

●

●

● ●
●

●

●
● ● ●

●
● ● ● ● ● ● ● ● ● ●

●
● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ●

● ● ● ● ●
●

●
● ● ● ● ● ●

● ●
●

●

● ●
●

● ● ● ● ● ●

● ●
● ●

●

●
●

● ●

● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
● ●

● ● ●

●
●

● ● ●
● ● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ● ● ● ●

● ● ● ● ● ● ●
● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ●

●
●

● ●
●

● ●
● ● ● ●

infeasible solutions

−40

−20
−10

−5

−1

0

1

5
10
20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t $

[%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

dual_pareto~min_km1~only_literal_instances~(98 Instances)

●

●

● ●

●

● ● ●

● ● ● ●
● ● ● ●

● ●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

●

●

●
●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ● ●
● ●

● ●
●

●

●
●

●

● ●
●

●
●

●
●

● ● ●

●
● ● ● ●

● ● ● ● ●
● ● ● ● ● ●

● ● ● ●
● ● ●

●
● ●

● ● ●
●

●

●

●
●

●
● ● ● ● ●

● ● ● ● ●
● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
●

●
●

● ● ●
● ● ● ● ●

●

● ●
● ●

●
●

● ●

●

●

●

●

● ●

●

●

●
●

●
●

● ●
● ● ●

● ●
●

●
●

● ● ● ● ●
●

● ●

●

●
●

●
● ●

● ● ●
● ●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ●

●
● ●

●

● ● ●
● ● ●

●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●

●

● ●
● ●

● ●
● ●

●
● ● ●

● ●
●

●

● ● ●

● ● ●
● ● ● ● ● ● ●

● ● ●
● ●

● ● ● ● ● ● ● ●
● ●

● ● ● ● ●

● ● ●
● ● ●

● ●
●

●
●

●
● ● ● ● ●

●

●

●
●

●

● ● ●
● ●

●

● ● ● ● ●
● ●

● ● ●
● ● ● ● ● ● ●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●

●

●
● ● ●

●
●

● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
●

● ● ●
● ●

● ● ●

●

●
●

●

●

●

●
●

● ● ●

●

●

● ●

● ● ●
● ● ●

●
● ● ● ●

● ● ● ● ●
● ●

● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ●
●

●

● ● ● ●
● ● ● ● ●

●

infeasible solutions

−40

−20
−10

−5

−1

0

1

5
10
20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t [

%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

dual_pareto~avg_km1~only_literal_instances~(98 Instances)

●
●

●
●

● ●
●

● ●
●

● ● ●
● ● ● ● ●

● ●
● ●

●
● ● ●

● ● ●
● ●

● ● ● ●

●
●

●
● ●

● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

●
● ● ● ● ● ● ●

●

● ● ● ● ●

●

●
● ● ●

● ● ●

● ●

● ● ● ● ● ● ●
●

●

● ●

● ●
●

● ●

● ● ●
●

● ● ● ●

●
● ●

● ● ● ●
● ● ●

● ● ● ●
● ● ● ● ●

● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ●
●

●
● ● ● ● ●

●

●
● ●

●

● ●

●

●

●
●

●
● ● ● ● ● ● ● ● ●

●
●

● ●
● ● ●

● ● ● ●

● ●
● ●

●

●
●

●

●
● ●

● ● ●

● ●
●

●

●

● ●

●

●
●

●

●

●

● ● ● ● ● ● ● ●
●

● ●

●
●

●

●

●

●

● ● ● ●

● ●
●

● ●
● ● ● ● ● ● ●

● ● ●
● ●

● ● ● ● ●
●

●

●
●

●
● ● ● ●

● ● ● ● ●
●

● ● ● ● ● ● ●
● ●

●
● ● ●

● ●

●

● ● ● ● ●

●

●
● ● ● ●

●
● ●

●
● ● ● ● ●

● ●
● ● ●

● ● ●

● ●
●

●
● ● ●

●

●

●

●

●

● ●

●
● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ●

● ●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●

●

● ● ●

infeasible solutions

−10
−5

−1

0

1

5
10

20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t $

[%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

dual_pareto~min_km1~only_dual_instances~(98 Instances)

● ●
●

● ●
●

● ●
●

● ●
● ● ● ● ● ●

● ●
● ● ● ● ● ●

● ●

●

●

● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
● ● ● ● ●

● ● ●
● ● ● ● ● ● ●

● ●

●

●
●

●

● ●
●

● ● ●
●

● ●
● ●

● ●

● ●
● ●

● ● ●
● ●

● ● ● ● ● ● ●
● ● ● ● ●

● ●

●

●
● ● ●

● ● ● ● ● ● ● ●
●

● ●
● ●

●
● ● ●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

●
●

● ●
●

●
●

●

●

●

●
● ●

● ● ● ● ● ● ● ● ●

●

●

●

●

● ● ● ● ●
●

●
● ● ● ● ●

● ●

●

●

●
●

●

●

●

●
●

●

● ●

●

● ●

●

●
●

●

●

● ●
● ● ● ● ● ● ●

● ●

●
●

●

●
●

●

● ●

●
● ●

●

●

● ● ● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

●
● ● ● ●

● ● ● ●

●

●
● ● ● ●

● ● ●

● ● ● ● ●
●

● ●
● ● ● ● ● ● ● ● ●

●
● ● ●

●
● ●

● ●

●
● ● ●

● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
● ●

● ●
● ● ●

●
●

●

●

●

●
●

● ●

●
● ●

● ●
● ● ● ●

● ● ● ● ● ●
●

● ● ●
●

● ● ●

infeasible solutions

−20

−10
−5

−1

0

1

5
10

20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t [

%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

dual_pareto~avg_km1~only_dual_instances~(98 Instances)

●

●

●
● ● ●

● ●
● ●

●
●

● ●
● ● ●

● ●
● ● ● ●

● ● ● ● ● ● ● ●
●

● ●

● ● ● ●

● ● ● ● ●
●

● ●
● ●

● ● ● ●
● ●

● ●

●

● ● ● ●
● ●

●

● ●
● ●

● ● ●
● ●

● ● ● ● ●
● ● ●

● ● ●
●

●
● ●

● ●
● ●

●
●

● ● ● ● ● ●

●
●

● ●
● ● ●

●
● ●

● ●
● ●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ●

●

● ●
● ●

● ●
●

● ● ● ●

● ●
●

●

●
●

● ●
●

●

● ●

●

●

● ●

●
●

●

● ● ●

●
● ● ● ● ●

● ● ●
● ●

● ● ● ●
● ● ● ●

● ● ● ●
● ● ● ●

● ● ● ●
●

● ●

●
●

●

● ●
●

● ●

●

●

●

● ●

● ●
●

●

●

● ●

●
●

●

● ● ●

●
●

● ● ●
●

● ● ● ● ● ● ● ●
● ● ● ●

● ●
● ● ● ● ● ● ● ● ●

● ● ● ● ● ●
● ● ● ● ● ●

●
●

●
● ●

● ●
●

●
● ● ●

●

●

●
● ●

● ● ● ●

● ● ● ● ● ● ● ●

●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
● ● ● ●

●

●

●
●

● ● ●

●

● ●
●

●

●

● ●

●

● ● ●

● ●
● ● ●

● ● ● ●
● ● ●

● ● ● ● ● ● ● ● ● ● ● ●
●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

infeasible solutions

−60
−40

−20
−10

−5

−1

0

1

5
10
20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t $

[%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

all_quality~min_km1~only_spm_instances~(112 Instances)

●

● ●
●

●

●
●

● ● ● ●
●

● ● ● ●
●

● ●

● ● ● ● ●
●

●

● ● ● ● ● ●
● ●

● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ●

●

●
●

● ●
● ● ●

●
●

● ●
●

●

● ● ●

● ● ● ● ● ● ● ● ● ●
●

●
● ● ● ● ●

● ●
●

● ● ●
●

●

●
●

●
●

● ●

● ● ● ● ●
● ● ● ●

● ● ●
●

● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ●

● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
●

● ●
●

●
● ● ●

● ●
●

● ● ● ●

● ●

● ●

● ●
●

● ● ●
●

●

●
●

●
●

●
● ●

●
● ●

●

●

● ●

●

● ● ●
● ●

● ● ● ● ● ● ● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ●

●

●
●

●
● ● ●

● ●

●
●

●

● ●

●
● ● ●

●
●

●
● ● ● ●

● ●
● ●

●

●

● ●
●

●

● ●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ●

●

●

●

● ●

● ● ●
● ●

● ● ● ●
●

● ●
● ● ● ● ● ● ●

● ● ●

●

●

●
● ● ●

● ●
● ● ● ● ● ● ● ● ● ●

●
● ● ●

● ● ●
● ● ● ● ● ● ● ● ● ●

●
● ● ●

●
●

●

●

●
●

● ●

● ●

● ●

●

●

●

● ●

● ●

● ●

●

● ● ● ●
●

● ● ● ● ● ●
● ● ● ● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●

infeasible solutions

−60
−40

−20
−10

−5

−1

0

1

5
10
20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t [

%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

all_quality~avg_km1~only_spm_instances~(112 Instances)

68

A.6 Improvement Plots

●
●

● ●
● ●

● ●
● ● ● ● ● ● ●

●
●

● ● ● ● ● ● ●

●

●

● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ●

● ●
● ●

●
● ● ● ●

● ● ● ●
●

●

●

●
●

● ●

● ● ● ●
● ●

● ●
● ●

●

●
●

●
● ● ● ● ● ● ●

● ●
●

● ●

●

●

●

● ●
● ●

●

● ● ●
●

● ●
●

●

●

● ●

●
●

●

● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

● ● ● ●
● ● ● ● ●

● ●
●

● ● ●
● ● ●

●
●

●

● ●

●

●

●
●

● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ● ● ●
● ●

● ● ● ● ● ●
●

● ● ● ● ●
●

● ●
● ● ●

●
●

● ● ● ●

●
●

● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●
●

●
●

● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

● ● ●
● ●

● ●

●

●

●

●
●

● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ●

● ●
● ● ● ●

●

●

infeasible solutions

−20

−10
−5

−1

0

1

5
10

20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t $

[%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

all_quality~min_km1~only_vlsi_instances~(98 Instances)

● ● ●

● ● ● ● ●
● ●

●
● ●

●

● ● ●
●

●

●

● ●
● ●

● ●

●
●

● ● ●
● ●

●

●
●

●

● ●
● ● ● ● ●

●
●

●
● ● ●

●
● ● ● ●

●
● ● ● ●

● ●

●

● ●

●
● ● ●

● ● ●
● ● ●

● ●
● ● ●

● ● ● ● ●
● ● ●

● ● ● ● ●
● ●

●
●

●

●
● ● ● ●

● ●

● ●

●

● ●
● ● ●

●

●

●
● ●

● ● ●
● ●

● ● ● ●
● ● ● ● ● ● ● ● ● ●

●
●

● ● ● ● ● ● ●
●

● ● ● ● ●

● ● ● ● ● ●

●
● ●

●
● ●

● ●

●

●

●

●

●

● ●
●

●
● ● ● ●

● ●
● ●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

●
●

●
● ● ●

● ●
● ●

● ● ●

● ●

●
●

● ● ● ●

● ●

●

●

● ●
●

●

●
● ●

● ●

● ● ● ●
● ● ● ● ● ● ●

● ●
●

●
●

●

●

●

● ●
●

● ● ●
● ●

● ●
● ●

●
●

infeasible solutions

−10
−5

−1

0

1

5
10

20

40

60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t [

%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

all_quality~avg_km1~only_vlsi_instances~(98 Instances)

●
●

●
●

●

● ● ●

● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ●
●

●
●

● ● ● ● ● ●

● ●

● ● ● ● ● ● ●
●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ●
● ●

● ●

●

●

●
● ● ●

●

●
● ●

●

●

● ● ●
● ● ● ●

●
● ●

● ● ● ● ●

● ●
● ●

●

●

● ● ● ●

●

●
● ●

● ● ● ●
● ● ● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ●
● ● ●

●
● ●

●

● ●
●

● ● ● ●
●

●
●

● ●
●

●

●
● ● ●

● ●

● ● ●

●

● ●

●

●
●

● ● ● ●

●
● ●

● ● ●
●

●
●

●
●

● ● ●
●

●
●

●

● ● ●

●

● ●

●

●
●

●
●

●

●

●

● ●
●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●
● ● ● ● ●

●
●

● ● ● ●

● ● ● ●
● ● ● ●

●

●

●

●

●

● ●

● ● ● ● ● ● ● ● ● ●
● ●

● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ● ● ● ●

● ● ● ● ●

●
●

● ●
● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ●
● ●

● ● ●
●

●

●

●

●
●

●

●

● ●

● ●

●
●

●
●

● ●
● ●

● ● ●
● ● ● ● ●

● ● ●
● ●

● ● ● ● ● ●
● ● ●

● ● ● ●
● ● ●

infeasible solutions

−20

−10
−5

−1

0

1

5
10

20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t $

[%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

all_quality~min_km1~only_primal_instances~(84 Instances)

●

●

●
● ●

● ●
●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
●

● ● ●

● ● ●

●

●
● ●

● ●
● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

● ● ● ●
●

● ●

●

● ●

●
● ●

●

● ● ●
● ● ● ● ● ●

● ●
● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

●

●
●

●
●

●

●

● ● ● ●
● ● ●

● ●
● ● ● ● ● ●

● ● ●
● ●

●
●

● ●
●

● ●
● ● ●

● ● ●
●

●
●

●

●
●

● ● ● ● ● ●
●

● ● ●

● ● ● ●
● ●

●
● ●

●

●

●

●

● ● ●
●

●

● ● ● ● ● ●

● ●

●
● ●

● ●

●

● ●

●

●
● ●

● ●
●

●

●

● ●
● ● ● ●

●

●
● ●

● ●
●

● ●
● ● ● ● ● ● ● ● ● ●

● ●
● ● ● ●

● ● ● ●
●

●
●

● ● ● ● ●
● ●

●
● ● ●

●

●

●

●

● ●

● ● ●
●

● ●
● ● ● ● ● ● ●

● ● ●
●

● ● ● ● ●
● ● ● ● ● ●

● ● ● ●
● ● ● ● ●

●

●

● ● ●

● ●
● ● ● ● ●

● ● ● ● ●
● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ●

●
● ●

●

● ●

● ●
● ●

●

●

● ●
●

● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ●
● ● ● ●

●
●

●

●

infeasible solutions

−40

−20
−10

−5

−1

0

1

5
10
20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t [

%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

all_quality~avg_km1~only_primal_instances~(84 Instances)

●

●

●

●

●
● ● ●

● ● ●
● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ●

●
●

● ●

● ● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ●

● ● ● ● ●
● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ●

●

● ●
●

● ●

● ● ●
●

● ● ●
●

● ● ● ●
● ● ● ● ● ●

●
●

●
● ● ●

●

●

● ●
● ● ●

● ● ● ● ●
● ● ●

● ●
●

●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

●
●

● ● ●
● ●

●

●
●

●
●

●

● ● ● ●
● ●

● ●
● ●

● ● ●
●

●
●

●
●

● ●

●

●
●

●
●

● ● ●

● ● ● ●
●

● ●
●

●
● ● ●

● ●
● ● ●

●

● ●
●

● ●
● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

● ●

●

●
●

● ●
● ●

● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
● ● ● ● ● ● ● ● ● ●

●

● ● ●

●

● ●
●

● ● ● ●
● ●

●
●

●

●
● ●

● ● ●
● ● ● ● ●

●
● ● ● ● ● ● ● ● ●

● ● ●
● ●

●
●

●
●

●

● ● ● ●

●

● ●
● ● ● ● ● ●

● ● ●
● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ●

●

●

● ●

●

●

●

●

●
● ●

●
● ● ●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ●

●
● ●

●

● ●
● ● ● ●

●

infeasible solutions

−20

−10
−5

−1

0

1

5
10

20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t $

[%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

all_quality~min_km1~only_literal_instances~(98 Instances)

●

●

● ●

●

●

● ●
●

●
● ● ● ● ●

● ●
● ● ● ● ● ● ●

● ● ●
●

●
● ●

● ●

●

● ●

● ● ● ● ● ● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●

● ● ●

● ● ●
● ● ● ● ●

● ●
● ● ●

● ● ● ● ●
● ● ●

● ● ● ●
● ● ● ● ●

● ● ●
●

● ●

●

●

● ●
● ● ● ●

●
● ● ●

●
● ● ● ● ● ● ● ●

● ● ● ● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ●

● ● ●

●
●

●
●

●

●

● ●
●

● ● ●

● ● ●
● ●

● ●
● ● ● ● ● ● ●

● ● ● ●

●

● ● ●

●
●

●
●

●
● ● ●

● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ●
● ● ●

● ● ● ● ● ● ● ●
●

●
●

● ● ● ●
● ●

● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ●

● ● ● ●

● ● ●

●
●

●

●

●

●

● ●
●

● ● ● ● ● ● ● ● ● ● ● ●
●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●
● ● ●

●

●

● ●
● ● ●

● ● ●
●

●

● ●
●

●

● ●
●

● ● ● ●
●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ●

●

● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

● ●

● ● ● ● ● ● ● ● ● ●
● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●

●
●

● ●

● ● ● ● ● ●
●

infeasible solutions

−40

−20

−10
−5

−1

0

1

5
10

20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t [

%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

all_quality~avg_km1~only_literal_instances~(98 Instances)

●

●

●
● ● ●

●
●

● ● ●

● ● ● ●
● ● ● ● ● ●

●
● ● ● ● ●

●
● ● ●

● ● ● ● ● ●

●
●

● ●
● ● ● ● ● ● ●

● ●
● ● ● ● ●

● ●
● ● ● ●

●
● ●

●

●

●

●

●
● ● ● ● ●

●
● ● ●

●

● ● ●
● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ●

●

● ● ● ●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

●
● ● ● ●

● ●

●
●

●

●

●
● ●

● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ● ● ● ●

● ● ●

●
●

● ●

● ●

●

●
●

●
● ●

●
●

● ●
●

● ●

●

●

●

● ● ● ●
● ● ● ● ●

● ●

●

● ●

●

●

●
● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
● ●

● ● ● ● ● ● ●
● ● ● ●

● ● ● ● ● ●

●

●

● ●
● ● ●

●
● ● ● ● ● ● ● ● ● ● ●

● ● ●

●
● ●

●

●
●

● ● ● ● ● ● ●

●
●

● ● ●
● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●
●

● ●
●

● ● ● ● ●
● ●

●

●

●

●
●

●

● ● ●
●

● ● ● ●
● ● ● ● ● ● ● ● ● ● ●

● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●

●
●

●

infeasible solutions

−60
−40

−20
−10

−5

−1

0

1

5
10
20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t $

[%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

all_quality~min_km1~only_dual_instances~(98 Instances)

●

●

●

● ● ● ●
●

● ● ● ●
●

● ● ●
●

● ● ● ● ● ●
●

●

●
●

●
●

● ●
● ●

● ● ●
● ●

● ● ●
●

●
● ●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ●

●
● ● ●

● ●
●

●
●

● ● ● ●
● ● ●

●
●

●

●
● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●
● ● ● ● ● ● ● ● ●

●
● ●

● ● ● ●
●

● ●
● ● ● ● ●

●
●

●

●

●
● ●

● ● ● ● ● ● ● ● ●

●

●

●

●
●

● ● ● ● ● ● ●
●

● ● ● ● ● ●
●

●

●

●

●
● ●

● ● ● ● ●
● ●

●

●
●

●

●

● ● ● ● ● ● ● ● ●

● ●

●

●
● ●

●
●

● ●
● ●

● ●
● ●

●
● ●

● ●
● ● ● ● ● ●

● ● ● ● ●

● ● ●
●

●

●

●

●
●

●
● ●

● ● ●
● ● ● ● ●

●
● ●

●
●

●
● ● ● ● ● ● ● ● ● ● ●

● ●
● ●

●

● ● ●
●

●
● ●

●

●
●

●

●
● ● ● ● ● ● ●

● ● ● ●
● ●

● ● ● ● ● ● ● ●
● ●

● ●
●

●
●

●

infeasible solutions

−60
−40

−20
−10

−5

−1

0

1

5
10
20

40
60

100

0 10 20 30 40 50 60 70 80 90 100

Fraction of Instances [%]

Im
pr

ov
em

en
t [

%
]

Algorithm

●
●
●
●
●
●

KaHyPar−CA
hMetis−R
hMetis−K
PaToH−Q
it10
PaToH−D

all_quality~avg_km1~only_dual_instances~(98 Instances)

69

A Appendix

70

Bibliography

[1] David A. Papa and Igor Markov. Hypergraph partitioning and clustering. 05 2007.

[2] Yaroslav Akhremtsev, Tobias Heuer, Peter Sanders, and Sebastian Schlag. Engineer-
ing a direct k-way hypergraph partitioning algorithm. In 19th Workshop on Algorithm
Engineering and Experiments, (ALENEX 2017), pages 28–42, 2017.

[3] Charles J. Alpert. The ispd98 circuit benchmark suite. In Proceedings of the 1998
International Symposium on Physical Design, ISPD ’98, pages 80–85, New York,
NY, USA, 1998. ACM.

[4] Robin Andre, Sebastian Schlag, and Christian Schulz. Evolutionary hypergraph par-
titioning. 2017.

[5] Marijn J.H. Heule Anton Belov, Daniel Diepold. The sat competition 2014, 2014.
http://www.satcompetition.org/2014/.

[6] Richard Bellman. Adaptive control process: a guided tour. 1961.

[7] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimiza-
tion. J. Mach. Learn. Res., 13(1):281–305, February 2012.

[8] Ruben Burger, Mukunda Bharatheesha, Marc van Eert, and Robert Babuška. Auto-
mated tuning and configuration of path planning algorithms. In 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 4371–4376, May 2017.

[9] Timothy A. Davis and Yifan Hu. The university of florida sparse matrix collection.
ACM Trans. Math. Softw., 38(1):1:1–1:25, December 2011.

[10] Vijay Durairaj and Priyank Kalla. Guiding cnf-sat search via efficient constraint par-
titioning. In IEEE/ACM International Conference on Computer Aided Design, 2004.
ICCAD-2004., pages 498–501, Nov 2004.

[11] Katharina Eggensperger, Marius Lindauer, and Frank Hutter. Pitfalls and best prac-
tices in algorithm configuration. CoRR, abs/1705.06058, 2017.

[12] Philip J. Fleming and John J. Wallace. How not to lie with statistics: The correct way
to summarize benchmark results. Commun. ACM, 29(3):218–221, March 1986.

[13] Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):75–174,
2010.

[14] Karl Pearson F.R.S. Liii. on lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 2(11):559–572, 1901.

71

http: //www.satcompetition.org/2014/

Bibliography

[15] John Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering algorithm.
Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108,
1979.

[16] Tobias Heuer, Peter Sanders, and Sebastian Schlag. Network flow-based refinement
for multilevel hypergraph partitioning. arXiv preprint arXiv:1802.03587, 2018.

[17] Tobias Heuer and Sebastian Schlag. Improving Coarsening Schemes for Hypergraph
Partitioning by Exploiting Community Structure. In Costas S. Iliopoulos, Solon P.
Pissis, Simon J. Puglisi, and Rajeev Raman, editors, 16th International Symposium on
Experimental Algorithms (SEA 2017), volume 75 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 21:1–21:19, Dagstuhl, Germany, 2017. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[18] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based
optimization for general algorithm configuration. In Carlos A. Coello Coello, edi-
tor, Learning and Intelligent Optimization, pages 507–523, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[19] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Parallel algorithm configu-
ration. In Proc. of LION-6, pages 55–70, 2012.

[20] Frank Hutter, Thomas Stützle, Kevin Leyton-Brown, and Holger H. Hoos. Paramils:
An automatic algorithm configuration framework. CoRR, abs/1401.3492, 2014.

[21] Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient global optimiza-
tion of expensive black-box functions. Journal of Global Optimization, 13(4):455–
492, Dec 1998.

[22] George Karypis. Multilevel Hypergraph Partitioning, pages 125–154. Springer US,
Boston, MA, 2003.

[23] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel hy-
pergraph partitioning: application in vlsi domain. Proceedings - Design Automation
Conference, pages 526–529, 1 1997.

[24] George Karypis and Vipin Kumar. Multilevel k-way hypergraph partitioning. In
Proceedings of the 36th Annual ACM/IEEE Design Automation Conference, DAC
’99, pages 343–348, New York, NY, USA, 1999. ACM.

[25] Lars Kotthoff. Algorithm selection for combinatorial search problems: A survey.
CoRR, abs/1210.7959, 2012.

[26] Thomas Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. John
Wiley & Sons, Inc., New York, NY, USA, 1990.

[27] O. Lima and R. Ventura. A case study on automatic parameter optimization of a
mobile robot localization algorithm. In 2017 IEEE International Conference on Au-
tonomous Robot Systems and Competitions (ICARSC), pages 43–48, April 2017.

[28] Zoltán Ádám Mann and Pál András Papp. Formula partitioning revisited. 2014.
[29] Nicholas Freitag McPhee, Thomas Helmuth, and Lee Spector. Using algorithm

configuration tools to optimize genetic programming parameters: A case study. In

72

Bibliography

Proceedings of the Genetic and Evolutionary Computation Conference Companion,
GECCO ’17, pages 243–244, New York, NY, USA, 2017. ACM.

[30] Vitaly Osipov and Peter Sanders. n-level graph partitioning. In Mark de Berg and
Ulrich Meyer, editors, Algorithms – ESA 2010, pages 278–289, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

[31] Paola Pellegrini, Grégory Marlière, Raffaele Pesenti, and Joaquin Rodriguez. Recife-
milp: An effective milp-based heuristic for the real-time railway traffic management
problem. IEEE Transactions on Intelligent Transportation Systems, 16(5):2609–
2619, Oct 2015.

[32] Carl E. Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. The MIT Press, 2006.

[33] John R. Rice. The algorithm selection problem. volume 15 of Advances in Computers,
pages 65 – 118. Elsevier, 1976.

[34] Peter Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis. J. Comput. Appl. Math., 20(1):53–65, November 1987.

[35] Laura A. Sanchis. Multiple-way network partitioning. IEEE Trans. Comput.,
38(1):62–81, January 1989.

[36] Satu Elisa Schaeffer. Graph clustering. Computer science review, 1(1):27–64, 2007.
[37] Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke, Peter Sanders,

and Christian Schulz. k-way hypergraph partitioning via n-level recursive bisec-
tion. In 18th Workshop on Algorithm Engineering and Experiments, (ALENEX 2016),
pages 53–67, 2016.

[38] Ümit V. Catalyurek and Cevdet Aykanat. Hypergraph-partitioning-based decomposi-
tion for parallel sparse-matrix vector multiplication. IEEE Transactions on Parallel
and Distributed Systems, 10(7):673–693, Jul 1999.

[39] Natarajan Viswanathan, Charles Alpert, Cliff Sze, Zhou Li, and Yaoguang Wei. The
dac 2012 routability-driven placement contest and benchmark suite. In DAC Design
Automation Conference 2012, pages 774–782, June 2012.

[40] Sverre Wichlund. On multilevel circuit partitioning. In Proceedings of the 1998
IEEE/ACM International Conference on Computer-aided Design, ICCAD ’98, pages
505–511, New York, NY, USA, 1998. ACM.

[41] Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin,
1(6):80–83, 1945.

[42] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Hydra-mip: Auto-
mated algorithm configuration and selection for mixed integer programming. 2011.

[43] Ka Yee Yeung and Walter L. Ruzzo. Principal component analysis for clustering gene
expression data. Bioinformatics, 17(9):763–774, 2001.

73

	Abstract
	Introduction
	Motivation
	Contribution
	Structure of Thesis

	Preliminaries
	General Definitions
	Hypergraph
	Hypergraph Partitioning Problem
	Algorithm Configuration Problem

	Hypergraph Partitioning
	Multilevel Paradigm
	KaHyPar-CA

	Algorithm Configuration with SMAC
	Preliminaries
	Intensification
	Adaptive Capping
	Selection of Promising Configurations
	Parallelization of SMAC (pSMAC)
	Homogeneity and Size of Training Sets
	Features

	Summarizing Benchmark Results

	Algorithm Configuration for Hypergraph Partitioning
	Definition of Cost Functions
	Quality
	Running Time
	Pareto

	Required Optimization Time
	Parameters Affecting Optimization Time
	Required Minimum Optimization Time

	Training Set Selection
	Features
	Randomization Analysis
	Exclusion of Inappropriate Instances

	Finding a Better Benchmark Set
	Random Selection of Benchmark Set
	Verifying Representativeness of the Benchmark Set

	Validation of SMAC Configurations
	Dynamic Capping Time

	Experimental Evaluation
	Tuning Parameters
	Coarsening Parameters
	Actual Initial Partitioning Parameters
	Refinement Parameters

	Environment and Methodology
	Default Configuration
	Results
	Running Time
	Quality
	Pareto
	Comparison with PaToH and hMetis

	Discussion
	Conclusion
	Future Work

	Appendix
	Features of Hypergraphs
	New Benchmark Set
	Training Sets
	Configurations
	Significance Tests
	Improvement Plots

	Bibliography

