
Load-Balance and Fault-Tolerance for
Massively Parallel Phylogenetic Inference

Master’s Thesis of

Klaus Lukas Hübner

at the Department of Informatics

Institute of Theoretical Informatics, Algorithmics II

Reviewer: Prof. Dr. Alexandros Stamatakis

Second reviewer: Prof. Dr. Peter Sanders

Advisor: Dr. Alexey Kozlov

Second advisor: M.Sc. Demian Hespe

01 January 2020 – 30 June 2020





Abstract

Upcoming exascale supercomputers will comprise hundreds of thousands of CPUs. Scienti�c

applications on these supercomputers will face two major challenges: Hardware failures, and

parallelization e�ciency. We extend RAxML-ng, a widely used tool to build phylogenetic

trees, to mitigate hardware failures without user intervention. For this, we increase the

checkpointing frequency. We also detect failures, redistribute the work among the surviving

ranks, restore a consistent search state, and restart the tree search automatically. RAxML-ng

now supports fault tolerance in the tree search mode, using multiple starting trees, and

multiple alignment data partitions. RAxML-ng can handle multiple failures at once as well

as multiple successive failures. There is no limit on the number of failures that can occur

simultaneously or sequentially. We also support mitigating failures which occur during the

recovery of a previous failure or during checkpointing. In contrast to the previously available

manual recovery scheme, a recovery is initiated automatically after a failure, that is, the

user does not have to take any action. We benchmark our algorithms for checkpointing and

recovery. In our experiments, creating a checkpoint of the model parameters requires at

most 72.0 ± 0.9ms (400 ranks, 4,116 partitions). Creating a checkpoint of the tree topology

requires at most 0.575 ± 0.006ms (1,879 taxa). The overall runtime of RAxML-ng increases by

a factor of 1.02 ± 0.02 when using the new checkpointing scheme and by a factor of 1.08 ± 0.07
when using the new checkpointing scheme and ULFM v4.0.2u1 as the MPI implementation.

Restoring the search state after a failure requires at most 535 ± 19ms. We simulated up to

ten failures, which causes the overall runtime to increase by a factor of 1.3 ± 0.2. We also

describe multiple approaches on how to store the MSA data, which has to be re-read after a

failure, redundantly in memory to avoid disc-accesses after a failure. RAxML-ng synchronizes

thousands of times per second. How equally the load balancer distributes the work across the

CPUs therefore directly in�uences the overall runtime. We �nd that some ranks require up to

30 % more time to process their portion of the work than the average rank does. We also �nd

that a single rank sometimes requires the most time to process the current portion of work in

30 % of all iterations. We identify the site-repeats feature (an algorithmic optimization that

avoids redundant computations) as the cause of this imbalance. We also present algorithms to

solve the multi-sender ℎ-relation problem and the unilaterally-saturating 1-matching problem.

The multi-sender ℎ-relation problem is a variant of the ℎ-relation problem in which each

package can be received by any CPU in a set of valid sources. The unilaterally-saturating

1-matching problem is a variant of the 1-matching problem in bipartite graphs. In the 1-

matching problem, a function 1 (E) de�nes an upper-bound for the number of matching edges

each vertex E might be incident to. The matching is called unilaterally-saturating, if for one

of the two sets of the bipartite graph, each vertex is incident to at least one matching edge.

i



Zusammenfassung

Zukünftige Exascale Supercomputer werden aus hunderttausenden CPUs bestehen. Wis-

senschaftliche Anwendungen auf diesen Supercomputern werden mit zwei großen Heraus-

forderungen konfrontiert: Hardwareausfälle und e�ziente Parallelisierung. Wir erweitern

RAxML-ng, ein weitverbreitetes Softwarewerkzeug um Phylogenetische Bäume zu bauen,

um die Funktion Hardwareausfälle ohne Eingreifen des Anwenders zu behandeln. Dafür

erhöhen wir die Frequenz in welcher an Kontrollpunkten eine Sicherung des Zustands der

Suche erstellt wird. Wir stellen Fehler automatisch fest und verteilen im Fehlerfall die Ar-

beit an die überlebenden Ranks, stellen einen konsistenten Suchzustand wieder her und

starten die Baumsuche neu. All dies geschieht, im Gegensatz zum bisherigen Manuellen

Wiederherstellungsschema, ohne Einwirken des Nutzers. RAxML-ng unterstützt nun Aus-

fallsicherheit bei der Baumsuche, mit mehreren Startbäumen und mehreren Partitionen der

Alignmentdaten. RAxML-ng kann mehrere gleichzeitig und nacheinander auftretende Aus-

fälle behandeln. Es gibt dabei keine Obergrenze für die Anzahl der Ausfälle die gleichzeitig

oder hintereinander auftreten dürfen. Wir unterstützten zudem die korrekte Behandlung

von Ausfällen die während dem Wiederherstellungsvorgang eines vorhergehenden Aus-

falls oder während dem Speichern des Suchzustands an einem Kontrollpunkt auftreten. Wir

messen die Laufzeit unserer Algorithmen für das Erstellen von Kontrollpunkten und der

Wiederherstellung des Suchzustands. In unseren Experimenten dauert das Erstellen eines

Kontrollpuntes der Modelparameter höchstens 72.0 ± 0.9ms (400 Ranks, 4,116 Partitionen).

Das Erstellen eines Kontrollpunktes der Baumtopologie dauert höchstens 0.575 ± 0.006ms

(1,879 Taxa). Die Gesamtlaufzeit von RAxML-ng erhöht sich um den Faktor 1.02 ± 0.02 wenn

wir das neue Kontrollpunktschema verwenden und um den Faktor 1.08 ± 0.07 wenn wir das

neue Kontrollpunktschema und ULFM v4.0.2u1 als MPI Implementierung verwenden. Den

Suchzustand nach einem Hardwareausfall wiederherzustellen dauert höchstens 535 ± 19ms.

Wir haben bis zu zehn Hardwareausfälle simuliert, wodurch sich die Laufzeit um den Faktor

1.3 ± 0.2 verlängert hat. Wir beschreiben zudem mehrere Ansätze um die MSA-Daten, welche

nach jedem Ausfall neu gelesen werden müssen, redundant im Arbeitsspeicher der Ranks

vorzuhalten und so die Festplattenzugri�e zu vermeiden. RAxML-ng synchronisiert tausende

Male pro Sekunde. Wie gleichmäßig der Lastenverteilungsalgorithmus die Last auf die CPUs

verteilt beein�usst also direkt die Gesamtlaufzeit. Wir stellen fest, dass manche Ranks bis

zu 30 % mehr Zeit benötigen um ihren Teil der Arbeit zu erledigen als ein Rank im Durch-

schnitt benötigt. Wir stellen zudem fest, dass manchmal ein Rank in 30 % aller Iterationen die

meiste Zeit benötigt um sein Arbeitspaket abzuarbeiten. Wir identi�zieren die Site-Repeats

Funktion (eine Algorithmische Optimierung welche redundante Berechnungen vermeidet)

als den Ursprung dieser Ungleichverteilung. Wir stellen weiter Algorithmen vor, welche

ii



das multi-sender ℎ-relation Problem und das unilaterally–saturating (einseitig sättigend) 1-

matching Problem lösen. Das multi-sender ℎ-relation Problem ist eine Variante des ℎ-relation

Problems in welchem jedes Datenpaket von mehren CPUs empfangen werden kann. Das

unilaterally–saturating 1-matching Problem ist eine Variante des 1-matching Problems in

bipartiten Graphen. Beim 1-matching Problem, de�niert eine Funktion 1 (E) eine Obergrenze

für die Anzahl der Matchingkanten zu welcher jeder Knoten inzident sein darf. Wir nennen

ein Matching unilaterally-saturating, falls für eine der beiden Knotenmengen des Bipartiten

Graphen jeder Knoten inzident zu mindestens einer Matchingkante ist.

iii



Contents

I. Introduction 1

1. Introduction 2
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Scienti�c Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3. Structure of this Master’s Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4. Nomenclature: CPUs, Ranks, Nodes, and Processing Elements (PEs) . . . . . 4

2. Phylogenetic Tree Inference 5
2.1. What are Phylogenetic Trees? . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. Likelihood-Based Tree Inference . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1. Calculating the Likelihood of a Given Tree and MSA . . . . . . . . . 7

2.2.2. Overview of the Optimization Procedure . . . . . . . . . . . . . . . . 9

II. Profiling MPI-parallelized Phylogenetic Inference 13

3. Parallelization of Likelihood-Based Tree Inference 14
3.1. Parallelization Modes in RAxML-ng . . . . . . . . . . . . . . . . . . . . . . . 14

3.2. Parallelization Across Columns of a Multiple Sequence Alignment (MSA) . . 14

3.3. Load Distribution, Partitions, and Site Repeats . . . . . . . . . . . . . . . . . 15

3.4. Message Passing Primitives in RAxML-ng . . . . . . . . . . . . . . . . . . . . 16

4. Profiling RAxML-ng 17
4.1. Measuring MPI Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2. Hardware and Software Used . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3. Parameters Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4. Datasets Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.5. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.5.1. Absolute Time Required for Work and Communication . . . . . . . . 20

4.5.2. Relative Di�erences of Time Required for Work and Communication 23

4.5.3. Overall Work per Rank . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.5.4. Which Ranks are the Slowest? . . . . . . . . . . . . . . . . . . . . . . 26

4.5.5. Site-Repeats and Imbalance of Work . . . . . . . . . . . . . . . . . . 27

iv



Contents

III. Failure Mitigation 30

5. Fault-Tolerant MPI 31
5.1. Techniques for Fault Tolerant MPI Programs . . . . . . . . . . . . . . . . . . 32

5.2. The new MPI Standard and User Level Failure Mitigation . . . . . . . . . . . 33

5.3. Simulating Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6. Implementing a Failure-Mitigating RAxML-ng Tree Search 38
6.1. Current State - Checkpointing and Restart . . . . . . . . . . . . . . . . . . . 38

6.2. Mini-Checkpointing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2.1. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2.2. Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2.3. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2.4. Runtime Overhead Without Failures . . . . . . . . . . . . . . . . . . 43

6.3. Recovery after Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3.1. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3.2. Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3.3. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.3.4. Runtime Overhead With Failures . . . . . . . . . . . . . . . . . . . . 50

7. Eliminating Disk Access 52
7.1. Tree Based Compression of Multiple Sequence Alignments . . . . . . . . . . 52

7.1.1. Description of the Encoding . . . . . . . . . . . . . . . . . . . . . . . 52

7.1.2. Description of the Algorithm . . . . . . . . . . . . . . . . . . . . . . 56

7.2. General Redundant In-Memory Static Storage . . . . . . . . . . . . . . . . . 62

7.2.1. Problem Statement and Previous Work . . . . . . . . . . . . . . . . . 62

7.2.2. Preliminaries and Related Work . . . . . . . . . . . . . . . . . . . . . 63

7.2.3. Redistribution of Calculations . . . . . . . . . . . . . . . . . . . . . . 64

7.2.4. Restoring Redundancy After Failure . . . . . . . . . . . . . . . . . . 66

7.2.5. Redistribution of Data . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.2.6. Unilaterally-Saturating 1-Matchings in Bipartite Graphs . . . . . . . 68

7.3. A Probabilistic Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

IV. Summary 74

8. Discussion 75

9. Outlook 78

A. Appendix 80
A.1. Pro�ling RAxML-ng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

v



Contents

A.2. Random Seeds for Pro�ling Runs . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.2.1. Absolute Di�erence of Time Required for Work and Communication 80

A.2.2. Relative Di�erence of Time Required for Work and Communication 81

A.2.3. Imbalance of Work and Communication . . . . . . . . . . . . . . . . 82

A.2.4. Number of MPI calls per Second . . . . . . . . . . . . . . . . . . . . . 83

A.3. File Sizes of MSA data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.4. Fault Tolerant RAxML-ng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.4.1. Checkpointing the Tree . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.4.2. Overhead of Restoration and Mini-Checkpointing . . . . . . . . . . . 89

A.5. Additional image sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Acronyms 92

Bibliography 95

vi



List of Figures

2.1. Nomenclature of phylogenetic trees . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. Phylogenetic tree of rodentia . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3. Example of likelihood-computation . . . . . . . . . . . . . . . . . . . . . . . 8

2.4. SPR move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1. Parallelization of likelihood computations . . . . . . . . . . . . . . . . . . . . 15

3.2. Site-repeats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1. ForHLR II architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2. Explanation of the pro�ling measurements . . . . . . . . . . . . . . . . . . . 21

4.3. Absolute time required for work and communication . . . . . . . . . . . . . 22

4.4. Relative di�erence between ranks in time required for work and communication 24

4.5. Overall time spent working per rank . . . . . . . . . . . . . . . . . . . . . . 25

4.6. How often a rank requires the most time to process a work package . . . . . 27

4.7. Distribution of work with site-repeats ON and OFF . . . . . . . . . . . . . . . 28

5.1. Heartbeat-based failure detection . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2. Time required by ULFM to recover from rank failure . . . . . . . . . . . . . 36

6.1. Frequency of checkpointing . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2. SPR rollback mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3. Time required for model parameter broadcasting . . . . . . . . . . . . . . . . 44

6.4. Time required for recovery from checkpoint . . . . . . . . . . . . . . . . . . 49

6.5. Time required for reloading MSA from disk . . . . . . . . . . . . . . . . . . . 50

7.1. Encoding scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.2. Encoding of the tree and MSA . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.3. Ancestral state reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.4. Redistribution of calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.5. Memory layout and redistribution of blocks . . . . . . . . . . . . . . . . . . 66

7.6. Principle of block exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.7. Redistribution of blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.8. �-saturated minimal 1-matching . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.9. Probabilistic redundant in-memory storage . . . . . . . . . . . . . . . . . . . 72

A.1. Relative time required for work and communication . . . . . . . . . . . . . . 81

vii



List of Figures

A.2. Relative di�erence between ranks in time required for work and communication 84

A.3. Relative di�erence between ranks in time required for work and communication 85

A.4. Time spend working vs communicating . . . . . . . . . . . . . . . . . . . . . 86

A.5. In�uence of site-repeats on the time spend working vs communicating . . . 87

A.6. Number of MPI_Allreduce calls per second . . . . . . . . . . . . . . . . . . . 88

A.7. Time required for updating the tree . . . . . . . . . . . . . . . . . . . . . . . 90

viii



List of Tables

4.1. Datasets used for evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2. In�uence of the site-repeat feature on overall runtime . . . . . . . . . . . . . 28

5.1. MTTF of petascale systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2. Performance impact of ULFM . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1. Runtime overhead without failures . . . . . . . . . . . . . . . . . . . . . . . 45

6.2. Runtime overhead with failures . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.1. Empiric encoding e�ciency for real-world datasets . . . . . . . . . . . . . . 55

A.1. Random Seeds in the Pro�ling Experiments . . . . . . . . . . . . . . . . . . . 80

A.2. Summary on the relative di�erences of time required for work and communi-

cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.3. Distribution of work: Maximum number of sites per rank . . . . . . . . . . . 83

A.4. File size of the MSA datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.5. Time required for mini-checkpoints and recovery after a failure . . . . . . . 90

ix



Part I.

Introduction

1



1. Introduction

1.1. Motivation

Phylogenetics is the study of the history of the evolution of species [28]. Phylogenetic analysis

is important in the �elds of cancer research [96], viral infectious research [67, 106], wild life

conservation [34], drug discovery [9], and of course for inferring the tree of life [38, 117].

Phylogenetic analysis on today’s large datasets requires multiple days of CPU time [70] and

terabytes of memory [55, 77]. Most available High Performance Computing (HPC) systems

do not have this much memory available on a single node. We therefore have to parallelize

tree searches on large datasets. Additionally, we will obtain our results faster if we are using

parallelization.

Algorithms which perform phylogenetic tree searches on HPC systems, synchronize thou-

sands of times per second (see Appendix A.2.4). Each rank (see Section 1.4) has to wait for all

other ranks to �nish their current share of work at each synchronization point. To reduce the

runtime of the algorithm, it is therefore important that we distribute the work evenly.

Parallelizing a program over an increasing number of nodes (see Section 1.4) poses additional

di�culties. Failing hardware is projected to be one of the main challenges in future exascale

systems [97]. It is reasonable to expect that a hardware failure will occur in exascale-systems

every 30 to 60min [16, 25, 99]. To the best of our knowledge, no phylogenetic inference

software is currently able to handle hardware-failures without user intervention.

1.2. Scientific Contribution

RAxML-ng [69, 102] is the successor of RAxML, one of the most used and cited tools for

phylogenetic inference. RAxML-ng has been used to infer a phylogenetic tree on over 12,000

cores in parallel, for example on bird genomes (unpublished). Its predecessor ExaML, a

dedicated predecessor for supercomputers, has been used to infer a phylogenetic tree on over

4,000 cores in parallel [55]. We expect the need for highly parallel runs to increase as the size

of molecular datasets doubles every 18 months [41].

We designed and implemented an improved failure-mitigation strategy for RAxML-ng.

Currently, RAxML-ng uses a checkpoint/restart scheme. We can create checkpoints only

at certain points in the algorithm (see Section 6.2). Multiple hours can pass in-between

checkpoints. We increased the checkpoint frequency and made them more �ne-grained (see

Section 6.2). We also added the ability to handle rank failures without user intervention. We

detect failures, redistribute the work among the surviving ranks, and restart the tree search

2



1. Introduction

without user intervention (see Section 6.3). We benchmark our algorithms for checkpointing

and recovery (see Section 6.2.3 and Section 6.3.3).

When recovering after a rank failure, we redistribute the work among the surviving ranks.

The ranks which obtain additional work have to load the data they need for their computations

from disk. We describe three approaches on how to eliminate this disk access by storing the

data redundantly in the memory of the compute nodes (see Chapter 7). To the best of our

knowledge, no research into low-latency access and redundant storage without replacement

of failed ranks has been published to date (see Section 7.2.2).

We assess how equally RAxML-ng’s load balancer distributes the work across all ranks.

For this, we developed our own low-overhead pro�ling code and measured how long each

rank requires for each portion of work between two synchronization points (see Section 4.5).

We found that, over the runtime of the algorithm, some ranks require up to 30 % more time

than the average rank does (see Section 4.5.2). We proceed to show, that it is possible that a

single rank requires the most time to process the current portion of work in 30 % of all cases

(see Section 4.5.4).

We also present algorithms to solve the multi-senderℎ-relation problem and the unilaterally-

saturating 1-matching problem. The multi-sender ℎ-relation problem is a variant of the

ℎ-relation problem (see Section 7.2.2.1) in which each package can be received from any

PE in a set of valid sources (Section 7.2.5). The unilaterally-saturating 1-matching problem

is a variant of the 1-matching problem in bipartite graphs. In the 1-matching problem, a

function 1 (E) de�nes an upper-bound for the number of matching edges each vertex E might

be incident to. The matching is called unilaterally-saturating, if for one of the two sets of the

bipartite graph, each vertex is incident to at least one matching edge (see Section 7.2.6). To

the best of our knowledge, there do not exists any published algorithms to solve these two

problems.

1.3. Structure of this Master’s Thesis

We �rst introduce phylogenetic tree inference (Chapter 2) and how we parallelize a phylo-

genetic tree search (Chapter 3). We then proceed to pro�le the phylogenetic tree search of

RAxML-ng (Chapter 4). In Chapter 5 and Chapter 6 we describe our implementation of a fail-

ure tolerant phylogenetic tree search in RAxML-ng. In Chapter 7 we then discuss approaches

to redundant in-memory storage of static data across a distributed memory system. We

propose to use these techniques to eliminate the disk accesses which ranks need to perform

when they load new data to work on after a rank failure. We conclude with a discussion

(Chapter 8) and discuss future work in Chapter 9.

3



1. Introduction

1.4. Nomenclature: CPUs, Ranks, Nodes, and PEs

A word about nomenclature. Modern HPC systems comprise multiple computers connected

over a network (see Section 4.2). We call each of these computers a “node”. Each node has

its own main memory, that is, we are considering di�erent nodes to be distributed memory

machines. Each node may have multiple CPUs and each CPU has multiple physical cores.

All cores on a single node access the same main memory using a common address space and

therefore constitute a shared memory system. A single process can run on one or more cores,

possibly even on multiple CPUs of the same node. A single process will never run on multiple

nodes.

In a distributed memory system, the processes communicate over messages which they

pass over a network. The Message Passing Interface (MPI) is a standard describing message

passing primitives, for example broadcast or reduce (see Section 3.4). A collective MPI

operation is an operation in which each process of the application participates. When using

MPI, multiple processes on the same node communicate via messages, too. If we want to

leverage communication via the shared memory, we have to implement this using for example

PThreads (see Section 3.1). We call each MPI process a “rank”. In this thesis, we will not

spawn multiple threads on a single rank. Consequently, one rank will always run on one

CPU core. Multiple ranks might run on di�erent cores of one CPU.

In theoretical computer science, the concept of Processing Elements (PEs) exists. In this

thesis, a PE is equal to an MPI rank, that is, one process running on one core of one node,

communicating with other PEs via messages. We will use the terms rank or PE depending on

the context.

4



2. Phylogenetic Tree Inference

Phylogenetics is the study of the history of the evolution of a species [28]. Phylogenetic

analysis is important in the �elds of cancer research [96], viral infectious research [67, 106],

wild life conservation [34], drug discovery [9], and of course for inferring the tree of life [38,

117]. Reconstructing past events is always hard, especially when most of them happened

millions of years ago. Up until decades ago, scientists had to rely on comparative anatomy

and embryology to construct phylogenetic trees [28], for example, how many legs does an

animal have in comparison to others. As scientists in the 21st century are the lucky few who

can rely on computers to perform what we once did manually – only faster and better.

2.1. What are Phylogenetic Trees?

Today, phylogenetic researchers rely on molecular data, mainly Deoxyribonucleic Acid (DNA)

sequences, for reconstructing phylogenetic trees. Typically, we can obtain only the genetic

sequence of species that survived until this day, not of the ones which are already extinct.

By using molecular sequences instead of morphological traits, we have more data at hand

and can therefore build phylogenies with higher statistical con�dence. Additionally, bacteria

and viruses lack morphological traits. With molecular sequence data, we can still build

phylogenies for them.

tip

br
an
ch
le
ng
th

ancestral states

branch

tip tip

tip

Figure 2.1.: Nomenclature of Phylogenetic Trees. A tree consists of a tree topology and

branch lengths. Tips (leafs) have a degree of 1 (one neighbour). Ancestral states (inner nodes)

have a degree of 3. Branches (edges) connect two nodes and have a length.

5



2. Phylogenetic Tree Inference

Figure 2.2.: Phylogenetic tree of rodentia. It was derived from multiple whole-genome

alignments of protein-coding and non-coding sequences of rodent genomes [43].
1
; branch

support values removed for simplicity. The taxa (here: rodents) are written at the tips.

By assuming that all life on earth originated from a common ancestor [23], we can draw

a tree of life. The root of this tree is this common ancestor, the leaves are currently living

species. Phylogenetic inference is the process of computing this tree. A phylogenetic tree

consists of the topology, the branch lengths, and the sequences at the inner nodes.

When we compute phylogenetic trees, we are always assuming binary trees. In a binary

tree, each node has either one (tip, leaf) or three (ancestral state, inner node) adjacent nodes

(see Figure 2.1). We can simulate multifurcations by using multiple bifurcations which we

connect with branches with a branch (edge) length of zero. Additionally, in most mathematical

models we assume the tree to be unrooted [26, 101].

1
Figure taken from https://de.m.wikipedia.org/wiki/Datei:Phylogenetic_Tree_of_Rodentia.jpg

6

https://de.m.wikipedia.org/wiki/Datei:Phylogenetic_Tree_of_Rodentia.jpg


2. Phylogenetic Tree Inference

2.2. Likelihood-Based Tree Inference

When researchers �rst started to compute phylogenies, they developed methods which

assumed that more changes between two DNA sequences mean that more time has passed

since they diverged from their common ancestor [118]. This assumption does not account

for di�erent parts of the DNA sequence mutating at di�erent rates [73]. We will call this

phenomenon rate heterogeneity among sites. A site is a position in the Amino Acid (AA)

or DNA sequence. One cause of rate heterogeneity are di�erent DNA repair e�ciencies

and DNA replication �delities in di�erent parts of the genome [10]. It is also possible, that

mutations are reversed through a contrary mutation. In this case, both mutations cannot

be observed in the existent sequences. This will lead to an underestimation of the distance

between these two sequences [101].

Likelihood based phylogenetic inference tries to �nd the most likely tree among all possible

trees [32]. That is, the tree (model) whose probability is the greatest, given the sequences

(data). The input sequences have to aligned. We call this a Multiple Sequence Alignment

(MSA). Sequence alignment has the goal to insert gaps of varying lengths into the sequences,

such that those regions which share a common evolutionary history are aligned to each other.

On possible heuristic for computing an MSA is to minimize the number of di�erences between

the aligned sites of the MSA [18].

The likelihood of a tree does not represent the probability that this tree is the correct one.

Phylogenetic tree inference models evolution over time and accounts for multiple mutations at

the same position in the sequence as well as di�erent rates of mutation along the sequence [33].

Multiple studies [45, 71, 116] showed that Likelihood-based methods of phylogenetic inference

are able to reconstruct the true tree on simulated sequence data. Multiple open-source tools

are available to perform likelihood-based phylogenetic tree inference, for example PhyML [45],

FastTree [87], IQ-TREE [79], and RAxML/ExaML as well as its successor RAxML-ng [69, 102].

To search for the most likely tree, we must be able to evaluate the likelihood of a given

tree, optimize the branch-lengths to obtain the maximum score for a particular tree, have a

probabilistic model of nucleotide substitution, and e�ciently search the space of valid tree

topologies [101]. Finding the most likely tree is NP-hard [22].

2.2.1. Calculating the Likelihood of a Given Tree and MSA

A probabilistic model for nucleotide substitution has to provide the probability of a sequence

G1 evolving into another sequence G2 over a given period of time C . Both sequences must be

aligned to each other (see Section 2.2). For computational simplicity, we assume, that di�erent

nucleotides G8, G 9 of the sequence evolve independently of each other. This assumption

enables us to compute the likelihood of the whole sequence site by site by multiplying over

the transition probabilities, that is:

%
(
G1 → G2 | C

)
=

∏
8

%
(
G18 → G28 | C

)

7



2. Phylogenetic Tree Inference

For each site, a function %8, 9 (C) describing the probability of mutation from nucleotide 8

to 9 is given with 8, 9 ∈ {�,�,) ,�}. We assume a Markov-process, that is, the probability

%8, 9 (C) does not depend on previous mutations. We also assume time reversibility for these

nucleotide transitions, that is, in the steady state, the number of transitions from state - to .

and from state . to state - are the same. Let c ∈ {c = [0, 1]4 | ∑4

:=1
c: = 1} be the stationary

frequencies of the Markov chain. The following then holds [26, 101]:

∀8, 9 ∈ {A,C,G,T} : c8%8, 9 (C) = c 9% 9,8 (C)

When computing the likelihood of a substitution, it is therefore not important which sequence

is the ancestor. The likelihood is the same independently of the direction of the transition.

Consider a set of= sequences G 9 for 9 = 1, . . . , =which we will denote as G∗. These sequences

have to be aligned to each other (see Section 2.2). Let ) be a tree with = leaves with sequence

G 9 at leaf 9 . We will write C∗ for the edge lengths of the tree. Given our model of evolution, we

can de�ne % (G∗ | ), C∗), that is, the probability of observing sequences G∗ with tree topology

) and branch lengths C∗ [26]. We can now compute the likelihood of a phylogenetic tree,

given the tree topology, the sequences at the tips, and the model of evolution. The model of

evolution includes the nucleotide probabilities at the virtual root as well as the transition

probabilities between nucleotide states. The virtual root can be any arbitrary node we choose

to calculate the likelihood score of the given tree. As our transition probabilities are reversible,

we will obtain the same likelihood score independently of where we place the virtual root.

x
1

x
2

x
3

x
4

x
5

t1
t2

t3

t4

Figure 2.3.: An example phylogenetic tree with sequences G1, . . . , G5. Sequence G5 is the

virtual root. Its probability % (G5) could be, for example, based upon the observed nucleotide

frequencies. The probability of sequence G 9 mutating into sequence G8 over time C 9,8 is given

by % (G8 | G 9 , C 9,8). It depends on the time that passed and the model of evolution we assume.

We compute the likelihood of the tree by multiplying the probability of a sequence at the

virtual root % (G5) with the probabilities of each transition % (G8 | G 9 , C 9,8).

Let us consider the tree shown in Figure 2.3. We compute the likelihood of the tree by

multiplying the probability of a sequence at the virtual root % (G5) with the probabilities of

each transition % (G8 | G 9 , C 9,8). That is:

%
(
G1, . . . , G5 | ), C∗

)
= %

(
G1 | G4, C1

)
·
(
G2 | G4, C2

)
· %

(
G3 | G5, C3

)
·
(
G4 | G5, C4

)
· %

(
G5

)
8



2. Phylogenetic Tree Inference

We do not know the ancestral sequences if we are not using simulated data. To obtain

the probability %
(
G1, . . . , G3 | ), C∗

)
of the known sequences for the given tree, we can sum

e�ciently over all possible ancestors G4, G5 using the Felsenstein pruning algorithm [31].

Given this method of evaluating the likelihood of a tree, we can search for the maximum

likelihood tree. The maximum likelihood tree is the tree with the topology ) and the branch

lengths C∗ which maximizes % (G∗ | ), C∗) [26].

2.2.1.1. Model of Evolution

The model of evolution consists of the probability of a sequence at the virtual root as well

as the transition probabilities. We can, for example, estimate the probability of a sequence

at a virtual root by computing the nucleotide frequencies in the data and assume that this

was also the frequency at which the nucleotides were present at the time of the common

ancestor [26].

We can model the rate at which di�erent nucleotides mutate into each other using a variety

of models. These models mainly di�er in their degree of freedom. We could, for example,

assume, that all nucleotides occur equally often and all transitions are equally likely. This

simple model, known as the Jukes-Cantor model [56], has zero degrees of freedom. We do

not need to optimize its parameters. We could also model each nucleotide frequency and

transition separately. To ensure time-reversibility, however, the transition probabilities have

to be symmetric, that is, cA,G% (A → G) = cG,A% (G → A). Because reversibility has to be

maintained this model has 8 free parameters, which we can optimize [110].

The rate of mutation is not the same at all sites (see above). To account for this, Yang

suggests a site-dependent variable, AD , that scales all the C∗ at the site D [121]. For given AD , we

can then compute the likelihood of a sequence as

% (G∗ | ), C∗, A ) =
#∏
D=1

%
(
G∗D | ), ADC∗

)
We call this rate-heterogeneity. Since we do not know the values of AD we have to integrate

over all possible values, assuming that they are Γ distributed [26].

2.2.2. Overview of the Optimization Procedure

Finding the most likely tree is NP-hard [22]. Even approximation is di�cult as the number

of possible tree topologies

∏=
8=3(28 − 5) grows super-exponentially with the number of

sequences [33]. There are for example 8G1021 possible rooted topologies for a set of 20

taxa [122]. Heuristics are thus needed to approximate the global maximum of the likelihood

function. This Section will give an overview of heuristic used by RAxML-ng [68, 103, 105].

A tree is a tree topology with associated branch lengths. A phylogenetic tree is a tree with

an associated evolutionary model (see Section 2.2.1.1). A tree search consists of multiple

rounds of optimizing the tree topology, the branch lengths, and the evolutionary model.

9



2. Phylogenetic Tree Inference

RAxML-ng optimizes the tree topology by using Subtree Pruning and Regrafting (SPR) moves

(see Section 2.2.2.1). The general idea of SPR-rounds is to move a subtree to a di�erent position

and keep the resulting topology if this move improved the likelihood of the tree. RAxML-ng

repeats this procedure until the likelihood score does no longer improve. RAxML-ng uses

Newton-Raphson, BFGS [36], and Brent [15] optimization methods for branch length and

evolutionary model optimizations [101]. The algorithm of the tree search is described in the

following Sections. An Overview is given in Algorithm 1.

Algorithm 1 Overview of the RAxML-ng search heuristic

.

1: Optimize evolutionary model

2: Optimize all branch lengths on starting topology

3: Initial SPR rounds with increasing maximum distance

4: Optimize evolutionary model

5: repeat ⊲ Fast SPR rounds

6: Fast SPR iterations (no branch optimization)

7: Insert nodes whose regrafting lead to the top 60 trees into BN

8: for Node # ∈ BN do
9: Prune and regraft# again, scoring in slow mode (with branch length optimization)

10: Possibly insert resulting topology in the list BT of the 20 best scoring topologies

11: end for
12: for Topology ) ∈ BT do
13: Perform full branch length optimization on )

14: Possibly update current best scoring topology )best
15: end for
16: until )best not improved

17: Optimize evolutionary model

18: repeat ⊲ Slow SPR rounds

19: Slow SPR iterations; Possibly update list of 20 best scoring topologies BT

20: for Topology ) ∈ BT do
21: Perform full branch length optimization on )

22: Possibly update current best scoring topology )best
23: end for
24: if )best not improved then
25: Increase rearrangement distance (maximum distance of an SPR move)

26: end if
27: until )best not improved and maximum rearrangement distance reached

28: Optimize evolutionary model

10



2. Phylogenetic Tree Inference

?

likelihood improved

likelihood not improved

keep move

discard move

??

?

Figure 2.4.: Rearranging a subtree in a single iteration of a Subtree Pruning and Regrafting

(SPR)-round. We consider only moves with distance of 1 in this example. If we improved

the likelihood-score with the new topology, we conduct another iteration. Otherwise, the

SPR-round is �nished.

2.2.2.1. Subtree Pruning and Regra�ing (SPR) Rounds

The RAxML-ng optimization procedure starts with a tree already containing all sequences.

It uses either a random tree or a non-deterministically created parsimony tree as starting

point for its likelihood optimization. RAxML-ng then re�nes this initial tree topology using

SPR-moves.

One SPR iteration consists of removing (pruning) a subtree B from the currently best

scoring tree and reinserting (regrafting) it into a neighbouring branch (see Figure 2.4). Over

the course of one iteration, RAxML-ng tries all possible moves which are within the maximum

rearrangement distance. We evaluate this new tree topology using the old branch lengths

(fast mode) or after optimizing the branch lengths around the insertion node of the subtree

(slow mode). If this new tree topology has a better likelihood-score than the original tree, we

apply the SPR move. We continue the optimization using this new tree. We also keep the 20

top-scoring trees even if they do not improve the likelihood.

After each SPR iteration, we perform a full branch length optimization on the list of best

scoring trees. If we �nd a new maximum likelihood tree, we keep it. If we found a higher-

scoring tree in this SPR iteration, we conduct another one. The SPR round is �nished, if we

did not �nd any improvement to the current tree topology. During its tree search, RAxML-ng

performs multiple slow and fast SPR-rounds with di�erent rearrangement distances (see

Algorithm 1).

2.2.2.2. Branch Length and Model Parameter Optimization

Next to the tree topology, RAxML-ng also optimizes the branch lengths and evolutionary

models. As the transition probabilities are reversible (see Section 2.2.1), we can place a virtual

root at any branch 18 or node of the tree. We can then use this to optimize each branch length

11



2. Phylogenetic Tree Inference

individually to maximize the likelihood. RAxML-ng repeatedly optimizes all branch lengths

until the likelihood no longer improves. It is guaranteed, that the likelihood will constantly

improve and eventually converge throughout this process [101].

The model of evolution also has free parameters which we have to optimize. This in-

cludes the nucleotide base-frequencies, substitution probabilities, and parameters for rate-

heterogeneity (see Section 2.2.1.1). RAxML-ng uses Newton-Raphson, BFGS [36], and Brent [15]

optimization for branch length and evolutionary model optimizations [101]. See Algorithm 1

for the points during a tree search where RAxML-ng optimizes the evolutionary model and

the branch lengths.

12



Part II.

Profiling MPI-parallelized Phylogenetic
Inference

13



3. Parallelization of Likelihood-Based Tree
Inference

Phylogenetic inference on large datasets requires multiple days of CPU time [70] and terabytes

of memory [55, 77]. Most available HPC systems do not have this much memory available

on a single node. We therefore have to parallelize large tree searches. Additionally, we will

obtain our results faster if we are using parallelization. Phylogenetic tree searches spend 85 to

98 % of their total runtime evaluating the likelihood-score of a given tree [2]. In this Chapter,

we will describe the current parallelization strategy of RAxML-ng.

3.1. Parallelization Modes in RAxML-ng

RAxML-ng supports parallelization at three levels. At the single thread level, it uses parallelism

as provided by the x86 vector intrinsics (SSE3, AVX, AVX2). At the single node level, RAxML-

ng leverages the available cores by parallelization using PThreads. If we run RAxML-ng on a

distributed memory HPC system, it uses parallelization via message passing (using MPI) [83,

104]. We can enable all three levels of parallelism at the same time. This is for example useful

when running on a shared memory HPC system in which each multi-socket node comprises

several multi-core CPUs, each supporting vector parallelism. In this thesis we do not consider

PThreads parallelization. Instead, we run a separate MPI rank on each physical core of each

multicore processor.

3.2. Parallelization Across Columns of a Multiple Sequence
Alignment (MSA)

RAxML-ng is parallelized across the sites (columns) of the MSA (see Section 2.1). We can

compute the likelihood of one sequence mutating into another sequence over a given time

using the following formula (see Section 2.2.1):

%
(
B1 → B2 | C

)
=

∏
8

%
(
B18 → B28 | C

)
We can consequently evaluate all sites independently and multiply the resulting likelihoods

at the end. We can parallelize the likelihood computations across the sites and compute their

product using an allreduce operation (see Figure 3.1). This requires a single synchronization in

14



3. Parallelization of Likelihood-Based Tree Inference

each likelihood calculation. When optimizing the branch lengths, for example with Newton-

Raphson, we have to compute the �rst and second derivative. RAxML-ng parallelizes the

calculation of the derivatives across sites, too. This requires two further allreduce operations.

PE 1

PE 2

PE 3

sites

taxon

responsibilities

Figure 3.1.: Parallelization of Likelihood Computations. The load balancer assigns each PE

a share of sites for which it has to compute the likelihood score. A PE always computes

the likelihood score of its sites for the whole tree topology. The PEs then synchronize and

compute the product of the likelihood-scores over all sites via an allreduce call.

3.3. Load Distribution, Partitions, and Site Repeats

Calculating the likelihood requires approximately the same time for each column of the MSA.

That is, the workload on a PE is linear in the number of sites the load balancer assigns to it.

This does not hold, when we expand our model to account for the fact that di�erent parts of

the genome evolve according to di�erent evolutionary models (see Section 2.2.1). This is called

partitioned analysis. Each partition consists of a set of sites with an associated evolutionary

model consisting of transition probabilities, base frequencies, and branch length scalers. This

allows di�erent regions to evolve at di�erent rates [94].

Managing an additional partition on a PE comes at a computational cost. The load balancer

thus tries not to distribute a single partition among unnecessarily many PEs. This enables

each PE to only keep those models updated that the PE needs for its local likelihood computa-

tions [94]. If two PEs were to have the same number of sites assigned to them, but these sites

were drawn from a di�erent number of partitions, the PE with more partitions would require

more time to �nish its likelihood computations. We want to avoid such an imbalance, as this

causes every PE to wait for the slowest PE at every synchronization point.

It might happen, that two or more sites which belong to the same partition are identical

inside a subtree. The likelihood-score of these sites will then be exactly the same. We

consequently have to compute the likelihood-score only once and can then reuse it for all

15



3. Parallelization of Likelihood-Based Tree Inference

G G C C G

A A G G A

C T C G T

G C A G C

u

v

w

Figure 3.2.: Site Repeats. Subtree E has the site-repeat patterns G|A (dotted) and C|G (dashed).

SubtreeF has the site-repeat pattern T|C (dotted) and three not-repeated patterns. Subtree D

has the site-repeat pattern G|A|T|C and three not repeated patterns. When we are evaluating

a subtree, we have to compute the likelihood score only once for each site-repeat pattern and

not repeated pattern. When evaluating E we therefore have to conduct likelihood-calculations

of 2 patterns; 4 patterns when evaluating F , and 4 patterns when evaluating D. Without

considering site-repeats, we would always have to compute the likelihood-score of 5 patterns.

identical sites in the current subtree. We call this technique “site-repeats” (see Figure 3.2). We

could send the result of these likelihood computations over the network to other PEs which

have the same patterns. We would, however, need to do this on each likelihood evaluation.

This incurs too big of an overhead compared to re-computation to be feasible [94]. We

therefore compute the likelihood for each pattern once on every PE and then reuse the result

on this PE. This technique has been shown to speed up the overall runtime by a factor of 2

and decreases the memory used by up to 50 % [54].

3.4. Message Passing Primitives in RAxML-ng

RAxML-ng uses only one type of MPI operation during tree search: MPI_Allreduce. Consider

an associative operation ⊕. Given data G8 on each PE 8 , a reduction computes [92]

⊕8≤? = G1 ⊕ G2 ⊕ · · · ⊕ G?

The di�erence between reduce and allreduce is, that allreduce will ensure that the �nal

element is available at all PEs [112]. RAxML-ng uses MPI_Allreduce with addition as the

reduction operator to compute the Log-Likelihood (LLH). Likelihoods tend to get very small.

It is therefore more numerically stable to compute the log-likelihood, that is, the logarithm

of the likelihood function. As the likelihood function is strictly increasing, maximizing the

likelihood is equivalent to maximizing the log-likelihood. RAxML-ng also uses MPI_Allreduce

to compute the derivatives used in branch length optimization. RAxML-ng does not perform

any other collective operation during the tree search. In other parts of the program, for

example during checkpointing, RAxML-ng also conducts broadcasts and other MPI operations.

16



4. Profiling RAxML-ng

RAxML-ng conducts thousands of MPI_Allreduce operations per second (see Appendix A.2.4).

Every one of these operations causes all MPI ranks to synchronize. This means, that all ranks

have to wait for the slowest one. We pro�le RAxML-ng v0.9.0 (see Section 4.2) to quantify

how this synchronization causes slowdowns. If the load balancer distributes computations

(“work”) unequally across ranks, some ranks will work longer than others. This causes the

faster ranks to wait for the slowest one at each synchronization point. An imbalanced work

distribution will therefore increase the overall runtime.

4.1. Measuring MPI Performance

We can measure the performance of MPI programs for example using the Pro�le Layer of

MPI (PMPI). For instance Freeh et al. [39] and Rountree et al. [91] use PMPI for pro�ling.

With PMPI, MPI allows the user to rewrite all MPI_* functions. We can use this to add any

functionality we desire, for example pro�ling code [113]. This approach is restricted to

measuring the time spend inside of MPI calls and the time in-between them. It allows us

to pro�le during production with minimal overhead. This would, in principle, enable us to

implement dynamic rebalancing of the workload to reduce the runtime of RAxML-ng.

Another approach to pro�ling is to instrument the code using a compiler wrapper. For ex-

ample Score-P [63] and Scalasca [123] provide such wrappers and associated helper programs.

Using pro�ling libraries, for example Caliper [12], we have an even more �ne-grained control

over which parts of the program to pro�le. With these methods we can pro�le any parts of

the code, not only those between MPI calls. They, however, incur a higher overhead if we

pro�le too many code sections.

We choose to implement our own instrumentation for pro�ling. All MPI calls in RAxML-ng

are already wrapped in the ParallelContext class. This enables us to pro�le them with only

a few modi�cations to the codebase. Using our own instrumentation, we can also pro�le other

parts of the code (see for example Section 6.2.3). We chose to write custom code instead of

using a pro�ling library like Caliper [12], because this allows us to control the granularity and

format of the measurement. In the experiments in Section 4.5.1 we want to measure and store

how long a rank is working in a histogram with exponentially growing bins. In Section 4.5.2

we want to track how long a rank is working in a histogram of fractions/multiples of the

median work duration. We veri�ed the results obtained using our custom pro�ling with

benchmarks performed using Arm MAP
1

and Scalasca [123]).

1https://www.arm.com/products/development-tools/server-and-hpc/forge/map

17

https://www.arm.com/products/development-tools/server-and-hpc/forge/map


4. Pro�ling RAxML-ng

4.2. Hardware and So�ware Used

We conduct all experiments in this thesis on the ForHLR II supercomputer located at the

Steinbruch Center for Computing (SCC) in Karlsruhe. It comprises 1,178 worker nodes. Each

node is equipped with two sockets of Intel Xeon E5-2660 v3 (Haswell) Deca-Core CPUs.

These CPUs run at a base clock rate of 2.1GHz (max. 3.3GHz) which results in a theoretical

maximum throughput of 832GFLOPS per node. Each CPU has 64 KiB L1-cache (per-core),

264 KiB L2-cache (per core), 25MiB L3-Cache (shared), and a 2,133MHz bus as well as 64GiB

RAM. All nodes are connected to each other via an In�niBand 4X EDR interconnection [108].

In each experiment we describe how many nodes we use.

Figure 4.1.: ForHLR II architecture. A worker node comprises a two socket system with

10 CPU cores each. All worker nodes and the �le server nodes are connected using EDR

In�niBand. Image taken from the ForHLR II’s website
2
; simpli�ed to only show the part of

the infrastructure we use.

We store our input �les on a Lustre distributed �le system residing on a DDN ES7K RAID

with 14 volumes. Each �le is striped across 1 volume. We can read �les from disk with

a theoretical maximal performance of 2GiB s
−1

on a single node and 10GiB s
−1

across all

nodes. Two �le server nodes provide �le access [107]. Each of them has identical hardware as

the compute nodes. This is the default con�guration on the ForHLR II. It is possible to, for

example, increase the number of stripes or �le servers serving the �les. We do not use this

feature for our experiments as we wanted to measure the performance in a typical use case,

as most users of RAxML-ng will not hand-tune their �le-system con�guration.

2https://www.scc.kit.edu/dienste/forhlr2.php

18

https://www.scc.kit.edu/dienste/forhlr2.php


4. Pro�ling RAxML-ng

All nodes are running Red Hat Enterprise Linux (RHEL) 7.x and Slurm 20.02.3. We use

OpenMPI 3.1 and GCC 9.2 for our experiments where not mentioned otherwise. The RAxML-

ng version we benchmarked was a few commits after the 0.9.0 release (66ad9d2233 on branch

master; 9th September 2019). Fault tolerant RAxML-ng is based upon c2af275ae6 on branch

coarse released on March 5th 2020.

4.3. Parameters Used

We conduct the pro�ling experiments with the following options when not noted otherwise.

We only pro�le the phylogenetic tree search mode (see Section 2.2.2) and use parsimony

starting trees. We document the random seeds we use in Appendix A.2. Tip-inner is turned

o�, pattern compression is turned on, per-rate scalers are turned o�, site-repeats are turned

on, the fast SPR radius is auto-detected, branch lengths scalers are proportional (ML estimate

with NR-fast algorithm), the Single Instruction Multiple Data stream (SIMD) parallelization

kernel is AVX2, and the number of threads per MPI rank is one. We analyse all datasets using

one partition (see Section 3.3). See the RAxML-ng manual for details on these parameters.
3

4.4. Datasets Used

For the experiments in this thesis, we selected empirical protein (AA) and DNA datasets with

varying number of taxa (36 up to 815), alignment length (20,364 up to 21,410,970 sites), and

partition count (1 to 4,116, see Table 4.1). The fasta and model �les are available online.
4

3https://github.com/amkozlov/raxml-ng/wiki
4https://figshare.com/s/6123932e0a43280095ef

19

https://github.com/amkozlov/raxml-ng/wiki
https://figshare.com/s/6123932e0a43280095ef


4. Pro�ling RAxML-ng

Table 4.1.: Characteristics of the datasets used for evaluating RAxML-ng.

Designator Data # taxa # alignment # unique # parti- Reference

type sites patterns tions

SongD1 DNA 37 1,338,678 746,408 1 Song et al. [100]

MisoD2a DNA 144 1,240,377 1,142,662 100 Misof et al. [77]

XiD4 DNA 46 239,763 165,781 1 Xi et al. [119]

PrumD6 DNA 200 394,684 236,674 75 Prum et al. [88]

TarvD7 DNA 36 21,410,970 8,520,738 1 Tarver et al. [109]

PeteD8 DNA 174 3,011,099 2,248,590 4,116 Peters et al. [82]

ShiD9 DNA 815 20,364 13,311 29 Shi and Rabosky [98]

NagyA1 AA 60 172,073 156,312 594 Nagy et al. [78]

ChenA4 AA 58 1,806,035 1,547,914 1 Chen et al. [19]

YangA8 AA 95 504,850 476,259 1,122 Yang et al. [120]

KatzA10 AA 798 34,991 34,937 1 Katz and Grant [58]

GitzA12 AA 1,897 18,328 18,303 1 Gitzendanner et al. [42]

4.5. Experiments

In this Section, we present the pro�ling results of RAxML-ng. We use the hardware and

software we describe in Section 4.2 and the parameters we describe in Section 4.3. We

summarize the datasets we use in Section 4.4. We analyse one tree search per con�guration,

measuring every MPI_Allreduce call and the time in-between MPI_Allreduce calls. We call

the time in-between MPI_Allreduce calls “work packages”. If we write a checkpoint between

two MPI_Allreduce calls, we discard this measurement because we do not want to measure

the checkpointing performance in this experiment. We measure thousands of MPI_Allreduce

calls and therefore thousands of work packages per second (see Appendix A.2.4).

4.5.1. Absolute Time Required for Work and Communication

We measure the absolute time each rank takes to complete a code segment (see Figure 4.3). A

code segment is either an MPI_Allreduce call (left) or a work package (right).

Each bar shows the data for a single rank. The colours are used to group the ranks by

the physical node they run on. For example, the run on the ChenA4 dataset with 160 ranks

(top-left) runs on 8 nodes, the run on ShiD9 using 20 ranks (bottom-right) runs on one node.

Each bar depicts the distribution of all the measurements of the time required to process a

work (right) or communication (left) package on this rank. A communication package is a

20



4. Pro�ling RAxML-ng

Rank 1

Rank 2

Rank 3

Rank 1

w1
1

w2
1

w3
1

w4
1

w1
2

w2
2

w3
2

w4
2

w1
3

w2
3

w3
3

w4
3

c11

c21

c31

c41

c12

c22

c32

c42

c13

c23

c33

c43

frequency

(a) wrank
j

(b) crankj

(c) wrank
j /avgi(w

i
j)

0.95 quantile

0.05 quantile

median

Figure 4.2.: All ranks process a work package (grey bars) each in parallel. When a rank

�nishes its work package, it enters the MPI_Allreduce call (horizontal line). Ranks wait for

each other at a barrier (dashed line). The ranks exit the MPI_Allreduce non-synchronously

and proceed with the next work package. Each rank measures the time it spends in each

work package F rank

8 and communication package 2rank8 . As the ranks process thousands of

work packages per second (see Appendix A.2.4), they can store their measurements only in

histograms. (a,b) To show the time required for work/communication packages on each rank,

the distribution on each rank is reduced to a single vertical bar. The upper end depicts the

0.95-quantile, the lower end the 0.05-quantile. For some measurements, other quantiles are

used. The black dot depicts the median. The distribution of the time required to process

work packages is not Gaussian! (c) For each measurement, we compute the average using an

allreduce operation. We then compute how much longer each rank required than the average

rank and store this Package-Speci�c Slowdon (PSS) in the histogram.

single MPI_Allreduce call. A work package is the time between two MPI_Allreduce calls. A

bar ranges from the 0.01 to the 0.99 quantile of the times required on this rank. Black dots

indicate the median time required (see Figure 4.2.a).

There is no way of knowing when exactly each rank enters or exits a code segment

without synchronized clocks. If a rank �nishes its work, we stop its work timer and start its

MPI_Allreduce timer. The rank then immediately enters the MPI call. It waits inside the MPI

call until all other ranks �nished their work and arrive at the barrier of the MPI operation. For

some runs, for example on the AA dataset ChenA4 using 160 ranks (top-left), the time spent

doing work is an order of magnitude higher than the time spent in MPI_Allreduce calls. For

others runs, for example the run on the DNA dataset SongD1 using 360 ranks (top-right), the

time RAxML-ng spends in MPI_Allreduce calls and performing work is in the same order of

magnitude. In some runs, for example on the DNA dataset SongD1 with 360 ranks (top-right),

21



4. Pro�ling RAxML-ng

PrumD6 (DNA), 200 ranks ShiD9 (DNA), 20 ranks

MisoD2a (DNA), 20 ranks XiD4 (DNA), 160 ranks

SongD1 (DNA), 400 ranks SongD1 (DNA), 80 ranks

ChenA4 (AA), 160 ranks SongD1 (DNA), 360 ranks

MPI_Allreduce Work MPI_Allreduce Work

MPI_Allreduce Work MPI_Allreduce Work

MPI_Allreduce Work MPI_Allreduce Work

MPI_Allreduce Work MPI_Allreduce Work

100 ns
1 µs

10 µs
100 µs

1 ms

100 ns
1 µs

10 µs
100 µs

1 ms
10 ms

100 ns
1 µs

10 µs
100 µs

1 ms

10 µs

100 µs

10 µs

100 µs

1 ms

10 ms

100 ns
1 µs

10 µs
100 µs

1 ms

1 µs
10 µs

100 µs
1 ms

10 ms
100 ms

10 µs

100 µs

rank

tim
e 

sp
en

t i
n 

co
de

 s
eg

m
en

t

Figure 4.3.: Absolute time required for work and communication. Each bar depicts one rank.

The colours group ranks by physical nodes. Each bar depicts the range between the 0.01 and

0.99 quantile of the time required on this rank. Black dots indicate the median. We bin the

values into exponentially growing bins ([1 to 2) ns, [2 to 4) ns, [4 to 8) ns, . . .). There are

20 ranks running on each node (one per physical CPU core).

the variance of the time taken performing work is greater than the variance of time required

to communicate via MPI_Allreduce calls. The amount of work between two MPI_Allreduce

calls varies. This is expected. RAxML-ng’s algorithm is complex and has di�erent phases (see

Section 2.2.2). Depending on where in the algorithm we currently are, we execute di�erent

parts of the code during this work package. This can be anything between a likelihood

evaluation on the current tree topology (see Section 2.2.1) and executing a SPR move (see

Section 2.2.2).

The �rst rank per node sometimes requires the least time to �nish a package. This is

expected. We spend 85 to 98 % of the total runtime evaluating log-likelihood scores [2]. We

do this, by computing the log-likelihood score of all sites independently and then computing

their sum – �rst locally, then across all ranks (see Section 3.2 and Section 3.4). Consequently,

the amount of work a rank has to perform to compute its local likelihood-score is linear to its

22



4. Pro�ling RAxML-ng

number of sites. The load-balancer assigns the least number of sites to the �rst processor on

each rank. It thus has to perform the least work.

All ranks require about the same time to process their largest work packages in more than

99 % of cases. We cannot use Figure 4.3 to argue about small work packages or if any rank

requires more time than other ranks to process the same work package. To investigate this,

we have to measure the relative di�erence between the times required by di�erent ranks. We

do this in the next Section.

4.5.2. Relative Di�erences of Time Required for Work and Communication

We measure how much the time required to complete the same work or communication

package di�ers between ranks. We measure the absolute di�erences (Crank − Cfastest ; see

Appendix A.2.1) and the relative di�erences (Crank/Caverage) of the time required to process

work packages and communication packages between ranks. To ascertain the time required by

the fastest rank and the time required on average, we conduct one additional MPI_Allreduce

call after each work package and its associated MPI_Allreduce operation. We do not measure

the time required for this operation. In this Section, we describe the measurements of the

relative di�erences, which we call Package-Speci�c Slowdon (PSS) for simplicity.

The time required for a work package varies by multiple orders of magnitude (see Sec-

tion 4.5.1). We therefore investigate the PSS between each rank and the average rank (see

Figure 4.4). That is, each rank computes Crank/Caverage for each work or communication pack-

age. For example, a value of 1.1 indicates, that a rank requires 10 % more time to process the

current package than the average over all ranks. We chose to compare against the average

instead of against the fastest rank, as there are outliers when looking at the minimum time

(see Appendix A.2.1). A bar ranges from the 0.05 to the 0.95 quantile of the PSS distribution

of this node. Black dots indicate the median PSS (see Figure 4.2.c).

If a rank requires less time to �nish a work or communication package than the average

rank, the other ranks do not have to wait for it. This does therefore not increase the overall

runtime. If a rank requires more time to �nish than the average, other ranks have to wait for

it at the next MPI_Allreduce call. We consequently want to avoid this situation. In all our

measurements, there is at least one work package for which at least one rank requires more
than 11 times as much time than the average rank. For all but one run

5
, there is also at least

one work package for which at least one rank requires at least 11 times less time than the

average rank. We use binned histograms to store the PSS. We choose 11 times faster/slower

as the largest/the smallest bin. The outliers might thus lie even farther out. We analyse the

impact of these outliers on the total runtime in Section 4.5.3 and Appendix A.2.2.

Across all runs, no rank has a work-PSS of more than 2.75 on more than 5 % of packages. In

half of the runs, the worst 0.95 quantile work-PSS across all ranks was less or equal to 1.25. In

each run, the 0.95 quantile work-PSS was at least 1.15. Therefore, in each run, on at least one

5
For this run, there is at least one work-package for which at least one rank requires 7 times less time than the

average rank.

23



4. Pro�ling RAxML-ng

PrumD6 (DNA), 200 ranks ShiD9 (DNA), 20 ranks

MisoD2a (DNA), 20 ranks XiD4 (DNA), 160 ranks

SongD1 (DNA), 400 ranks SongD1 (DNA), 80 ranks

ChenA4 (AA), 160 ranks SongD1 (DNA), 360 ranks

MPI_Allreduce Work MPI_Allreduce Work

MPI_Allreduce Work MPI_Allreduce Work

MPI_Allreduce Work MPI_Allreduce Work

MPI_Allreduce Work MPI_Allreduce Work
1.0

1.2

1.4

1.6

1.0

1.5

2.0

1.0

1.2

1.4

1.0

1.2

1.4

1.0

1.2

1.4

1.6

1.00

1.25

1.50

1.75

1.0

1.5

2.0

2.5

1.0

1.1

1.2

1.3

1.4

rank

tim
e(

ra
nk

) 
/ t

im
e(

av
g)

Figure 4.4.: Relative di�erences of the time required for work and communication packages

(Package-Speci�c Slowdon (PSS)). That is, each rank computes Crank/Caverage for each work

or communication package. Each bar depicts the distribution of the PSSs of one rank. The

colours group together ranks on the same node. The bar ranges from the 0.05 to the 0.95

quantile of the PSS. Black dots indicate the median of the PSS. For example: A bar ranging up

to 1.6 means, that this rank required 60 % more time than the average rank for at least 5 % of

the work/communication packages. The ~-axis is truncated below 1.

rank, at least 5 % of work packages required at least 15 % more time to proceed than on the

average rank. This points to an imbalance in the work distribution. From Figure 4.4 we cannot

24



4. Pro�ling RAxML-ng

extract the impact of this imbalance on the total runtime. It could be, that the imbalance only

exists for small work packages and that large work packages are more balanced. In the next

Sections we look into how the overall work volume (sum of all work packages) is distributed.

Overall, the variance of the PSS is larger for communication packages than for work pack-

ages. MPI_Allreduce calls require up to an order of magnitude less time than work packages

(see Section 4.5.1). A rank which �nishes with its work package will enter the following

MPI_Allreduce call and wait there for all other ranks to �nish their work. Consequently, a

small relative di�erence in the time required to complete a work package will cause a large

relative di�erence in waiting time inside the following MPI_Allreduce call. This explains the

greater variance of relative di�erences for MPI_Allreduce calls vs work packages.

4.5.3. Overall Work per Rank

MisoD2a (DNA), 20 r. XiD4 (DNA), 160 r. PrumD6 (DNA), 200 r. ShiD9 (DNA), 20 r.

ChenA4 (AA), 160 r. SongD1 (DNA), 360 r. SongD1 (DNA), 400 r. SongD1 (DNA), 80 r.

0.9

1.0

1.1

0.95

1.00

1.05

1.10

0.7

0.8

0.9

1.0

1.1

1.2

1.3

0.90

0.95

1.00

1.05

1.10

0.8

0.9

1.0

1.1

1.2

1.3

0.90

0.95

1.00

1.05

0.96

1.00

1.04

0.88

0.92

0.96

1.00

1.04

one dot per rank

w
or

k 
on

 th
is

 r
an

k 
/ a

ve
ra

ge
 w

or
k 

ac
ro

ss
 a

ll 
ra

nk
s

Figure 4.5.: Overall time spent working per rank, normalized by the average time across all

ranks. We show the fraction of work on this rank divided by the average work across all

ranks on the ~-axis. We show on dot per rank. For example, a dot at ~ = 1.04 indicates, that a

speci�c ranks requires 4 % more time to �nish its work than the average rank does. “r.”: ranks

We measure the sum of work performed on each rank. That is, we time each interval

between two MPI_Allreduce operations and consider it as work package. We discard work-

packages during which we write a checkpoint. We measure thousands of work packages per

25



4. Pro�ling RAxML-ng

second (see Appendix A.2.4), while a checkpoint is written only every few minutes to hours

(see Figure 6.1). We therefore do not loose much information but prevent the time-intensive

checkpoints from distorting our measurements. We then compute the total time each rank

worked on the non-discarded work packages. We show this rank speci�c total work-time

divided by the average work-time in Figure 4.5. For example, a dot at ~ = 1.04 indicates, that

a speci�c ranks requires 4 % more time to �nish its work than the average rank does.

For all runs, the maximum imbalance of overall work is below 30 %. That is, the slowest

rank requires no more than 30 % more time to �nish all their work packages than the average

rank. For six of the eight runs, the imbalance of work is below 15 % and for half of the runs it

is below 10 %. This shows, that there is an imbalance in the distribution of work between the

ranks. In Section 4.5.5, we investigate the cause for this imbalance.

4.5.4. Which Ranks are the Slowest?

In Section 4.5.3, we �nd an imbalance in the distribution of work across the ranks of 15 to

30 %. The slowest rank requires 15 to 30 % more time to process all its work packages than

the average rank does. This does not answer the question if the same ranks are the slowest

ones for each work package. One rank could require the most time for every work package. It

could also be, that while many ranks require a large amount of time for some work package,

only some ranks are slower on average.
We thus count how often each rank requires the most time for processing a work package.

We show this data in a Figure 4.6, with the rank count on the G-axis and the fraction of time

a rank was the slowest to process a work package on the ~-axis. For example, a dot at 0.03

indicates that a speci�c ranks requires the most time for 3 % of work-packages. We also look

at the fraction of time each rank spends working compared to the time it spends inside an

MPI_Allreduce call (see Appendix A.2.3).

We measure the time required for processing each work package on each rank. This

measurement uses the local clock. The rank which requires the most time to conduct its work

is not necessarily the last one to arrive at the barrier of the following MPI_Allreduce. This is,

because the ranks did not exit the previous barrier synchronously. The time required for an

MPI_Allreduce is up to an order of magnitude less than the time required to process a work

package (see Section 4.5.1). We want to argue about the imbalance of work across the ranks

and therefore neglect this di�erence.

For three of the eight measurements, a single rank is the slowest rank on at least twice as

many work packages than any other rank. For example in the run on ShiD9 with 20 ranks

on a single node (bottom-right), one rank was the slowest rank for 30 % of work packages.

All other ranks are the slowest rank in less than 10 % of the work packages. On �ve out of

eight runs, at least one rank was the slowest rank for more than 5 % of the time. Taking into

account the previous Sections, we can conclude, that there is a systematic imbalance. The

same ranks require the most time to process a work package for a substantial fraction of all

work packages and the sum of work is unevenly distributed across the ranks.

26



4. Pro�ling RAxML-ng

MisoD2a (DNA), 20 r. XiD4 (DNA), 160 r. PrumD6 (DNA), 200 r. ShiD9 (DNA), 20 r.

ChenA4 (AA), 160 r. SongD1 (DNA), 360 r. SongD1 (DNA), 400 r. SongD1 (DNA), 80 r.

5 10 15 20 0 50 100 150 0 50 100 150 200 5 10 15 20

0 50 100 150 0 100 200 300 0 100 200 300 400 0 20 40 60 80

0.02

0.04

0.06

0.08

0.0

0.1

0.2

0.3

0.00

0.02

0.04

0.06

0.005

0.010

0.00

0.02

0.04

0.06

0.005

0.010

0.015

0.020

0.01

0.02

0.03

0.04

0.08

0.12

0.16

one dot per rank

fr
ac

tio
n 

of
 it

er
at

io
ns

 th
is

 r
an

k 
to

ok
 lo

ng
es

t t
o 

fin
is

h 
w

or
k

Figure 4.6.: How often a rank requires the most time to process a work package. The plot

shows the fraction of work packages for which a rank is the slowest. For example, a dot at

0.03 indicates that a speci�c ranks requires the most time for 3 % of work-packages. The black

vertical bars show the fraction a rank is expected to be the slowest one, that is,
1

nRanks
. “r.”:

ranks

4.5.5. Site-Repeats and Imbalance of Work

In Section 4.5.3 we showed, that there is an imbalance of work of up to 30 % in our measure-

ments. In Section 4.5.4 we showed, that for some runs, a single rank requires the most time to

process the current work package for 30 % of all work packages.

The question now is, what causes this imbalance? We hypothesize, that the site-repeat

feature (see Section 3.3) is causing this. Remember that site-repeats are sites which are identical

in di�erent subtrees. If we consider site-repeats, we can omit redundant computations. As

transferring the results of this computations over the network requires too much time, we can

only consider site-repeats on the same rank. The current load balancer does not account for

site-repeats. If di�erent ranks have di�erent amount of site-repeats, they can omit a di�erent

amount of computations which causes the work to be unevenly distributed.

To underpin our hypothesis with data, we compare the imbalance of work between runs

with site-repeats turned on and o�. We keep the dataset and number of ranks constant. We

also look at how the time working to total runtime ratio changes when enabling site-repeats

(see Appendix A.2.3).

27



4. Pro�ling RAxML-ng

SongD1 (DNA), 360 r. SongD1 (DNA), 400 r. MisoD2a (DNA), 20 r. ShiD9 (DNA), 20 r.

site−
repeats O

F
F

site−
repeats O

N

0 100 200 300 0 100 200 300 400 5 10 15 20 5 10 15 20

0.7

0.8

0.9

1.0

1.1

1.2

1.3

0.7

0.8

0.9

1.0

1.1

1.2

1.3

one dot per rank

w
or

k 
on

 th
is

 r
an

k 
/ a

ve
ra

ge
 w

or
k 

ac
ro

ss
 a

ll 
ra

nk
s

Figure 4.7.: Distribution of work with site-repeats ON and OFF. Each rank measures the

total time it is working and normalizes this measurement with the average time a rank is

working. With the site-repeats feature turned OFF (vs. ON), the variance is signi�cantly smaller

(one-sided � -test; ? < 0.002 for ShiD9, ? < 10
15

otherwise). “r.”: ranks

Table 4.2.: Runtimes of RAxML-ng with the site-repeat based omission of redundant calcula-

tions ON vs. OFF. We use all 20 CPU cores on each node.

dataset nodes ranks runtime SR o� [s] runtime SR on [s] speedup
SongD1 18 360 5,633 1,352 4.17

MisoD2a 1 20 65,795 46,155 1.43

ShiD9 1 20 48,450 20,911 2.32

XiD4 8 160 7,718 5,582 1.38

Disabling site-repeats decreases the imbalance (variance) of work signi�cantly (one-sided

� -test; ? < 0.002 for ShiD9, ? < 10
15

otherwise; see Figure 4.7). Disabling site-repeats in

production runs is nonetheless not a good idea. By disabling the site-repeats feature, we

increase the runtime of RAxML-ng by up to 417 % in our experiments (see Table 4.2). Using the

site-repeats feature thus speeds up the computation considerably, but also causes imbalance

of work.

Writing a load balancer which takes into account the work saved by site-repeats is not

trivial. Which sites are repeats of one another depends on the current subtree. The same site

28



4. Pro�ling RAxML-ng

can be a site repeat of multiple other sites, one (or multiple) for each subtree. We propose and

implement a site-repeats aware load balancer by reducing the problem to judicious hypergraph

partitioning in another publication [8].

29



Part III.

Failure Mitigation

30



5. Fault-Tolerant MPI

Failing hardware is projected to be one of the main challenges in future exascale systems [97].

In fact, it is reasonable to expect that a hardware failure will occur in exascale-systems every

30 to 60min [16, 25, 99]. HPC systems may fail for the following reasons: Core hangs, kernel

panic, �le system bugs, �le server failures, corrupted memory or interconnect, network

outages, and air conditioning or power halts [46, 74]. Metrics to describe the resilience of

hardware are the Mean Time Between Failure (MTBF) for repairable components and the

Mean Time To Failure (MTTF) for non-repairable components. Both describe the average

time one can expect a system to function after repair or replacement [74]. For the sake of

simplicity in the following, we will subsume MTBF and MTTF under the term MTTF and

assume negligible repair and replacement time. The current state of most MPI software is

such that a failure on any rank will result in program termination. Regarding the frequency

of failure we can therefore look at the set of ranks as a whole in terms of a number of serially

connected single systems which fails as a whole if one component fails. The MTTF of an

MPI program running on PEs =1, =2, . . . , = 9 with independent failure probabilities is therefore

equal to

mttf(=1, =2, . . . , = 9 ) =
©­«
∑
= 9

1

mtbf (nj)
ª®¬
−1

As the number of cores that scienti�c software runs on increases, the MTTF decreases rapidly.

Gupta et al. [46] reported the MTTF of four systems in the peta�ops range containing up to

18,688 nodes (see Table 5.1). Currently, most compute jobs only use a part of these petascale

systems which explains why current software are not constantly aborted because of rank

failures. In the not so distant future, on the by then commonly available exascale systems,

scienti�c software will run on tens of thousands of cores or more, therefore experiencing a

core failure every few hours [16, 25, 99]. We can therefore no longer ignore the possibility of

compute node or network failures, and are in need for failure mitigating software.

Table 5.1.: MTTF of petascale systems as reported by Gupta et al. [46]

System Nodes Cores MTTF
Jaguar XT4 (quad-core AMD Opteron) 7,832 31,328 36.91 h

Jaguar XT5 (four socket dual-core AMD Opteron) 18,688 149,504 22.67 h

Jaguar XT6 (2 socket 16-core AMD Opteron-6274) 18,688 298,592 8.93 h

Titan XK7 (16-core AMD Opteron-6274 + K20x Nvidia GPU) 18,688 560,640 14.51 h

31



5. Fault-Tolerant MPI

5.1. Techniques for Fault Tolerant MPI Programs

Despite the limited support for mitigation of hardware failures by MPI, some research on

handling faults already exists. The three main techniques used to make programs failure

tolerant are: Algorithm Based Fault Tolerance, restarting failed sub-jobs, and checkpoint-

ing/restart. Algorithm Based Fault Tolerance is used particularly in numeric applications [14,

115] but has the inherent problem that the algorithm in question has to be extensible to include

redundancy. For example in matrix multiplication the algorithm can add more rows to the

matrix. It can chose these additional rows such that they redundantly encode the contents of

the original matrix. In case of failure, the algorithm can use this added redundancy to restore

the lost data. We believe it is unlikely to be possible to extend RAxML-ng in this way based

on over 15 years of experience in RAxML-ng development. Using restarts of failed sub-jobs

as failure mitigation strategy is feasible in case the program at hand can be split up into

separate small work packages which can easily be redistributed between nodes and managed

by a (possibly distributed) work queue. MapReduce frameworks, for instance, implement this

approach [75]. RAxML-ng, however, is an iterative optimizer which we cannot easily split up

this way without a substantial rewrite, if at all. For checkpointing and restarting the program

has to save its state to disk or memory at regular intervals. From these saved checkpoints the

user or job scheduler can restart the program after a failure.

Checkpoint/restart approaches are further classi�ed into system-level and application-level

approaches. System-level approaches have the advantage of being (nearly) transparent to

the application the programmer intends to checkpoint. This enables fault tolerance with

minimal development overhead [47, 90]. But transparent checkpoint/restart systems are not

aware of which parts of the allocated memory are relevant and which parts the program can

recompute easily. In RAxML-ng, saving Conditional Likelihood Vectors (CLVs, which store

cached intermediate results of likelihood computations) may take up to tens of gigabytes of

memory per node, resulting in terabytes of memory for large runs [55, 77] we would have

to checkpoint only to invalidate them after restoration. Application-level checkpointing is

already implemented in RAxML-ng (see Section 6.1). We decided to increase the frequency

of and granularity of checkpointing. The changes to the existing scheme are described in

Section 6.2.

RAxML-ng can easily recompute a large portion of its allocated memory, for example the

CLVs. Only the model parameters, branch lengths, and tree topology have to be stored at

checkpoints. In common use cases, these make up a few megabytes only. We can therefore

a�ord to save a full checkpoint to each rank’s memory every time we perform one. This is

called diskless checkpointing and has the advantage of being faster than writing checkpoints

to disk [85].

In coordinated checkpointing, all ranks of the program create their checkpoints at the same

time. This comes at the cost of an additional synchronisation point. Gavaskar and Subbarao

recommend coordinated checkpointing for high-bandwidth, low-latency interconnections as

they are common in modern HPC systems [40]. Because of this and the fact, that the ranks in

32



5. Fault-Tolerant MPI

RAxML-ng are synchronizing thousands of times per second anyway (see Appendix A.2.4)

we choose to conduct coordinated instead of uncoordinated checkpointing.

This leaves the question if we want to have spare cores available to replace failed nodes

or shrink the number of nodes the job runs on upon failure. For example Teranishi and

Heroux describe a framework for recovering from failures relying on available replacement

processors [111]. But making su�cient replacement processors available constitutes a waste

of resources in case there is no failure. Ashraf et al. look at the performance implications of

replacing failed nodes versus shrinking the set of worker nodes. For their application they

draw the conclusion that shrinking represents a viable alternative to replacement. The time

required did increase to a smaller degree when looking at shrinking vs replacement as it did

when looking at the number of failed nodes [7]. We therefore choose to not make spare nodes

available and instead redistribute the calculations to the remaining nodes upon failure.

5.2. The new MPI Standard and User Level Failure Mitigation

The upcoming MPI standard 4.0 will have support for mechanisms allowing developers to

mitigate failures of ranks or network components. Currently, there are two actively developed

MPI implementations which already support failure mitigation: MPI Chameleon (MPICH) [44]

starting with version 3.1 and User Level Failure Mitigation (ULFM) [11]. We chose ULFM as

the MPI implementation to develop a failure-mitigating version of RAxML-ng because the

authors are also working on the standardization of MPI 4.0 and we therefore hope to be as

forward compatible as possible.

Researchers have used ULFM in scienti�c software before. For example Ali et al. imple-

mented numeric linear equation and partial equation solvers which are failure tolerant [3].

Obersteiner et al. extended a plasma simulation [80], Laguna et al. a molecular dynamics

simulation [72], and Engelmann and Geist a Fast Fourier Transformation [29] that gracefully

handle hardware faults. Kohl et al. [65] implemented a checkpoint-recovery system for a

simulation in the material sciences. After a failure, the system assigns the work of the failed

PEs to a single PE. The load-distribution algorithm [95] then recalculates the data distribution

with the reduced number of PEs. Next, the PEs exchange the data residing on the wrong (i.e.

overloaded) PE over the network using point-to-point communication. Their algorithm does

not handle redistribution of static data but only of data which changes over the runtime of

the algorithm.

ULFM reports failures by returning MPI_ERR_PROC_FAILED on at least one rank which

participated in the failed communication. This rank then has to use MPI_Comm_revoke to

propagate the failure noti�cation to the other ranks. The next time a rank calls an MPI

operation it will be noti�ed that another rank revoked the communicator. Di�erent ranks can

therefore be in di�erent parts of the code when they detect the failure. Next, all surviving

ranks call MPI_Comm_shrink collectively, creating a new communicator with the failed ranks

excluded [76].

33



5. Fault-Tolerant MPI

observes

sends heartbeat

no heartbeat

reports as dead

(a)

(b)

Figure 5.1.: Simpli�ed principle of heartbeat-based failure detection. (a) during normal

operation, each rank sends a heartbeat signal to its observer at regular intervals. (b) If a node

fails, it will no longer send heartbeat signals. After missing three heartbeat signals in a row,

its observer will report it as being dead.

ULFM detects hardware failures by a variety of detection mechanisms, depending, for

example on the kind of network interconnection available. One of the basic mechanisms is

that of regular heartbeat signals. In its default con�guration, each rank sends a heartbeat

signal every 100ms to the rank responsible for observing it. If the rank misses three heartbeat

signals in a row, its observer reports its failure (Figure 5.1). The MPI standard only mandates

progress during MPI calls. For ULFM this means that for the failure detection to work at

least one thread per rank has to enter an MPI function at regular intervals. If this is not the

case, a rank cannot guarantee not to miss multiple consecutive heartbeat intervals which

would cause it to be falsely reported it as being dead. We ran into this behaviour when testing

ULFM with the unmodi�ed (non failure-mitigating) version of RAxML-ng in preliminary

tests. All three runs aborted because of false-positive failure reports. After consultation with

the authors of ULFM, we adjusted some of ULFM’s runtime settings as follows: Increase the

heartbeat interval from 100ms to 300ms, the heartbeat timeout from 300ms to 1 s, and enable

a separate heartbeat thread on each rank. Separate heartbeat threads ensure MPI progress

at all times. This is because they are responsible only for sending heartbeats and therefore

can enter the MPI runtime at all times without having to wait for the program to call an MPI

function. In response to our discussion on the mailing list, the ULFM team published a tutorial

on this topic on the ULFM website.
1

After incorporating these changes into our con�guration,

we observed far fewer false-positive failure reports on ForHLR II (see Section 4.2). In theory,

these changes come at the cost of performance. ULFM will require more time to detect failures

1https://fault-tolerance.org/2020/01/21/spurious-errors-lack-of-mpi-progress-and-failure-

detection/

34

https://fault-tolerance.org/2020/01/21/spurious-errors-lack-of-mpi-progress-and-failure-detection/
https://fault-tolerance.org/2020/01/21/spurious-errors-lack-of-mpi-progress-and-failure-detection/


5. Fault-Tolerant MPI

because of the increased heartbeat timeout. The latency will also increase because multiple

threads are accessing MPI.

We measure the e�ect of the heartbeat timeout and heartbeat thread settings on the time

ULFM required to recover from failures. We did this on the ForHLR II system by repeatedly

simulating failures (Section 5.3) and measuring the time until a new communicator is created.

(Figure 5.2). First, we measure the time required for failure recovery in the default con�g-

uration (300ms no heartbeat thread) on 4 nodes. Enabling the heartbeat thread decreases

detection time from 8 s (median) to 900ms (median). As the heartbeat thread also decreases

the probability for false-positive failure reports, we therefore decided to keep this setting.

Next, we investigate the impact of setting the timeout to 1,000ms on the failure detection

speed. Contrary to our expectations, increasing the heartbeat interval does not change the

result signi�cantly (e�ect below standard deviation). Additionally, we want to look into

the question if slow detection of failures is caused by the computations keeping the CPU

cores crammed. We issue three runs with di�erent heartbeat thread and timeout settings in

which we do not use all available cores for computations, leaving them free for the ULFM

runtime. This does not change the time ULFM required for failure recovery. We also perform

one experiment with 400 ranks to get a feeling on how the failure detection scales. With

the heartbeat thread enabled and a 300ms timeout, 11.4 % of the recoveries require more

than 2 s and 8.9 % of the recoveries require more than 90 s. These results are probably highly

dependant on the HPC system used and should not be generalized. Laguna et al. reported

that ULFM required 11 s to recover when using 260 ranks on another system [72].

To evaluate the real world impact of using a fault tolerant MPI implementation, we also

compared the runtimes of RAxML-ng using ULFM with heartbeat thread enabled and disabled

vs OpenMPI v4.0 as baseline on three di�erent datasets and PE counts (Table 5.2). We chose

OpenMPI v4.0 as reference because ULFM v4.0.2u1 is based upon OpenMPI v4.0 . The addi-

tional time required for using ULFM ranges between −0.6 and 8.6 % of the reference runtime.

The additional slowdown induced by a separate heartbeat thread ranges between −0.7 and

2.2 % of reference runtime. The run using ULFM being faster than the run using OpenMPI

might be due to measurement �uctuations, but we did not tested this hypothesis.

Table 5.2.: Performance impact of ULFM. We show the runtimes of unmodi�ed RAxML-ng us-

ing OpenMPI v4.0 and ULFM v4.0.2u1 with heartbeat thread (hbt, a thread dedicated to sending

heartbeat signals) turned ON and OFF. The slowdown is given relative to OpenMPI v4.0.

slowdown [%]
dataset nodes ranks OpenMPI [s] ULFM hbt: ON ULFM hbt: OFF
ChenA4 8 160 5,582 0.1 −0.6
SongD1 18 360 1,437 1.9 2.5

ShiD9 1 20 20,911 6.4 8.6

We also observe that ULFM sometimes reports a single rank failure but MPI_Comm_shrink

returns a communicator which di�ers among the ranks. Multiple ranks report their rank id as

35



5. Fault-Tolerant MPI

1

10

100

hb
t O

N, 3
00

 m
s t

im
eo

ut

4 
no

de
s á

 7
 ra

nk
s *

hb
t O

N, 3
00

 m
s t

im
eo

ut

20
 n

od
es

 á
 2

0 
ra

nk
s

hb
t O

N, 1
00

0 
m

s t
im

eo
ut

4 
no

de
s á

 7
 ra

nk
s *

hb
t O

N, 3
00

 m
s t

im
eo

ut

4 
no

de
s á

 2
0 

ra
nk

s

hb
t O

FF, 
30

0 
m

s t
im

eo
ut

4 
no

de
s á

 2
0 

ra
nk

s

hb
t O

FF, 
30

0 
m

s t
im

eo
ut

4 
no

de
s á

 7
 ra

nk
s *

re
co

ve
ry

 ti
m

e 
[s

]

Figure 5.2.: Violin plot of the time required by ULFM to detect and recover from a node

failure. This includes the time for for all ranks to agree on which nodes have failed (done by

ULFM) and creating the new communicator. We measurd two heartbeat timeouts: 300ms

(default, false-positives) and 1,000ms (no false-positives). Measurements marked with a *

have additional nodes allocated which our code does not use, leaving them free for ULFM.

hbt (heartbeat thread) indicates whether we enabled a thread responsible solely for sending

heartbeat signals. Each measurement is performed at least 49 times.

0 and a world size of 1. We reported this behaviour on the ULFM mailing list and the authors

of ULFM reproduced and con�rmed the bug [13]. There is no patched version available yet.
2

For this reason we use OpenMPI v4.0 as default MPI implementation and simulated failures

as described in the following section for some experiments.

5.3. Simulating Failures

We can simulate core failures in numerous ways without root access to the HPC machines.

When using ULFM the heartbeat detection mechanism yields a straightforward approach.

When not using a heartbeat thread (see Section 5.2) it su�ces to put the program into a long

sleep to simulate a failure. When using a heartbeat thread, sending the signal SIGKILL to the

2
As of June 30, 2020.

36



5. Fault-Tolerant MPI

rank’s process will simulate a failure. The program cannot catch, block ore ignore SIGKILL.

It can therefore not perform any cleanup operation [61]. Other possible signals include

SIGSEGV, SIGILL, SIGFPE, SIGBUS, SIGXFSZ, SIGPWR, and SIGXCPU. None of these signals allow

the receiving process to perform a cleanup operation. We tested all of these methods and

ULFM detected all of them as rank failures with no noticeable di�erence, that is, the next MPI

operation will fail with MPI_ERROR_PROC_FAILED. We were able to revoke the communicator

using MPI_Comm_revoke and the new communicator we build using ULFM’s MPI_Comm_shrink

did not contain this “failed” node. We choose to simulate failures in experiments with ULFM

by killing a process via signalling SIGKILL either via invocation of kill -SIGKILL [59] or via

self-signalling using raise(SIGKILL) [60].

When using OpenMPI to avoid running into false-positive failure reports and inconsistent

communicators (see Section 5.2) we exploit RAxML-ng’s encapsulation of all MPI calls inside

the ParallelContext class to simulate failures. A static method of this class is set as the

parallel allreduce callback in the C part of RAxML-ng. This way, all parallel communication

goes through ParallelContext. If we intend to simulate a failure during an MPI call, we split

the communicator into a set of surviving and a set of of failed nodes using MPI_Comm_split.

The split-o� nodes in the failed group then terminate gracefully and the set of surviving

nodes continue restoring the search state as if a real failure had occurred (see Section 6.3).

Additionally, we can simulate a failure without loosing nodes. In this case, we do not split o�

nodes but rather reassign each node a new rank id and restore the search state as if a real

failure would have occurred.

37



6. Implementing a Failure-Mitigating
RAxML-ng Tree Search

The amount of available biological sequence data is increasing with enormous speed [64].

The need for phylogenetic inference on large MSAs is therefore growing. These phylogenetic

inferences require more and more computing power. Single core performance does no longer

increase according to Moore’s Law [114]. We therefore need to apply horizontal scaling, that

is, add more CPUs. Increasing the number of CPUs will decrease the MTTF of the system as

a whole (see Chapter 5). Consequently, we need to gracefully detect and handle rank failures.

6.1. Current State - Checkpointing and Restart

Even before we implemented the modi�cations described here, RAxML-ng already supported

saving the current tree search state to disk. In case of failure, the user can restart the program

from the last checkpoint. Checkpoints, however, could only be issued at certain steps during

the optimization procedure. This means, that, depending on the dataset, several hours can

pass between two checkpoints. Thus, if a failure occurs in a large parallel run, possibly

hundreds or thousands of CPU hours are lost.

The search state of RAxML-ng consists of the model parameters, the tree topology, and the

branch lengths of the currently best know tree, that is, the tree with the currently highest

likelihood score. The model parameters include the nucleotide frequencies, the transition

matrices, and the heterogeneity rate parameters. The tree topology is the same on all ranks at

all times. It is, however, not saved in memory as is. We need to reconstruct the currently best

known tree from the tree topology of the currently evaluated tree and a sequence of roll-back

SPR moves (see Section 2.2.2.1 and Figure 6.2). The model parameters of a partition are only

stored at those ranks that have at least one MSA column of that partition assigned to them.

It is therefore possible that the model parameters of a partition are only saved at one single

rank. These can hence be lost if the rank fails.

6.2. Mini-Checkpointing

We want to support the mitigation of the failure of any set of ranks. For this, we need to store

the model parameters of each partition at all ranks. This also represents the simplest solution,

and we want to avoid pre-mature optimization before pro�ling. Each time an optimization

38



6. Implementing a Failure-Mitigating RAxML-ng Tree Search

procedure updates the model parameters, we need to broadcast them to and update them on all

other ranks. The model parameters can be changed by the following subroutines: Substitution

rates optimization, base frequency optimization, alpha parameter (Γ-model) optimization,

proportion of invariant sites (+I model) optimization, rates and weights optimization, branch

length optimization, and branch length scaler normalization and optimization. An illustration

is given in Figure 6.1. To di�erentiate this redistribution of model parameters from the regular

checkpointing to disk, we call it “mini-checkpointing”. RAxML-ng stores a copy of the latest

mini-checkpoint in the main memory of each rank.

If the program detects a failure during one of the above procedures or an SPR-round (see

Section 2.2.2.1), it will restart the computation from the last mini-checkpoint. If the program

detects a rank failure during mini-checkpointing, it needs to restart from the preceding

optimization. This is because we cannot guarantee, that the current value of each model

parameter is still available on a surviving rank.

Regular checkpoints write the model parameters, the tree topology, and the branch lengths

to disk. The tree topology and the branch lengths are consistent on all ranks at all times.

We therefore do not need to collect them prior to creating a checkpoint. We perform mini-

checkpointing each time an optimization procedure updates the model parameters (see

Figure 6.1). The mini-checkpoints are therefore also consistent on all ranks when we want to

write a checkpoint to disk. This alleviates the need for collecting model parameters during

checkpoint creation. Creating regular checkpoints is therefore a local operation that does

not require network communication. This means that while writing checkpoints to disk,

ULFM will not report failures. Thus, we do not need to handle rank failures. The checkpoint

procedure will only fail if the master rank fails while writing to disk. In this case, the former

checkpoint will still be valid. We can use it to restart the search. If any other rank fails while

the master rank writes the checkpoint, we will detect this failure at the beginning of the next

optimization round. We can then restart the computation from the checkpoint that was just

written.

6.2.1. Problem Statement

To enable mitigation of rank failure during a tree search, the search state has to be available

consistently at each rank at the time of failure. The search state consists of the model

parameters, the tree topology, and the branch lengths. We de�ne “consistent” in this context

as a combination of values which were current at the same time in the past. If the program

detects a rank failure it needs to restore its search state from the last (mini-)checkpoint. Next,

it has to restart the search on all surviving ranks.

6.2.2. Algorithm

A major part of this Master’s Thesis was to adapt RAxML-ng such that it satis�es the descrip-

tion given in the problem statement above (see Section 6.2.1). For this, we need to extend

the checkpointing strategy to keep all model parameters current at all ranks at all times (see

39



6. Implementing a Failure-Mitigating RAxML-ng Tree Search

phylogenetic tree search

α parameter proportion of

invariant sites

free rates

and weights

base

frequencies

· · ·

branch lengths branch length

scalers

substitution

rates

· · ·

· · ·

save tree topology and branch lengths

broadcast model parameters

write checkpoint to disk

· · ·

· · ·

· · ·

mini-checkpoints

Figure 6.1.: Frequency of checkpointing. On the left, an overview of the search procedure is

given. RAxML-ng writes checkpoints to disk before each step of the optimization procedure

and when optimization is completed. These are the regular checkpoints which are already

implemented. To have the up-to-date model parameters, the master rank has to collect them

�rst. Depending on the dataset and number of ranks used, each of these phases can take

multiple hours to complete. By introducing mini-checkpointing, we increase the frequency at

which the model parameters are shared. The ranks now broadcast them after each sub-step,

denoted by the respective model symbol. Additionally, the currently best-scoring tree is saved

each time it is updated, that is after adjusting the branch lengths and during SPR rounds.

Checkpoints are still written do disk, but do now not need to collect the model parameters, as

they are already consistent on all ranks.

40



6. Implementing a Failure-Mitigating RAxML-ng Tree Search

Section 6.2). We also increase the frequency at which we create an in-memory checkpoint of

the topology of the currently best known tree. We use ULFM to detect rank failures and create

a new MPI communicator containing only the surviving ranks in case of failure. RAxML-ng

then redistributes the work to the surviving ranks, restores a valid program state, and restarts

the tree search.

Mini-Checkpointing: Redistribution of Model Parameters

Each MSA partition has a set of model parameters associated with it (see Section 2.2.1). These

model parameters comprise the transition matrix, the base frequencies, and in the scaled

branch length scaling mode the branch length scalers. Each time an optimization procedure

updates the model parameters of a partition, the program redistributes them to all ranks

(see Figure 6.1). Each partition has one rank associated with it. This rank is responsible for

sending this partition’s model parameters to all other ranks. One rank might be responsible

for multiple partition’s model parameters, but each partition has only one rank which is

responsible for broadcasting its models. To create a mini-checkpoint, each rank executes

Algorithm 2, synchronizing at each broadcast. As a result, each rank has an up-to-date copy

of each partition’s model parameters. As long as at least one rank survives, RAxML-ng can

thus resume the tree search.

Algorithm 2 Broadcast of Model Parameters

procedure BroadcastModelParameters

for each rank do
if rank is responsible for at least one model then

Broadcast(all models this rank is responsible for) ⊲ temporary copy

end if
end for
check for rank failure ⊲ using MPI_Comm_agree

if no rank failure reported then
Update working copy from temporary copy.

else
Rollback to previous mini-checkpoint. ⊲ working copy unaltered

Restart preceding optimization.

end if
end procedure

Model parameters for common use cases are less than a few MiB in size. Thus, we expect

the number of partitions< to have a negligible impact on the runtime of a single broadcast. It

does, however, have an impact on the number of broadcasts that the program needs to execute.

Each broadcast transmits at least one model. Therefore, we need to conduct a maximum of

one broadcast per partition and the number of partitions is an upper bound for the number of

broadcasts. A rank will broadcast all the model parameters it is responsible for in a single

41



6. Implementing a Failure-Mitigating RAxML-ng Tree Search

broadcast. The number of ranks is hence another upper bound for the number of broadcasts.

Let us assume there are ? ranks and the time for a single broadcast is )bcast (?). The runtime

of mini-checkpointing then scales with min(?,<) ·)bcast (?).
Upon broadcasting, the ranks gather the received models in a temporary copy. If no rank

failure occurs during broadcasting, the algorithm copies the temporary copies over to the

working copies. This is a local operation. Thus, if a rank fails during this, all other ranks will

still have the up-to-date models and can restart from them. Note that they will recognize the

failure at the subsequent collective operation. If a rank fails during the broadcasting of model

parameters, there is no guarantee that an up-to-date copy of all parameters is still available.

We consequently need to repeat the preceding parameter optimization step. For this, we need

to restore the data from the last mini-checkpoint, which is still valid. On success, the program

rebroadcasts the updated model parameters.

Saving the currently best tree topology

All changes made to the tree topology happen at all ranks simultaneously (see Figure 6.2).

Hence, we do not need to broadcast them. RAxML-ng does, however, not save the currently

best tree topology in a trivial form. An SPR round modi�es the tree topology, saving the

moves needed to restore the best tree topology in a rollback list (see Figure 6.2).

During the evaluation of all possible moves we are at most one move away from the

currently best tree. After we evaluated all moves once, we re-evaluate the moves that result in

the 20 best-scoring topologies with full branch-length optimization. If a failure occurs during

this, we would need to rollback multiple moves from both the rollback and the best-nodes list.

To simplify recovery and avoid pre-mature optimization before pro�ling, we choose to copy

the currently best-scoring tree to a separate rollback data structure each time it is updated.

Note that, we do not rebroadcast the model parameters here; therefore this operation happens

locally on each rank (see Figure 6.1).

6.2.3. Evaluation

We implement the redistribution of the model parameters. We evaluate the time required as a

function of the number of models and ranks used. We use the same hardware con�guration as

described in Section 4.2. We measur the time for generating each mini-checkpoint separately

and show the mean (dots) and standard deviation (error bars) in Figure 6.3. We expect the

time required to broadcast models to increase only if the number of models and the number

of ranks increase. This is, because the number of models and the number of ranks are both

upper bounds for the number of broadcasts we need to send (see Section 6.2.2). If only the

number of models or the number of ranks increases, we expect mini-checkpoints not to

require substantially more time. If the number of models increases but the number of ranks

stays small, the number of ranks will limit the number of broadcasts required. In the worst

case, each rank will send one broadcast. If the number of ranks increases but the number of

42



6. Implementing a Failure-Mitigating RAxML-ng Tree Search

?

likelihood improved

likelihood not improved;

topology under top 20

rollback

list entry

best-nodes

list entry

+

+

list entry:

moved node

prune edge

regraft edge

edge lengths

keep move

discard move

Figure 6.2.: Rollback mechanism of an SPR move. We are pruning and re-grafting the node

connected to the green edge. We temporarily move the node to a new location. During this,

we save the information needed to undo this move in local variables. We then evaluate the

likelihood-score of the new topology. If the likelihood-score improves, we keep the move and

save it to the rollback list. If the move does not improve the likelihood-score but the result is

under the 20 best scoring topologies, we save it in the best-nodes list. We later re-evaluate all

moves in the best-nodes and rollback lists with full branch length optimization to check if

they yield a likelihood improvement.

models stays small, the number of models will limit the number of broadcasts required. A

maximum of one broadcast per model is sent.

For all runs with either less than 100 ranks or less than 1,000 models, redistributing the

model parameters requires at most 11.1 ± 0.2ms. Only if the number of models and the

number of ranks increases, the time required by model broadcasting increases. The run on

the PeteD8 dataset has 4,116 models and uses 260 ranks. It requires 72.0 ± 0.9ms per model

parameter redistribution (see Appendix A.4.2). Creating a checkpoint of the tree topology

requires at most 0.575 ± 0.006ms (1,879 taxa, see Appendix A.4.1 and Appendix A.4.2).

6.2.4. Runtime Overhead Without Failures

We measure the runtime overhead caused by mini-checkpointing when no failures occur.

We expect FT-RAxML-ng (Fault- Tolerant RAxML-ng) to be slower, because it creates mini-

checkpoints in addition to the regular checkpoints. This is the penalty we have to pay

for fault-tolerance even in the case that we do not need it. We want to separate the run-

43



6. Implementing a Failure-Mitigating RAxML-ng Tree Search

0

20

40

60

D
N

A 
Xi

D
4 

@
 1

60
 ra

nk
s

1 
m

od
el

D
N

A 
So

ng
D

1 
@

 4
00

 ra
nk

s
1 

m
od

el
AA

 C
he

nA
4 

@
 4

00
 ra

nk
s

1 
m

od
el

AA
 C

he
nA

4 
@

 1
60

 ra
nk

s
1 

m
od

el
AA

 T
ar

vD
7 

@
 4

00
 ra

nk
s

1 
m

od
el

AA
 N

ag
yA

1 
@

 8
0 

ra
nk

s
59

4 
m

od
el

s
AA

 Y
an

gA
8 

@
 8

0 
ra

nk
s

11
22

 m
od

el
s

D
N

A 
Pe

te
D

8 
@

 2
60

 ra
nk

s

41
16

 m
od

el
s

dataset

tim
e 

fo
r 

m
in

i−
ch

ec
kp

oi
nt

 [m
s]

Figure 6.3.: Time required for model parameter broadcasting. The mean (dots) and standard

deviation (error bars) of the time required to create each mini-checkpoint is shown. We

measure all mini-checkpoints in one tree search (47 to 582 ). Each node has 20 CPU cores and

executes 20 MPI ranks. The empirical datasets are described in Table 4.1. Only if the number

of models and the number of ranks increases, the time we require to redistribute the model

parameters also increases.

time overhead caused by ULFM from the runtime overhead caused by our modi�cations to

RAxML-ng. We therefore measure the runtime of FT-RAxML-ng with OpenMPI v4.0 and

ULFM v4.0.2u1 as MPI implementations (see Table 6.1). In our measurements, the slow-

down of FT-RAxML-ng running with OpenMPI v4.0 compared to the unmodi�ed RAxML-ng

running under OpenMPI v4.0 is 1.02 ± 0.02. The slowdown of FT-RAxML-ng running un-

der ULFM v4.0.2u1 compared to the unmodi�ed RAxML-ng running under OpenMPI v4.0 is

1.08 ± 0.07.

44



6. Implementing a Failure-Mitigating RAxML-ng Tree Search

Table 6.1.: Overall runtimes of unmodi�ed RAxML-ng vs FT-RAxML-ng (see Chapter 6) when

no failure occurs. That is, we perform mini-checkpoints (model updates) and tree updates but

do not simulate failures. “s.dwn”: slowdown

type dataset ranks OpenMPI OpenMPI s.dwn ULFM s.dwn
RAxML FT-RAxML FT-RAxML
[s] [s] [s]

AA NagyA1 80 2,985 3,014 1.01 3,025 1.02

AA ChenA4 160 685 720 1.05 686 1.02

AA YangA8 80 1,182 1,230 1.04 1,210 1.02

DNA SongD1 400 1,365 1,383 1.01 1,541 1.13

DNA XiD4 160 3,760 3,858 1.03 4,466 1.19

DNA TarvD7 400 700 709 1.01 739 1.06

DNA PeteD8 260 5,393 5,492 1.02 6,197 1.15

6.3. Recovery a�er Failure

Checkpointing is only half the battle. The other half is restoring the program state after a

failure. In the following, we describe how RAxML-ng resumes tree search after a failure.

6.3.1. Problem Statement

After one or more ranks fails, the remaining ranks have to detect this failure. Next, the

surviving ranks have to agree on which ranks are still alive and restore the search to a valid

state. As little work as possible should be lost because of a failure. Furthermore, the program

has to restart the tree search without user intervention.

6.3.2. Algorithm

The responsibilities arising from the problem described (see Section 6.3.1) are divided between

ULFM and RAxML-ng. After ULFM detects and reports a failure, RAxML-ng mitigates the

failure, restores the search state, and restarts the tree search.

Detecting and Mitigating a Failure

ULFM provides mechanisms to detect if a rank failure occurred [76]. Rank failures are not

detected and reported when they occur but only the next time each rank calls an MPI operation.

If a rank failure occurs during an MPI call, the call’s return value might indicate an error on

some ranks but not on others. Reporting failures on all ranks simultaneously would require

all ranks to agree if a failure occurred after each communication. Such an algorithm has been

shown to take at least O(?2) time, where ? is the number of ranks [11].

45



6. Implementing a Failure-Mitigating RAxML-ng Tree Search

If ULFM detects a failure during an MPI call, it indicates this in the return value. For details

see Section 5.2. In RAxML-ng, the ParallelContext class abstracts away all calls to MPI

functions. This is true for the C++ part of the code as well as the C part. The latter is passed the

wrapper for Allreduce as a callback function. As always, code reuse simpli�es code extension.

We introduce a new method faul_tolerant_mpi_call into the ParallelContext class. This

method takes a (temporary) function as a parameter. This temporary function calls the MPI

function to be executed in a failure tolerant way. The temporary function also passes on

the MPI function’s return code to the calling ParallelContext::faul_tolerant_mpi_call.

If ULFM reports a failure during the MPI call, faul_tolerant_mpi_call creates a new MPI

communicator (see Section 5.2). This new communicator includes only the surviving ranks.

Next, faul_tolerant_mpi_call updates the world parameters (e.g. rank count, node count)

stored in the ParallelContext class and throws a RankFailureException. The code which

issued the fault tolerant MPI call has to catch and handle this exception.

We di�erentiate between recoverable and unrecoverable failures. In both cases, the result

of the respective MPI call is unde�ned. ULFM does not guarantee, that each rank is noti�ed

of a rank failure during the same MPI collective call (see Section 5.2). Thus, di�erent in-

vocations of faul_tolerant_mpi_call might throw the RankFailureException on di�erent

ranks. In the case faul_tolerant_mpi_call throws a (recoverable) RankFailureException,

it has shrunk the communicator successfully to only include surviving ranks. Execut-

ing further MPI calls will then be possible. In the case faul_tolerant_mpi_call throws

a UnrecoverableRankFailureException, it failed to create a new valid communicator. The

calling code can no longer assume that any MPI call will behave in any particular way or

even return at all. In this case, we can do nothing more than exit the program.

To illustrate this, let us consider an example. We change the method mpi_broadcast(...)

in the class ParallelContext::mpi_broadcast(...) to handle rank failures. For this, we

replace the MPI call with a call to fault_tolerant_mpi_call. We pass a lambda function

executing the MPI call. This lambda function passes on the return value of the MPI function.

The fault_tolerant_mpi_call function executes the lambda function once and checks its

return value for a rank failure. If it detects a rank failure, it throws a RankFailureException.

The ParallelContext::mpi_broadcast function lets this exception propagate upwards to its

caller which then has to handle it.

Listing 6.1: Simpli�ed code without failure mitigation

1 void ParallelContext::mpi_broadcast(void * data, size_t size, int root) {

2 if (this->_num_ranks > 1) {

3 return MPI_Bcast(data, size, MPI_BYTE, root, this->_comm);

4 }

5 }

Listing 6.2: Simpli�ed code with failure mitigation

1 void ParallelContext::mpi_broadcast(void * data, size_t size, int root) {

2 if (this->_num_ranks > 1) {

46



6. Implementing a Failure-Mitigating RAxML-ng Tree Search

3 // Using lambdas enables easy captchure of all the needed variables.

4 // If fault_tolerant_mpi_call detects an error, it will throw an exception

5 // which we will pass on to the code calling us.

6 fault_tolerant_mpi_call([&] () {

7 return MPI_Bcast(data, size, MPI_BYTE, root, this->_comm);

8 }};

9 }

10 }

We adjust all functions in ParallelContext similarly, abstracting away the MPI details.

The responsibility of the caller is to catch the RankFailureException and restore the search

state after a rank failure. We discuss this in the following section.

Restoring the Search State a�er Failure

After ULFM establishes a new communicator containing only the surviving ranks, the program

is still in an invalid state. No data has been redistributed or reloaded. Also, no rank is

responsible for calculating the likelihood scores of the sites the failed ranks were responsible

for (see Section 3.2). To simplify the process of restoring the search state, we design it as a

local operation, that is, no communication between ranks is required until the search state

is restored. If another rank fails in the meantime, all surviving ranks will �rst complete the

restoration process and can afterwards handle the additional failure.

To restart the tree search, the algorithm re-executes the load balancer (see Section 3.3),

reloads the MSA data, and restores the search state. The load balancer redistributes the MSA

sites to the, now, reduced set of ranks. Each rank then loads the respective MSA data using

partial loading. In partial loading, each rank selectively reads only those parts of the MSA �le

from disk it requires for its likelihood computations. To restore the search state, the algorithm

copies over the model parameters from the last mini-checkpoint and the currently best tree

from the backup copy. Additionally, we need to invalidate and recompute internal caches, for

example, the CLVs (see Section 2.2.1). Algorithm 3 shows the fundamental ideas behind the

implementation of this procedure in the TreeInfo class. RedoPartitionAssignment re-runs

the load balancer with the now reduced set of ranks. UpdateInternalDataStructures is for

example responsible for clearing and recomputing the CLVs and the local table of the sites the

rank has to handle. Because of the partial loading feature of RAxML-ng, each rank needs to

load only those parts of the MSA that it requires for the likelihood computations. Restoring

the models and the tree are local copy operations.

6.3.3. Evaluation

We implemented the algorithms described above in RAxML-ng and describe respective exper-

iments in the this section.

47



6. Implementing a Failure-Mitigating RAxML-ng Tree Search

Algorithm 3 Restore Search State after Rank Failure

1: procedure RestoreSearchState

2: assignment ← RedoAssignment(new rank count)

3: UpdateInternalDataStructures(assignment)

4: Restore tree from local backup copy

5: for all models do
6: Restore model from local backup copy

7: end for
8: end procedure

Time Required for Restoring the Search State

We pro�le the di�erent sections of the recovery procedure (described in Section 6.3.2). For

this, we simulate failures (see Section 5.3) and measure the time required for di�erent parts of

the recovery procedure. For each run with 20 ranks, we simulate 19 rank failures; for each

run with at least 40 ranks, we simulate 39 rank failures.

We expect the time required for reloading the MSA data to increase with the total number

of sites times the number of taxa times the number of possible states. Amino Acids have 20

possible states, DNA has four. On the ForHLR II, two �le servers (see Section 4.2) handle disk

access. This is true independent of the number of ranks we use for the phylogenetic tree

inference. Thus, we expect the time for loading the MSA data to not depend on the number of

ranks in the computation. We expect the time required for invalidating and recomputing the

caches (e.g. CLVs) to increase with the number of sites on each rank. This is, because these

operations are embarrassingly parallel.

The time required for restoring the search state is below 100ms for six out of eight runs,

including three with 400 ranks. The remaining two runs are working on datasets with more

than 500,000 sites, at least 95 taxa, and required up to 535ms (see Figure 6.4).

Time Required for Reloading the MSA Data

We further investigat the time required to load MSA data from disk. This is interesting,

because the MSA is loaded from a central disk array. Therefore, reloading this data could be a

bottleneck when restoring. We measure the MSA loading time required for di�erent datasets

on the ForHLR II (see Section 4.2). We di�erentiate between the initial load operation and all

subsequent load operations. “Initial” here means the �rst time any rank loads this data. If

rank 2 loads the data rank 1 has previously loaded, we do not count this as an initial loading

operation. In fact, all subsequent loading operations labelled as “further load op.” are loading

data which this rank has not loaded before during this run (but other ranks have).

In each experiment, the load balancer decides which rank loads which part of the MSA.

The ranks then load their respective part of the data. This is the initial load operation. Next,

the load balancer shifts the responsibilities by one, that is, rank 2 now loads the data rank

48



6. Implementing a Failure-Mitigating RAxML-ng Tree Search

0

100

200

300

400

500

D
N

A 
ro

ka
sD

4 
@

 1
60

 ra
nk

s

24
0k

 s
ite

s 
* 4

6 
ta

xa
D

N
A 

ro
ka

sD
1 

@
 4

00
 ra

nk
s

13
39

k 
si

te
s 

* 3
7 

ta
xa

AA
 ro

ka
sA

4 
@

 1
60

 ra
nk

s

18
06

k 
si

te
s 

* 5
8 

ta
xa

D
N

A 
Ta

rv
D

7 
@

 4
00

 ra
nk

s

21
M

 s
ite

s 
* 3

7 
ta

xa
AA

 ro
ka

sA
4 

@
 4

00
 ra

nk
s

18
06

k 
si

te
s 

* 5
8 

ta
xa

AA
 ro

ka
sA

1 
@

 8
0 

ra
nk

s

17
2k

 s
ite

s 
* 6

0 
ta

xa
AA

 ro
ka

sA
8 

@
 8

0 
ra

nk
s

50
5k

 s
ite

s 
* 9

5 
ta

xa
D

N
A 

Pe
te

D
8 

@
 2

60
 ra

nk
s

30
11

k 
si

te
s 

* 1
74

 ta
xa

dataset

tim
e 

[m
s]

timer

LoadAssignmentData

Other

RedoPartitionAssignment

TreeinfoInit

TreeinfoUpdatePartialsAndCLVs

Figure 6.4.: Time required for recovery form checkpoint. TreeinfoInit: “LoadAssignment-

Data” is the time required to load the MSA data a rank is responsible for from disk. “RedoPar-

titionAssignment” is the time required for re-running the load balancer. “TreeinfoInit” is the

time required for updating the TreeInfo data structure. This includes hundreds of memory

allocations. “TreeinfoUpdatePartialsAndCLVs” is the time required for updating cached likeli-

hoods. “Other” includes for example the time required for updating data structures needed

for the mini-checkpointing.

1 previously loaded and so on. We repeat this process until each rank has loaded each part

of the MSA exactly once. We call all operations after the �rst one “further load operations”.

Figure 6.5 shows the average time required to load a rank’s part of the MSA, as well as the

standard deviation. For the measurement of the initial loading operation we compute the

average and standard deviation across all ranks. For the rebalancing measurements, we �rst

compute the average time required on each rank. Next, we compute the average and standard

deviation of the ranks’ averages. We perform the measurements on the ForHLR II which

has two separate �le server nodes connected to the compute nodes via an EDR In�niBand

network. The initial load operation represents an upper-bound on what we expect the loading

operation to require when the cache of the �le system does not contain a copy yet. We expect

the repeated loading of the MSA, albeit on di�erent ranks, to be a reasonable guess on the

read performance if the �lesystem’s cache already contains a copy of the data.

We show the �le sizes of the corresponding MSA �les in Table A.4 in the appendix. For

example the DNA dataset PeteD8 has 3,011,000 sites and 174 ranks. Its encoding has a size of

500MiB. This corresponds to the expected 8 bit per site per taxon. In case of frequent failures,

49



6. Implementing a Failure-Mitigating RAxML-ng Tree Search

0

300

600

900

1200

DNA ro
ka

sD
2a

 @
 2

0 
ra

nk
s

17
1 

M
iB

DNA S
hiD

9 
@

 2
0 

ra
nk

s
16

 M
iB

DNA ro
ka

sD
4 

@
 1

60
 ra

nk
s

11
 M

iB

AA ro
ka

sA
1 

@
 4

0 
ra

nk
s

10
 M

iB

AA ro
ka

sA
4 

@
 1

60
 ra

nk
s

10
0 

M
iB

DNA ro
ka

sD
1 

@
 4

00
 ra

nk
s

48
 M

iB

AA ro
ka

sA
8 

@
 8

0 
ra

nk
s

46
 M

iB

DNA P
et

eD
8 

@
 2

60
 ra

nk
s

50
0 

M
iB

dataset

tim
e 

[m
s]

further load op.

initial load op.

Figure 6.5.: Time required for reloading the MSA from disk on the ForHLR II (see Section 4.2).

Red dots and error bars (“initial load op.”) indicate the time required to load the rank’s part of

the MSA the �rst time this data is accessed by any rank, that is, on program start-up. The blue

dots and error bars (“further load op.”) indicates the time it took a rank to load a part of the

MSA it had never loaded before (but other ranks already have). These data can be assumed to

be cached by the �le servers.

the cluster’s �le system will cache the MSA data. This reduces the possible gain from storing

the data in the main memory of the compute nodes. If few failures occur, the MSA data will

be accessed infrequently. In this case, the 1.2 s overhead for reloading the data could amortize.

We performe these measurements on one cluster system only, namely ForHLR II. They can

therefore not be generalized.

6.3.4. Runtime Overhead With Failures

We measure the runtime overhead caused when failures occur (see Table 6.2). We expect

FT-RAxML-ng (Fault- Tolerant RAxML-ng) to be slower, because it creates mini-checkpoints

in addition to the regular checkpoints, has to restore from failures and perform some compu-

tations twice. We use OpenMPI v4.0 for all measurements and simulate failures as described

in Section 5.3. In our measurements, the slowdown of FT-RAxML-ng running with Open-

MPI v4.0 compared to the unmodi�ed RAxML-ng running under OpenMPI v4.0 is 1.3 ± 0.2.

In all experiments, the �nal likelihood-score (see ?? deviates less than 3 × 10−8 from that of

the reference run. A di�erence log-likelihood might for example occur if there is a failure

50



6. Implementing a Failure-Mitigating RAxML-ng Tree Search

during an SPR round. In this case, we restart the SPR round from the currently best known

tree topology and therefore evaluate di�erent SPR moves (see Section 2.2.2.1).

Table 6.2.: Overall runtimes of unmodi�ed RAxML-ng (“reference”) vs FT-RAxML-ng (“run-

time”) (see Chapter 6) when failures occur. That is, we perform mini-checkpoints (models and

tree updates) and simulate failures. We use OpenMPI v4.0 for all measurements and simulate

failures as described in Section 5.3 “s.dwn”: slowdown

type dataset ranks failures reference runtime s.dwn
AA NagyA1 80 10 2,985 3,077 1.03

AA ChenA4 160 10 685 1,093 1.60

AA YangA8 80 7 1,182 1,832 1.55

DNA SongD1 400 10 1,365 1,413 1.04

DNA XiD4 160 10 3,760 4,246 1.13

DNA TarvD7 400 10 700 998 1.43

DNA PeteD8 26 10 5,393 7,037 1.30

51



7. Eliminating Disk Access

Having to reload the MSA from disk after each failure is not optimal. The rollback data

structures we describe in Section 6.2 already contains the data that change over the runtime

of RAxML-ng. In this Chapter, we discuss two possibilities to store the static MSA data in

memory such that it will survive PE failures. Note that storing a full, uncompressed MSA in

the memory of each PE would constitute a waste of memory.

7.1. Tree Based Compression of Multiple Sequence Alignments

We will �rst look into how we can compress the MSA to reduce its size. The shrunken MSA

could then �t into the main memory of each PE (see Section 7.1.1). Anè and Sanderson [5]

describe a compression scheme for MSAs based on parsimony trees. A parsimony tree is

a phylogenetic tree (see Section 2.1) which minimizes the number of mutations along its

edges [26]. In this Section, we provide an expansion of the compression scheme to include

nucleotide ambiguities (see Section 7.1.1) and an algorithm to encode and decode the given

MSA.

As there are four nucleotide states, we need two bits to encode a single nucleotide. When

using ambiguities (combination of states, see below) we need 4 bits. By leveraging that the

sequences in an MSA are related, we can decrease the number of bits we need to encode

a nucleotide on average. Ané and Sanderson predict a compression of up to 0.02 bits per

nucleotide and taxon on a dataset with 100 taxa using their compression scheme. The

compression e�ciency increases on datasets with more taxa [5]. We investigate if this

compression is su�cient to allow us to reduce the MSA’s size to �t into the main memory of

each PE in the next Section.

7.1.1. Description of the Encoding

An MSA consists of a set of aligned sequences. This implies, that every sequence has the same

length, possibly including gaps. Sequences can be, for example DNA or AA. We will focus on

DNA in this Section, but we can extend the encoding to the 20-state AA alphabet. DNA has

four states (A, C, T, G). In real world datasets, however, we sometimes want to encode that we

are unsure of the exact nucleotide at a certain position. We will call this an ambiguity. An

ambiguity can also mean that we observed multiple nucleotides at this position in di�erent

sequencing runs. The International Union of Pure and Applied Chemistry (IUPAC) de�nes 4

52



7. Eliminating Disk Access

nucleotide states, 11 ambiguities and a gap [53]. For example a K represents either a G or a T

at a position in the sequence.

The sequences of an MSA are located at the tips of a corresponding phylogenetic tree (see

Section 2.2). The main idea of the tree based compression scheme is to encode only one

sequence in full, the one marked in bold in Figure 7.1. We store all other sequences as a set

of changes along the edges of the tree. We annotate these changes next to the edges, for

example 5→ C means that the nucleotide state at the �fth site of the sequence changes to a C

along the edge. This means that, ancestral states (inner nodes) have a sequence associated

with them. These ancestral sequences are not shown in Figure 7.1 but we nonetheless have to

compute them. For the reconstruction to work, we have to store the tree topology for the

encoding as well. The most parsimonious tree guarantees the shortest encoding [5].

Figure 7.1.: Tree based encoding of sequences in an MSA as described by Ané and Sander-

son [4]. We have to encode only the tree topology, the sequence in bold, and the changes

annotated along the edges. We can then reconstruct the full MSA from this encoding.

In the following, we give a quick summary of the encoding scheme presented by Anè and

Sanderson [5] and how we adapt it to 16 nucleotide states. We encode the tree topology in

the binary Newick format. Take for example the tree in Figure 7.2a. We can encode it as

(a,b,(c,d)); in the ASCII Newick format. Each pair of parentheses represents an inner node,

each letter represents a tip. Commas separate the nodes from each other and a semicolon

ends the encoding. By omitting the tip names and exploiting that the tree is bifurcating and

unrooted, we can encode the same tree topology as (()). We can further use a 1 to represent

an opening parenthesis and 0 to represent a closing parenthesis. This way, we can encode the

tree topology by bit as 1100.

We store the ancestral states of the root with four bits using a one-hot encoding. In a

one-hot encoding, a single bit encodes for one of the four basic nucleotide states, that is,

A = 0001, C = 0010, T = 0100, or G = 1000. A single nucleotide state is therefore 4 bits

long. We encode ambiguities by setting multiple bits at once. We encode a gap by clearing

all bits. We store the changes to a site directly after the nucleotide state at this site at the

root sequences. By doing so, we ensure that all the data we need to decode the nucleotide

states at one site is stored continuously, enabling cache-e�cient decoding. Additionally, we

do not need to store the change’s position in the sequence, which could become large, as it is

stored following the site it modi�es. We also store an index data structure � mapping the site

identi�er to the start of the encoding for this site. We implement this using an array. We thus

gain random read access to the sites of the encoding.

53



7. Eliminating Disk Access

a

b

cd

(a) Bifurcating Tree

C

A

A

K

→1 A

→1 K

Index:

C;<C → A, 1>;<A → K, 4>;

1 2 · · ·

0010 0011 001 0100 100

G 1000

T 0100

C 0010

A 0001

K 0101

· · ·

1

5

2

3

4

(b) Sequence encoding

Figure 7.2.: Encoding of the Tree and MSA. (a) A bifurcating tree which we can encode as

(a,b,(c,d)); in the ASCII Newick format. By leaving out the tip names and exploiting that

the tree is bifurcating, we can also encode it as (()) which we can represent as the 1100 bit

vector. (b) Encoding of a single site of the MSA. We encode the nucleotide’s root state (upper

left). Then, we encode the changes to the nucleotide state along the edges of the tree. We

encode these changes in pre-order. We encode each change using the change mask and edge

number (annotated next to the edges). We obtain the change mask by XORing the nucleotide

states before and after the change. The index data structure points to the beginning of each

site’s encoding.

We encode the changes of a nucleotide along the edges of the tree as the change’s substitu-

tion mask and the edge this changes occurs on. We obtain the substitution mask by XORing

the nucleotide state before and after the change. For example, if a T (0100) is replaced by a C

(0010), the substitution mask will be mask = � ⊕ ) = 0100 ⊕ 0010 = 0110. In contrast to the

substitution mask used by Anè and Sanderson [5], this allows us to handle ambiguities. The

mask 0000 encodes for no change and is not needed to encode a change. We can therefore

assign the meaning “end-of-changelist” to it. Using the index data structure described above,

however, this is not necessary. As some states (for example gaps) are more likely to occur

than others (for example K) we could use Hu�man coding [52] to further compress the states.

For now, we do not do this because it will complicate the encoding and decoding procedures.

We identify the edges by a unique identi�er. We obtain this identi�er by numbering the

edges in pre-order (parent, left child, right child). We chose pre-order instead of post-order as

used by Anè and Sanderson [5] because this way we store the changes “root to tip”, yielding

the decoding more straightforward. We can encode the end of the encoding using no-change

54



7. Eliminating Disk Access

and invalid-edge-number. If we are using the index data structure, we can store a dummy

entry pointing just past the last valid change to mark the end of the encoding.

Size of the Compressed MSA

We base the following calculations on Anè’s and Sanderson’s [5] calculations. As we want to

allow for ambiguities, we need to allow 16 instead of 4 states. Let us assume, that the encoding

size doubles because of this. Let = be the number of sequences,< the sequence length, and

!% the number of substitutions in the parsimony topology. If we store each sequence in

full, representing each site with 4 bits, we obtain an encoding of length 4=< bits. Using a

parsimony-based encoding, we need to describe the shape of the tree using 2= − 4 bits. Next,

we can optionally write the taxon labels, denoted by ) . We chose a root of the tree arbitrarily

and use 4< bits to encode the sequence at this root. We encode the changes to the sites’

nucleotide states along the tree. Each of these changes consists of a substitution mask and

the edge number this change occurs on. For this, we need !% (4 + log
2
(2= − 3)) bits. We also

have to save the index data structure which stores the location of the start of the encoding

of each site. This requires<? bits, where ? is the size of a pointer. In total, the encoding

requires 2= − 4 +) + 4< + !% (4 + lg(2= − 3)) +<? bits. The encoding length heavily depends

on the number of changes in the parsimony tree !% . As �nding the most-parsimonious tree is

NP-hard, we must rely on heuristics.

So how much memory do we need for a typical dataset? This depends on the number of

changes across the parsimony tree !% . Let us assume that, using four bits per site instead

of two bits per site will double the space needed for the compressed MSA. We can then use

the compression e�ciency reported by Ané and Sanderson [5] and calculate the additional

memory usage for the encoding on each PE.

Table 7.1.: Empiric encoding e�ciency for real-world datasets as reported by Ané and

Sanderson [5]. !% is in�uenced by the diversity between the sequences in these datasets. The

column giving the size of the compressed MSA assumes that the encoding e�ciency decreases

by 50 % when we encode 16 instead of 4 nucleotide states. That is, we need twice the amount

of bits per site.

number of taxa encoding e�ciency size of compressed MSA
100 0.70 bit taxon−1 site−1 140 bit site

−1

500 0.25 bit taxon−1 site−1 250 bit site
−1

1,000 0.20 bit taxon−1 site−1 400 bit site
−1

The largest dataset we considered in Chapter 4 is TarvD7 . It consists of around 21 million

sites. Let us assume it would also have 500 taxa. An analysis of this theoretical dataset would

require 625MiB of additional storage for the MSA on each PE. As all cores in a single node

share the same memory. If we assume that all ranks on a node fail if a hardware failure

occurs on this node, we need to store the compressed MSA only once per node, not per

55



7. Eliminating Disk Access

rank. We never update the compressed MSA once it has been loaded. We therefore expect

concurrent access not to be an issue. Especially as the di�erent cores on the same shared

memory machine read di�erent parts of the alignment.

This leaves the question if we can spare 625MiB on each node? Let us assume an analysis

with tip-inner and pattern compression turned OFF (see the RAxML-ng manual), using

1,000 site PE−1, (DNA = 4 nucleotide states per site, ' = 20 rate-categories, and |MSA| =
500 taxa. Let us denote the number of CLVs with |CLVs |. We can then compute the memory

requirements for the CLVs per PE, denoted as "CLV , using the following formula:

"CLV = |CLVs | · sizeof (CLV ) · sizeof (double)
= (2|MSA| − 2) · (DNA · ' · 8 B
= 0.609MiB site

−1
(7.1)

Assuming 20 cores per node, as on ForHLR II, the CLVs would take up 12.78GiB on each

node. This would allow us to use the remainder of the memory, 55.95GiB on ForHLR II, to

store the compressed MSA. We could therefore store up to 2,100,000,000 sites, around two

thirds of the human genome or 1/75th of the largest known plant genome.

7.1.2. Description of the Algorithm

In this Section, we provide a description of the algorithm for compression and decompression

of the MSA. Compressing the tree consists of �nding the ancestral states of the parsimony

tree as well as encoding the tree topology and the sequences. For decompression, we need to

�rst decode the tree and then the sequences (see Section 7.1.1).

Finding the Ancestral States of the Parsimony Tree

Given the sequences at the tips as well as the parsimony tree, Fitch [35] and Hartigan [48]

each propose a method for reconstructing the ancestral states of this tree. Both published

their algorithms before the introduction of Sanger Sequencing in 1977. They focus on building

small trees from morphological traits instead of today’s large trees based on molecular data.

We can use Hartigan’s algorithm to calculate a single assignment of sequences to inner nodes.

This assignment has the property, that the number of mutations across the tree is minimal. It

is not necessarily the only such assignment. Hartigan also provides a proof of correctness [48].

Hartigan’s algorithm [48] takes a phylogenetic tree with �xed topology and �xed states

at its tips as input. The algorithm consists of two phases (see Algorithm 4). The �rst phase

assigns a set of possible ancestral states to each inner node of the phylogenetic tree. The

second phase then selects one ancestral state per inner node. It does this in a way that

minimizes the number of mutations across the tree.

To compute the possible ancestral states, we look at each inner node in post-order (left

child, right child, parent). This means that once we get to a node, we already processed both

its children. For each tip, the set of possible states consists of the single �xed state we received

56



7. Eliminating Disk Access

Algorithm 4 Hartigan’s [48] algorithm: Overview

Given: A Tree ) with 8 tips and the corresponding MSA ( with 8 sequences (0 . . . (8
1: for each B8 ∈ ( do
2: Phase1(B8 , ) )

3: Phase2(B8 , ) )

4: end for

{A} {T}{A} {A} {C}

{A,T}

{A}

{A,C}

{A}

{A} {T}{A} {A} {C}

{A}

{A}

{A}

{A}

(a) (b)

+1

+1

Figure 7.3.: Reconstruction of the ancestral states as described by Hartigan [48]. A bifurcating

phylogenetic tree with �xed topology and sequences at the tips is given. (a) In the �rst phase,

we build possible ancestral states. If both children of the same parent have common states,

we set these as possible ancestral states. If the two children do not have common states, we

set the union of the children’s states as possible ancestral states. (b) In the second phase, we

chose ancestral states. For the root, we chose a state randomly from its possible ancestral

states. For each node, we check if its parent’s ancestral state is a possible ancestral state of

the node. If it is, we chose it as the node’s ancestral state. If it is not, we choose a random

state from the child’s possible ancestral states. In this case, a mutation occurred (+1).

as input. For all inner nodes, we look if the current node’s children have common possible

states. If they do, the current node’s possible states is the intersection of the children’s states.

In case they do not, we assign the union of the children’s possible states to the current node

(see Figure 7.3.a and Algorithm 5).

To select an ancestral state for each node, we start at the root and traverse the tree in

pre-order. This means, that we once we get to a node, we have already processed its parent.

For the root, we choose one of the possible states at random. For each inner node, we choose

its parents state, if this state is a possible state of the current node. If it is not, we choose a

random state of the current node’s possible states. In this case, one mutation occurred. For

the tips, the states are already set, and we do not alter them. If the tip’s state di�ers from its

parent’s state, a mutation occurred (see Figure 7.3.b and Algorithm 6).

In a bifurcating tree, |� | = |+ | − 1 holds. Therefore, we can perform a Depth First Search

(DFS) in O(|+ |) time. As the sequences of the MSA are located at the tips, the tree has

|+ | = 2= − 1 nodes, where = is the number of sequences in the MSA. In phase 1, we compute

a set intersection and possibly a set union for each node. There are only 16 possible values in

57



7. Eliminating Disk Access

Algorithm 5 Hartigan’s [48] algorithm: Build possible ancestral states

1: function Phase1(Site B8 , Tree ) )

2: traverse ) in post-order

3: if current node # is a tip then
4: + (# ) ← {nucleotide(# )}
5: else
6: let � and � be the children of # .

7: if + (�)⋂+ (�) ≠ ∅ then
8: + (# ) ← + (�)⋂+ (�)
9: else

10: + (# ) ← + (�)⋃+ (�)
11: end if
12: end if
13: end traversal
14: end function

Algorithm 6 Hartigan’s [48] algorithm: Select ancestral states

1: function Phase2(Site B8 , Tree ) )

2: For the root ' of ) , choose an element ( from + (') at random.

3: traverse ) in pre-order ⊲ Skipping the root

4: let the current node be � and its parent be % .

5: if + (%) ⊆ + (�) then ⊲ We already set + (%) to a single element.

6: + (�) ← + (%)
7: else
8: + (�) ← {RandomChoice(+ (�))}
9: end if

10: end traversal
11: end function

the sets. We can therefore compute unions and intersections in O(1) time. We can use, for

example, a binary set representation and bitwise OR and AND functions for this. In phase 2, we

have to compute an element-of and random choice. We can compute element-of in O(1) time

using a bitmask. We replace the random choice with always choosing the Most Signi�cant

Bit (MSB) in O(log(16)) = O(1) time. The overall runtime for computing the ancestral states

is therefore O(=).

Encoding the Tree

We can encode a bifurcating tree ) in a binary Newick format (see Figure 7.2a). In the ASCII

Newick format, each set of opening and closing parenthesis represents an inner node of the

tree. Inner nodes can be named and branches can have lengths, but we do not need to use

58



7. Eliminating Disk Access

this information. In our case, each string substitutes the name of a sequence at a tip of the

tree. We provide an example in Figure 7.1, whose Newick encoding is (a,b,(c,d));. As the

tree topology is �xed, we can store the sequence names separately. As long as they are in

a de�ned order, the assignment of sequence names to nodes is unambiguous. We use the

sequence names to associate sequences, stored in the MSA to the tips. We can also omit the

semicolon and the commas. As our tree is bifurcating, the encoding will still be unambiguous.

We therefore encode our example tree as (()). We can use a 1 to represent a ( and a 0 to

represent a ). This yields the binary encoding 1100.

Algorithm 7 Tree encoding

Given: A bifurcating tree ) .

1: function EncodeTree(Tree ) ) ⊲ Runtime: O(|+ |) = O(2= − 1)
2: newickString ← ToNewickStringRooted() ) ⊲ Runtime: O(|+ |)
3: for each 2 ∈ newickString do
4: Write 1 for ‘(‘ and 0 for ‘)‘
5: end for
6: Write name of sequences in the order they appear in the Newick string

7: end function

We can compute a tree’s encoding by iterating over the ASCII Newick string (see Algo-

rithm 7). To encode the tree topology, we skip all non parenthesis, write out a 1 for each

opening parenthesis, and a 0 for each closing parenthesis we encounter. We encode the names

of the sequences in the same order as they are in the Newick string. To avoid ambiguity,

we list tips before inner nodes in the list of children of each node. That is, we encode the

example tree (see Figure 7.2a) as (a,b,(c,d)); and not as ((c,d),a,b);. This algorithm uses

a procedure to compute the Newick string of a tree already implemented in RAxML-ng. If

such a procedure is not available, we can use an algorithm analogous to the one we describe

for decoding a tree (see Algorithm 8).

To decode the tree from the binary stream, we read it bit by bit (see Algorithm 8). The

encoding always starts with a 1. Each time we read a 1, we create a new node in our tree data

structure. We also initialize a counter � [# ] storing how many children this node still needs.

The �rst node (“root”) needs three children, all other inner nodes need two children. A tip

has no children and is not explicitly encoded. We therefore need to �ll in the tips when we

encounter the end of the list of children of an inner node (marked by a 0). If a inner node has

one tip and one inner node as children, the tip will be the left child. If the root has tips as

children, they are also left of the inner node(s). This ensures that the mapping of sequences

to tips is unambiguous.

We insert this new node as the right child of the current node and decrement� [currentNode].
If the current node already has a right child, we will insert the new node as the left child.

If the current node already has two children, it has to be the root node, and we add a third

child to the left of the two existing children. Next, we set the newly inserted node as the new

current node. Each time we encounter a 0, we add all missing tips under the current node. If

59



7. Eliminating Disk Access

Algorithm 8 Tree decoding

1: function DecodeTree(File � ) ⊲ Runtime: O(|+ | ∗)insertPE)
2: let ) be the resulting tree, and # be the current node

3: let � [] be an array storing the number of expected children per node

4: assert � .ReadBit() = 1

5: # ← ) .root
6: � [# ] ← 3 ⊲ The root will have three children

7: open← 1

8: repeat
9: 2 ← � .ReadBit()

10: if 2 = 1 then
11: assert � [# ] > 0

12: � [# ] ← � [# ] − 1
13: open← open + 1
14: if # has no right child then
15: Insert a new node as the right child of # .

16: # ← # .le�Child
17: else
18: Insert a new node as the left child of # .

19: # ← # .rightChild
20: open← open − 1
21: end if
22: � [# ] ← 2 ⊲ The new node will have two children

23: else
24: Insert � [# ] children under #

25: � [# ] ← 0

26: # ← # .parent
27: end if
28: until open = 0

29: assert ∀# : � [# ] = 0

30: Read the names of the sequences

31: Get associated sequences from the MSA

32: end function

only one tip is missing, we add it to the left of the existing inner node. The node will then

have exactly three children if it is the root, or two children, otherwise. We use the counter

� [# ] to detect how many children this node is still missing. Next, we move up to the parent

of the current node. If we have read the same amount of 1s and 0s, the encoding is �nished.

Next, we read the names of the sequences and assign them to the tips in the same order they

were written, for example in pre-order. We then get the associated sequences from the MSA.

60



7. Eliminating Disk Access

Encoding of the Sequences

Given the tree) with = sequences (∗ = {(1, (2, . . . , (=} at the tips and =−1 ancestral sequences

�∗ = {�1, �2, . . . , �=} at the inner nodes, we can now describe the compression of a MSA (see

Figure 7.2b and Algorithm 9). We will denote the B-th site of the 9-th sequence as (
9
B .

To facilitate read access to random sites, we store the start of the encoding of each site in

an index data structure � . We know the number of sites in advance. The site identi�ers range

from 0 to the number of sites minus one. We can thus use a simple vector for � . Also, we

can skip the number of bytes required by � when writing the encoding. We can then later

come back and write � here. As we need � before the encoding of the sequences, this makes

decompressing more straightforward.

For each site 8 , we write the nucleotide state Broot8 at the root sequence, followed by the

changes to this site along the tree. To encode the changes, we traverse the tree in pre-order.

We number the tree edges in pre-order, too. If the current node’s nucleotide state for this site

di�ers from that of its parent, we have to encode a change. We do this using the edge number

leading to the current site as well as the nucleotide change mask (see Section 7.1.1).

Algorithm 9 MSA compression

1: function Encode(Tree ) , Sequences (∗) ⊲ )EncodeTree +< ∗)dfs
2: let � be a vector mapping each site to its start location in the encoding

3: EncodeTree() )

4: Skip space for |( root | + 1 pointers in the output stream to later store � in

5: for each Broot8 ∈ ( root do
6: � .PushBack(<8 , current position>)

7: Write B8 to output stream ⊲ 4 bit, optionally use Hu�man coding

8: traverse ) in pre-order ⊲ Skipping the root

9: let � be the current node

10: let 4 9 be the edge from �’s parent to �; number edges by pre-order

11: if B�8 ≠ B
parent
8

then
12: Write <B�8 , 9>. ⊲ See coding explanation in Section 7.1.1.

13: end if
14: end traversal
15: end for
16: " .PushBack(<EOF, current position + 1>)

17: Go back and write �

18: end function

To decode an MSA (see Figure 7.2b and Algorithm 10) we �rst read the tree topology as

described in Algorithm 8. Next, we read the index data structure, mapping the site identi�ers

to the start of their encoding in the bitstream. For each site B we want to decode, we go to the

speci�ed location and start reading. The �rst four bits we read are the site’s nucleotide state

at the root sequence Broot . We then traverse the tree ) , applying the changes along the edges.

61



7. Eliminating Disk Access

We read the changes in the same order as we wrote them, that is, pre-order. Thus, we will

never have to go back in the tree traversal to apply a change.

Algorithm 10 MSA decompression

1: function Decode(File � , Range of Sites ' ⊆ [1, |(1 |]) ⊲ Runtime: |' | ∗)dfs ∈ O(< ∗ =)
2: ) ← DecodeTree(� )

3: � ← ReadI(� )

4: for each B ∈ ' do
5: Go to start of the site’s encoding in the �le ⊲ As indicated by �

6: Read ( rootB from the input stream ⊲ One hot-encoded

7: Read < substitutionMask, edgeID > from input stream

8: traverse ) in pre-order

9: Set the node’s nucleotide state to its parent nucleotide state

10: if next change is on the edge leading to the current node then
11: Apply change-mask to the current node’ state

12: Read < substitutionMask, edgeID > from input stream

13: end if
14: end traversal
15: end for
16: end function

Note that we describe how to write the encoding to a �le. If we want to keep the compressed

MSA only in memory, we can simplify the algorithm. In this case, we do not need to encode

and decode the tree. We also do not need to store the index data structure � in the same

bitstream as the compressed sites.

We encode sites independently of each other. We can therefore compute and write the

encoding for each site sequentially on a single PE. Alternatively, we can distribute the sites

across multiple PEs and collect the encoding afterwards. At no point in time do we have to

keep all sites in memory on the same PE. We therefore do not introduce a memory bottleneck.

7.2. General Redundant In-Memory Static Storage

The MSA compression we describe above (see Section 7.1) is speci�c to our application

domain. In this section, we present a general approach to storing invariant data redundantly

in memory across multiple PEs. In this case, the domain speci�c part of our algorithm consist

only of the redistribution of likelihood computations after a failure.

7.2.1. Problem Statement and Previous Work

The load-balancer assigns each PE a set of sites for which it has to perform the calculations

(see Section 2.2.1). For this, it needs to hold the alignment data for these sites in memory.

62



7. Eliminating Disk Access

After a PE failure, we have to recalculate the assignment of sites to PEs. The PEs then have to

load the subset of the alignment data they need for calculating the likelihood score on the

sites assigned to them. As reloading from disk can be too slow, the assignment data of all

sites should be kept in memory, distributed across all PEs. As we need to access this data after

one or more PEs failed, it is crucial that we store this data redundantly.

7.2.2. Preliminaries and Related Work

Di�erent �elds of computer science are in need of data duplication for recovery purposes.

One example is Redundant Array of Inexpensive Disks (RAID) storage. To increase reliability,

a RAID system either mirrors the data to additional disks or uses a parity code. Parity codes

represent a way to reduce the number of copies we need to restore the data. They work by

storing one copy of the data as well as the sum of the data instead of multiple copies of the

data [81]. For example in a three disk setup, disks � and � store the data and disk � stores

the bitwise XOR � = � ⊕ �. This is called a Reed-Solomon code. Reed-Solomon codes can be

extended to an arbitrary number of data storing instances (disks in RAID, compute nodes in

HPC). They can also be extended to handle an arbitrary number of failures. In this case, the

computational e�ort will increase [86, 93].

Plank used RAID-like XOR-sums to improve disk-based checkpointing in HPC applica-

tions [84]. Bosilca et al. [14] applied Reed-Solomon codes to in-memory checkpointing in a

matrix-matrix multiplication algorithm. All of these techniques assume that we can replace

failed disk or PEs and therefore do not need to redistribute the data.

A performance evaluation of mirroring-based vs parity-based checkpointing on SIMD

machines, found parity-based methods to be an order of magnitude slower than mirroring-

based methods [21]. This is, because if we want to restore a block of data in a mirroring-based

duplication system, we need to transfer only one copy of exactly this block over the network.

If we, however, want to do the same in a parity-based duplication system, we need to transfer

and XOR multiple blocks. Dimakis et al. [24] reduced the amount of data transfer required

compared to basic Reed-Solomon codes. Chen and Dongarra [20] present a strategy to

make parity-checkpointing scale independently of the number of PEs by using a pipelined

calculation of the parity-checksum and subgroups. That is, we divide the data into blocks,

on which we compute the checksum in parallel across di�erent PEs; not unlike pipelining in

modern CPUs. This improved parity-based scheme still needs to transfer more data than a

mirroring-based approach [24].

Peer-to-Peer (P2P) networks and cloud �le systems also have to deal with failing storage.

They, however, are facing di�erent challenges than we are. In both settings we can assume

that, while storage space should not be wasted, we will always have enough space available

to create another replica of a �le. Additionally, in P2P networks, decreasing peer-to-peer

bandwidth usage is often substantially more important than decreasing disk usage [49].

In our case, the amount of memory available to store additional copies of the MSA is limited.

Data loss, however, is less severe than for example in a �le system as the MSA data is still

63



7. Eliminating Disk Access

kept on disk. We are also trying to reduce the time taken for restoration, that is, we want to

minimize the latency and not the bandwidth used.

7.2.2.1. ℎ-Relations

In parallel computing with distributed memory and message passing, the ℎ-relation problem

arises. It occurs if each PE has at most ℎ messages to send and at most ℎ messages to receive.

The source and destination of each message is not constrained. Communication is carried out

in rounds. Each PE is able to send and receive one message per round (full-duplex). The task

is to �nd an order in which to send these messages, such that we require as few rounds as

possible [1].

7.2.3. Redistribution of Calculations

On program start-up, the load balancer assigns each PE a set of sites. This PE is responsible

for computing the likelihood scores of these sites. After a PE fails, we have to redistribute the

sites it was responsible for. We cannot know in advance if and when a PE is going to fail. It is

also possible that more than one PE fails at the same time or before we completed recovery.

We might therefore need to redistribute more than one PE’s share of sites.

How much work does each PE obtain?

We decided not to replace failed nodes but to rebalance the load onto the surviving PEs (see

Section 5.1). As the number of PEs is reduced through failure, at least one processor has to

receive more work. We can set a limit on how much new work each of the ? PE gets. For

example 0 · workToRedistribute, where 0 is a factor greater than 1/? but less than one. We

want to choose 0 such, that the work gets distributed among as many PEs as possible without

introducing new partitions to the PEs. To simplify things further, we can ignore site-repeats

(Section 3.3) when looking at the work each PE has to perform. By doing this, the work of a

PE scales linearly with the number of sites we assign to it. We can therefore use the number

of sites instead of work in the above term.

Which PE obtains which work?

Currently, we rerun the initial load balancer for the reduced set of PEs. This yields an

assignment of sites to PEs which is uncorrelated with the old one. Therefore, all PEs might

need to load new sequence data. Our goal should be to avoid this.

To reduce the number of PEs which need to load data, we can use a greedy approach to

assigning work to sites. We assign each site we need to redistribute to a random PE which

already computes the likelihood score of another site in the same partition. If there is no such

PE with spare capacity left, we redistribute the remaining sites randomly across PEs with

spare capacity. In this case, we lift the restriction that these PEs must already have another

site of the same partition assigned to them.

64



7. Eliminating Disk Access

A more elaborate approach would be to build a bipartite graph with the sites we want to

redistribute on the left-hand side and the PEs on the right-hand side (see Figure 7.4). We

connect each site to all PEs which already have other sites of the same partition assigned to

them. Next, we search for a maximal 1-constrained matching with 1 (site) = 1 and 1 (PE) =
capacity(PE). A 1-matching is an expansion of the normal matching problem in which

the maximum number of edges in the matching incident to each vertex E is bound by a

function 1 (E). See Section 7.2.6 on how we can solve this problem algorithmically. If there

are unmatched sites, we randomly distribute them among the PEs.

a

b

c

α

β

γ

δ

ǫ

PEs

b = 1 b(rank) = capacity(rank)

sites

b(a) = 1

b(b) = 2

b(c) = 2

a

b

c

α

β

γ

δ

ǫ

PEssites

b(a) = 1

b(b) = 2

b(c) = 2

b-matching

(a) (b)

Figure 7.4.: Redistribution of Calculations. (a) Sites we want to redistribute are shown on

the left. PEs that could get new sites are shown on the right. The sites belong to one of two

partitions: blue and green. We connect each site to all PEs which already have other sites of

the same partition assigned to them. For example PE 1 already has sites belonging to partition

green, PE 2 has sites belonging to both partitions, and PE 3 has sites belonging to partition

blue. (b) A 1-matching induces an assignment of sites to PEs which already have a site of this

partition. We never exceed a PE’s capacity. If sites remain unmatched, we distribute them

randomly.

65



7. Eliminating Disk Access

7.2.4. Restoring Redundancy A�er Failure

If one or more PEs fail, we will lose copies of at least one block of MSA data. The redundancy

therefore decreases. To increase the resilience of the system against multiple failures occurring

over time, that is, not at once, we can restore this redundancy.

Each PE has a �nite amount of memory " which we can use for storing alignment data

for likelihood computations � and redundant copies of other PE’s alignment data ' (see

Figure 7.5a). If one PE fails, we loose at most one copy of each site’s alignment data. We

decided which PE has to replicate and store another copy of � while redistributing the

likelihood computations. We also have to redistribute the redundant copies ' of the failed

PE among the remaining PEs (see Figure 7.5b). For now, let us assume that there is su�cient

memory left to do this. We can assign, (not transfer yet) each block of sites to the remaining

PEs using a pseudo-random permutation. The number of blocks on the failed PE can be higher

than the number of remaining PEs. In this case, we need to assign multiple blocks to some

PEs. The number of blocks we assign to each PE will di�er by at most 1.

other

assigned

redundancy

PE 1 PE k

. . .

other

assigned

redundancy

free free

R

A

M

(a) memory layout

o
t
h
e
r
r
a
n
k
s

(b) redistribution of blocks

Figure 7.5.:" denotes the entire memory available for storing the assignment data. “Other”

includes the CLVs (see Section 2.2.1) and therefore encompasses the majority of the total

memory requirement of RAxML-ng. (a) The memory layout. We group sites into blocks. Each

PE stores copies of the blocks it needs for its likelihood calculations (green; �). Additionally,

each PE stores copies of other blocks (blue, ') to provide them to other PEs in case of failure.

(b) If a PE fails, we have to redistribute its redundancy copies (blue, ') among the remaining

PEs. We reassigned its blocks belonging to � already in the previous step (see Section 7.2.3).

It can happen that we assign to a PE the copy of a block it already stores. Another copy of

this block can be part of the PE’s alignment data for likelihood calculations � or redundancy

66



7. Eliminating Disk Access

copies '. In both cases, the PE has to exchange replication responsibilities with another PE

(see Figure 7.6). Let A be the number of (additional) copies of the alignment data. For each PE

that stores at least two copies of the same data after the initial reassignment of the alignment

data, we have to evaluate at most A other PEs as possible exchange partners. This is, because

the exchange partner is not allowed to have a copy of the block itself as this would reduce

redundancy. The exchange partner must also have a block the “source” PE of the exchange

does not have: If the exchange partner (“destination”) has fewer blocks than the source PE, it

gets assigned the block and does not give up another block. The maximum number of blocks

on any PE will not increase. If the destination has more blocks than the source PE, at least

one of these blocks must be a block the source PE does not have. We can then exchange this

block. If the destination has the same amount of blocks an exchange is possible, too. If the

destination already has the block we are trying to exchange, it is one of the at most A invalid

destinations. We have already �ltered these out it the previous step. The destination therefore

cannot have a copy of this block already. This means, that at least one of its blocks cannot be

present at the source PE and the PEs can therefore swap them. We can calculate which blocks

need to be swapped before we transfer them to the respective nodes. We do not need to

actually transfer blocks between the source and destination during this step. Instead, we input

the computed responsibilities in the ℎ-relations algorithm we describe in Section 7.2.5. For all

of this, no communication between the PEs takes place as we conduct all these computations

o�ine. We transfer only the data in the next step. The result will be a list of PEs to which we

have assigned a new block to store in their ' space.

new new

same

block exchange

Figure 7.6.: If a PE stores a block twice, redundancy su�ers as multiple copies of a block

would be lost in a single PE failure. The PE therefore has to exchange a block with another

PE.

67



7. Eliminating Disk Access

Reducing redundancy when running out of memory

It is possible, that the amount of memory across all PEs is not su�cient to store the current

amount of redundant copies after a PE failure. In this case, we have to reduce the degree

of redundancy. For each block that did not lose one copy during the PE failure, we need to

mark exactly one copy for deletion. We do not need to mark copies evenly across the PEs.

If some PEs have more free space than others, we can �ll this free space in the subsequent

redundancy copy redistribution step. We can therefore mark random copies of blocks with

extra redundancy for deletion.

7.2.5. Redistribution of Data

Both, restoring redundancy and redistribution of likelihood-computation responsibilities

requires transmission of data blocks among the PEs. Up until now, we did not transfer any

blocks. We only computed which PE needs which block. We will now consider how to

e�ciently transfer these blocks over the network. Each PE may need to receive multiple

blocks of data, each of which might be present at multiple other PEs. We need to �nd an

assignment of source to sink PEs describing which PE will send which data block to which

other PE. This is an extension of the ℎ-relation in which multiple PEs can send the same data

(see Section 7.2.2.1). We need to minimize the maximum number of blocks a single PE has to

send. We have already set the number of blocks each PE has to receive in the previous steps.

We can express the problem as a graph. We write PEs which need to receive blocks on the

left side, blocks in the middle, and PEs which can send blocks on the right side (see Figure 7.7).

We connect each PE on the left to all the blocks it needs. If two PEs need the same block, we

will duplicate the node representing the block (middle column). We connect each PE on the

right to each block it can send. Next, we compute a block-saturating minimum 1-matching on

the bipartite subgraph of nodes representing blocks and nodes representing source PEs as well

as the respective edges (middle and right column). In such a matching, each block is incident

to exactly one matching edge. Each source PE can be incident to a maximum of 1 matching

edges. We need to �nd the minimal 1min which ful�ls the block-saturating property. Such

a matching will turn the multi-source ℎ-relation into an ordinary ℎ-relation. We can then

compute the order in which to transmit blocks using for example the algorithm presented by

König [66]. We describe how to compute a unilaterally-saturating minimum-1 matching in

Section 7.2.6.

7.2.6. Unilaterally-Saturating1-Matchings in Bipartite Graphs

The 1-matching problem is a generalization of the matching problem in graphs, where the

objective is to choose a subset of " edges in the graph such that at most a speci�ed number 1

of edges in" are incident to each vertex E . We call a vertex saturated, if it is incident to an edge

in the matching. A perfect matching is a matching in which all vertices are saturated [89]. For

bipartite graphs we de�ne an unilaterally-saturating matching as a matching which saturates

68



7. Eliminating Disk Access

blocksreceiver PEs source PEs

needs has

matching

Figure 7.7.: Redistribution of data block. We model the redistribution as the multi-sender

ℎ-relations problem which we solve using a left-saturating minimum-1 matching. We connect

receiver PEs (left) to the blocks they need (middle). We connect each source PE (right) to the

blocks it can send. For a matching, we need to consider only the middle and right column.

Each block has to be incident to exactly one edge in the matching. We are minimizing the

maximum number of edges any source PE is incident to.

all edges of one (given) of the two sets of vertices, that is, “left” or “right”. All vertices E are

incident to less or equal than 1 vertices of the matching. The vertices in the non-saturated

group do not need to be incident to an edge in the matching.

For �xed 1, a number of algorithms have been proposed which maximize the sum of edge

weights of edges in the 1-matching [6, 50, 51, 62]. Also, �ow-networks have been used to �nd

maximum matchings in bipartite graphs before [30, 57]. For our case, we need to minimize

1 = max(1E ) while ensuring that each vertex of the (w.l.o.g.) left side of the bipartite graph is

matched. For this, we can use �ow-networks. Ford and Fulkerson [37] describe an algorithm

to compute the maximum �ow in a network. The Ford-Fulkerson method works as follows:

While there is an augmenting path from source to sink in the residual graph, add this path to

the �ow. They do not specify in which order to apply the augmenting paths.

The �ow network we use to model a left-saturated minimal 1-matching (see Figure 7.8b)

has the following properties: All edges between the source and vertices of group � have a

weight of exactly 1. All edges between a vertex of group � and a vertex of group � have a

weight of exactly 1. There is exactly one edge between the source and each vertex in group

�. This edge is the only incoming edge of these vertices. If we would set 1 to in�nity, the

incoming and outgoing �ow through this vertex in a maximum �ow is therefore exactly 1.

69



7. Eliminating Disk Access

b(uA) = 1 minimize b(vB)

A B

b(v) = 1

b(v′) = 1

b(v′′) = 1

b(v′′′) = 2

max{b(v) | v ∈ B} = 2

∀u ∈ A : degree(u) = 1

(a) as bipartite graph

s t

1

1

1

1

1

max(b(v))

max(b(v))

max(b(v))

max(b(v))

1

1 1

1

1

1 1

1

A B

(b) as �ow problem

Figure 7.8.: (a) �-saturated minimal 1-matching. All vertices in � are incident to exactly one

edge in the matching. All vertices in � are incident to at most 2 vertices in the matching. There

is no solution for max(1 (+�)) = 1. (b) The same bipartite graph matching problem modelled

as a network �ow problem with source B and sink C . The edge capacities are annotated next

to the edges. Solid edges have �ow greater than zero. Dotted edges have a �ow �ow of zero.

This means, that exactly one outgoing edge of each vertex in � will be in the matching " if

we set 1 large enough. Our task is of course to set 1 as small as possible while still having a

�ow of 1 through each vertex E� ∈ �.

First, we maximize the �ow with 1max = 1 (see Algorithm 11). If there exists a bipartite

matching saturating all nodes in �, there must also be a �ow in the network using all edges

from B to nodes in �. As each of these edges has a weight of 1, the �ow will have a capacity

of exactly |�|. If a �ow with a capacity of at least � exists in the network, the Ford-Fulkerson

will �nd it [37]. Therefore, if the Ford-Fulkerson method does not �nd such a �ow, there

exists no bipartite matching saturating all nodes in � with the current 1max . We thus have to

increase 1max by one and try to �nd a matching again. By using this iterative approach, we

guarantee that no 1′max < 1max exists for which a �-saturating matching is possible. We ruled

out each 1′max . We do not need to reset the current �ow and residual graph when increasing

1max . This is, because the Ford-Fulkerson method does not specify the order in which we

have to apply the existing augmenting paths.

As there is exactly one edge from the source to each vertex in � with capacity of 1, a �ow

of 1 has to go over each of these edges. An augmenting path from source B to sink C will never

70



7. Eliminating Disk Access

Algorithm 11 Ford-Fulkerson Method on a Bipartite Graph

1: let � be an adjacency array storing all edges between nodes in � and � as well as the

�ow in edge direction (0 or 1). We can use this data structure for the normal and residual

Graph.

2: let � [ 9] be an array storing the �ow from each vertex E 9 ∈ � to the sink C .

3: let � [8] be an array which stores the predecessor in of each node 8 in the current search

tree

Ensure: ∀8, 9 : � [(E8, E 9 )] .�ow +� [(E 9 , E8)] .�ow = 1

4: 1 ← 1

5: for all E ∈ � do
6: let & be an empty queue.

7: & .enqeue(E)

8: � [E] ← #*!!

9: repeat
10: E ← &.34@D4D4 ()
11: Mark E as visited

12: if E ∈ � and � [E] < 1 then ⊲ Augmenting path found

13: Increase the �ow (stored in �) along all edges in the path (stored in � )

14: Clear �

15: � [E] ← � [E] + 1
16: break
17: end if
18: for all neighboursF of E do
19: if F not marked as visited and edge (E,F) has spare capacity then
20: & .Enqeue(F )

21: � [F] ← E

22: end if
23: end for
24: until & .Empty()

25: if no augmenting path found then
26: 1 ← 1 + 1
27: Restart loop iteration for the same start vertex E

28: end if
29: end for

go over an edge (E�, B) in the residual graph for all E� ∈ �. We can therefore iterate over the

vertices in � and initiate breadth �rst searches from there. An augmenting path from B to C

will also never go over an edge (C, E�) in the residual graph for all E� ∈ �. We therefore can

trim our Breadth First Search (BFS) search at C . #� (E) is the set of vertices adjacent to E in � ,

#' (E) the set of vertices adjacent to E in the residual graph.

71



7. Eliminating Disk Access

The runtime of this algorithm is O(|�| · ( |�| + |�) · |� |) where |�| and |� | are the number

of elements in the sets � and � respectively and |� | is the number of edges. We can apply

this algorithm to �nd solve the multi-sender ℎ-relation when redistributing blocks (see

Section 7.2.5). In this case, |�| is the number of blocks that we need to transfer, |� | is bound

by the number of PEs, and |� | is bound by the number of blocks we need to transfer times the

number of copies per block.

7.3. A Probabilistic Approach

The algorithms described above are not trivial to implement. In this Section, we present a

probabilistic approach to keeping read-only data redundantly in-memory across PEs. This

approach is easier to implement. We have an object $ (the MSA) of size ! which we want to

distribute over ? PEs. We divide$ into : blocks$0, . . . ,$:−1 of size !/: with : � ? . Each PE

8 stores the block $8 mod : . If a PE wants to load block $0 , it will search for the next PE which

stores $0 and fetch $0 from this PE (see Algorithm 12 and Figure 7.9). We could implement

this using Remote Direct Memory Access (RDMA).

Algorithm 12 Get data block $0 on PE 9

1: for all blocks $0 required on PE 9 do
2: 8 ← argmin8 ′{1 = 9 + 8′ | 1 mod : = 0 and PE 1 is alive}
3: Get $0 from PE 8

4: end for

0 1 2 3 4 5 6 7PEs

blocks O0 O1 O0 O1 O0 O1 O0 O1

needs O1
needs O1

✓ ✓

✗

Figure 7.9.: Probabilistic redundant in-memory read-only storage. We divide the object

(MSA) $ into blocks. In this example we use two blocks. Each PE stores one block. If a PE

wants to access a remote block, it requests it from the next alive PE which stores this block.

PE 2 cannot request block $1 from PE 3 (7), because the latter is not alive. It can, however,

request block $1 from PE 5 (3).

This approach always works if the number of failed nodes is less than ?/: . For random

failures the number of failures that we can tolerate without loosing data can be even higher.

72



7. Eliminating Disk Access

We can use a random permutation to distribute the blocks onto the PEs. This will cause the

worst-case to occur for a random input instead of occurring systematically.

We can adjust the formula given by Casanova et al. [17] for replicated computations to

our situation. The MNFTI denotes the mean number of failures to interruption. This is the

expected number of PEs that must fail such that for at least one block $ 9 there is no more

copy available. A PE that failed once, cannot fail again. Let = 5 be the number of failures. The

formula for the case 6 = 2, that is, there are two replicas per block, is then:

E(NFTI |= 5 ) =
{
1, if = 5 = :

1 + 2:−2=5
2:−=5 E(NFTI |= 5 + 1), otherwise

(7.2)

No closed formula is known. For a general formula with more than two replicas (6 > 2), see

Casanova et al. [17]. Let us give an example: Using 512 nodes and 6 = 3 copies per block,

we have to set : = 170. Casanova et al. [17] calculated MNFTI (: = 128, 6 = 3) = 75.9. This

means that, we can expect nearly 76 nodes to fail before we loose any blocks. Also, loosing

blocks of the MSA is not catastrophic for RAxML-ng as we can always reload them from disk.

Let us reconsider our example from Section 7.1.1. We calculated a memory requirement for

the CLVs of 0.609MiB site
−1

per node. As we have a replication level of 6 = 3, each node has

to additionally store 3 times as much of the MSA as it already stores. Assuming 4 bits per

nucleotide, that is an additional 1.5 B per site. This is negligible compared to the memory

used for CLVs and we could a�ord an even higher level of redundancy.

73



Part IV.

Summary

74



8. Discussion

We designed and implemented a fault tolerance scheme for RAxML-ng. It will automatically

detect rank failures using ULFM, redistribute the computations to the surviving ranks and

restart the tree search from the last checkpoint (see Section 6.3). To reduce the amount of

work we loose in case of a rank failure, we increased the checkpointing-frequency. We also

made checkpointing more �ne-grained by separate checkpointing of the tree topology and

evolutionary model parameters (see Section 6.2).

RAxML-ng now supports fault tolerance in the tree search mode, using multiple starting

trees, and multiple partitions. RAxML-ng can handle multiple failures at once and multiple

successive failures automatically. There is no limit on the number of failures that can occur

simultaneously or sequentially. We also support mitigating failures which occur during the

recovery of a previous failure. As recovery is a local operation, the subsequent collective

operation will fail and restore the search state to the same mini-checkpoint. Further, we can

tolerate failures during checkpointing and so-called mini-checkpointing. In contrast to the

existing recovery scheme, a recovery is initiated automatically after a failure, that is, the user

does not have to take any action.

We benchmark our algorithms for checkpointing and recovery (see Section 6.3). In our

experiments, creating a checkpoint of the model parameters requires at most 72.0 ± 0.9ms

(400 ranks, 4,116 partitions). Creating a checkpoint of the tree topology requires at most

0.575 ± 0.006ms (1,879 taxa). The overall runtime of RAxML-ng increases by a factor of

1.02 ± 0.02 when using the new checkpointing scheme and by a factor of 1.08 ± 0.07 when

using the new checkpointing scheme and ULFM v4.0.2u1 as the MPI implementation. Restoring

the search state after a failure requires at most 535 ± 19ms. We simulated up to ten failures,

which caused the overall runtime to increase by a factor of 1.3 ± 0.2.

To the best of our knowledge, this is the �rst implementation of automatic recovery after

a rank failure in a phylogenetic tree search tool. We are now one step closer to preparing

RAxML-ng for the upcoming challenges of exascale systems (see Chapter 5).

We also analysed the distribution of computations across ranks in RAxML-ng. We showed,

that there is an imbalance of work of up to 30 % in our measurements (see Section 4.5.3). We

also showed, that for some runs, a single rank requires the most time to process the current

work package for 30 % of all work packages (see Section 4.5.4). We analysed the impact of

site-repeats on the distribution of work. We found, that when disabling the site-repeats

feature, the work is signi�cantly more balanced compared to site-repeats enabled. Disabling

site-repeats is not a solution. The omission of redundant computation we archive by using

this feature induces a speedup of up to 417 % in our measurements (see Section 4.5.5). By

using a load-balancer which takes into account the computational work saved using site-

75



8. Discussion

repeats, we could therefore further reduce the overall runtime of RAxML-ng. We propose

and implement a site-repeats aware load balancer by reducing the problem to a judicious

hypergraph partitioning problem in another publication [8].

After a rank failure, we have to redistribute the work to the surviving ranks. Those

ranks which we assign new sites to, have to load the part of the MSA they need for these

new computations from disk. We described three approaches on how to eliminate this disk

accesses by storing the data redundantly in the memory of the compute nodes (see Chapter 7).

We presented algorithms to solve the multi-sender ℎ-relation problem and the unilaterally-

saturating 1-matching problem. To the best of our knowledge, no research into low-latency

access, redundant storage without replacement of failed ranks, multi-source ℎ-relations, or

unilaterally-saturating 1-matchings has been published yet (see Section 7.2.2).

Making HPC Applications Fault-Tolerant

A complex program might invoke hundreds of MPI calls at di�erent parts in the code. We

have to check the return value of each one of them for a possible rank failure. If we detect a

rank failure, we also have to handle it correctly. If these MPI calls are not abstracted away

in a wrapper class (as for example ParallelContext in RAxML-ng), this is impractical [72].

Although the PMPI interface provides wrappers to all MPI functions [113] using them for fault

tolerance would prevent us from using pro�ling tools. That is, because pro�ling tools also rely

on the PMPI interface. This is therefore a stopgap solution at best. RAxML-ng encapsulates

all its MPI calls in ParallelContext and we thus did not encounter this problem. This, again

highlights the importance of good software engineering practices in scienti�c software.

We faced three main software engineering challenges while implementing fault-tolerance

mechanisms. First, when a failure occurs, we have to jump to the recovery routine. This

recovery routine will restore a consistent state. In RAxML-ng, we added the recovery routine

to the TreeInfo class. This class wraps high-level routines for optimizing the evolutionary

model, the branch lengths, and conducting SPR rounds. When recovering from a rank failure,

the recovery routine will need access to some data we passed to it in its constructor. Some

of these data was not intended to be valid for longer than the constructor call when we

initially designed these constructors. We therefore either have to copy this data or change the

constructor’s interface, that is, require the parameters with which we call it to be valid over

the entire runtime of the program. Secondly, in case of failure, there is a long jump in our

code. We might detect a failure at every MPI call. We then have to �rst jump to the recovery

routine and then back to the point in code we restart our algorithm from. We need to take care

to not leak any memory or other resources here. We implemented these mechanisms using

C++ exceptions. In a C codebase, this will complicate the program design considerably [72].

Third, ULFM does not guarantee to report rank failures at the same MPI call on all ranks.

This means, that di�erent ranks might be in di�erent lines of code when they get noti�ed of

the failure. This increases the logic needed to recover a consistent state – both in code and

in the mind of the programmer. ULFM o�ers the operation MPI_Comm_agree, which enables

us to synchronize the current knowledge about failures. MPI_Comm_agree conducts multiple

76



8. Discussion

collective operations. ULFM refrains from reporting failures it noticed in the last collective

operation until we call another MPI operation. We are therefore guaranteed to obtain the

failure report at the same line of code on each rank; either during MPI_Comm_agree or at the

following MPI call. MPI_Comm_agree, however, is slow and should be used sparingly.

77



9. Outlook

In Chapter 4 we showed the need for a load-balancer for phylogenetic inference algorithms

which is aware of site-repeats. We propose and implement such an algorithm in another

publication [8]. We still need to integrate this new load-balancer into RAxML-ng and evaluate

the speedup we can obtain by using it.

In Chapter 8 we describe three algorithms for eliminating the disc-access during a recovery

from a rank failure. Implementing and evaluating these algorithms constitutes future work.

We expect these algorithms to speed-up the recovery from a rank failure even further. Once

it is implemented, we can use the tree-based compression of an MSA (see Section 7.1) to save

space when storing MSAs on disk and in databases, too.

Improving the Performance of Mini-Checkpointing

The mini-checkpointing algorithm we describe in Section 6.2.2 has a runtime of min(?,<) ·
)bcast (?). Here, ? denotes the number of PEs and )bcast (?) denotes the time required for a

single broadcast. We can speed up mini-checkpointing by limiting the number of replicas

of each model to 5 + 1. We can then tolerate up to 5 simultaneous PE failures. By choosing

5 large enough, we can use statistics to show that our algorithm will still only fail with

negligible probability. When using this approach, we need to broadcast each model to 5

other PEs. All PEs which need this model for their likelihood computations already have

a consistent copy and we can thus save some messages. This mini-checkpointing scheme

will scale with min(5 ,<) · )bcast (5 ). The expected number of simultaneous failures scales

linearly with the number of PEs ? (see Chapter 5). To keep the probability of successful

program completion constant, we would therefore have to scale 5 linearly with ? . Elnozahy

and Plank [27] predict that we will need checkpoint algorithms whose runtime decreases as the

number of PEs increases. They argue, that the expected time between two failures decreases

with a growing number of PEs. Therefore, less time is available to complete the recovery,

conduct useful computations, and then checkpoint the current state before the next PE failure

occurs. The time taken for checkpointing and recovery consequently has to decrease as the

number of nodes increases. This is not possible with (current) checkpoint/restart mechanisms,

but we will still need them as backup for the more e�cient recovery mechanisms [27].

Steps to a Production Ready RAxML-ng Extension

Some RAxML-ng features are not failure-tolerant yet. For example, currently only -search

mode without bootstrap replicas is supported. Also, only �ne-grained parallelization is

78



9. Outlook

supported. We currently checkpoint the tree topology by copying it. This might be too slow

for large trees, containing tens of thousands of nodes. An alternative would be to perform a

full copy of the tree topology only at certain points in time and store all intermediate changes

applied to the topology as rollback moves.

Improving the Frequency of Checkpointing

Although we improved the frequency of checkpointing considerably (see Figure 6.1), there is

still room for improvement. We currently create mini-checkpoints after each call of an opti-

mization routine for the tree topology, model parameters, or branch lengths. To increase the

checkpoint frequency further, we need to implement fault-tolerant versions of the respective

optimization algorithms, that is Newton-Raphson, Brent [15] and BFGS [36].

Numerical Instability of Allreduce Operations

Allreduce operations on �oating-point values are numerically unstable. If the number of PEs

which take part in the allreduce operation changes, the result might change as well. This is,

because �oating-point operations are only approximately associative and commutative. The

changed order of operations will cause the small inaccuracies to pile up di�erently.

This has impacts on the reproducibility of tree searches. When no failure occurred, we

can always reproduce a result by using the same number of PEs and the same random seed.

If a failure occurred, RAxML-ng will conduct di�erent allreduce operations with a di�erent

number of PEs. To reproduce this result, we have to simulate a failure at the exact same

moment in the tree search. Implementing either a numerically stable allreduce operation or a

failure-log to enhance reproducibility is subject of future work.

79



A. Appendix

A.1. Profiling RAxML-ng

A.2. Random Seeds for Profiling Runs

We list the random seeds we set via -seed in the pro�ling experiments (see Section 4.5.1�) in

Table A.1. We use 0 as the random seed in all other experiments.

Table A.1.: Random Seeds in the Pro�ling Experiments

dataset ranks nodes random seed
PrumD6 200 10 1574530043

MisoD2a 20 1 1574443931

XiD4 160 8 1574528895

SongD1 80 4 1574463367

SongD1 400 20 1574549152

SongD1 360 18 1574547114

ShiD9 20 1 1574445908

ChenA4 160 8 1574484011

A.2.1. Absolute Di�erence of Time Required for Work and Communication

For each work and communication package, we measure how long each rank requires to

process it. On each rank, we then compute the di�erence in time required on the fastest

rank and this rank. We store these di�erences for all work packages in a histogram with

exponentially growing bins (similar to the measurements done in Section 4.5.1).

To ascertain the time required on the fastest rank, we perform one additional MPI_Allreduce

call after each work package and its associated MPI_Allreduce operation. We do not measure

the time required for this operation. The bars depict the range between the 0.05 and 0.95

quantile of the time these code segments requires on a single rank (see Figure 4.2). Black dots

indicate the median. The colours group together ranks on the same physical node.

There are no obvious di�erences between the distributions of di�erent ranks. The variance

is greater for work packages than it is for MPI_Allreduce calls. The fastest rank has a time

di�erence to the fastest rank (itself) of 0 ns. To be able to use a logarithmic scale, we show this

80



A. Appendix

PrumD6 (DNA), 200 ranks ShiD9 (DNA), 20 ranks

MisoD2a (DNA), 20 ranks XiD4 (DNA), 160 ranks

SongD1 (DNA), 400 ranks SongD1 (DNA), 80 ranks

ChenA4 (AA), 160 ranks SongD1 (DNA), 360 ranks

MPI_Allreduce Work MPI_Allreduce Work

MPI_Allreduce Work MPI_Allreduce Work

MPI_Allreduce Work MPI_Allreduce Work

MPI_Allreduce Work MPI_Allreduce Work
1 ns

10 ns
100 ns

1 µs
10 µs

100 µs
1 ms

1 ns
10 ns

100 ns
1 µs

10 µs
100 µs

1 ms

1 ns
10 ns

100 ns
1 µs

10 µs
100 µs

1 ns
10 ns

100 ns
1 µs

10 µs

1 ns
10 ns

100 ns
1 µs

10 µs
100 µs

1 ms

1 ns
10 ns

100 ns
1 µs

10 µs
100 µs

1 ms

1 ns
10 ns

100 ns
1 µs

10 µs
100 µs

1 ms
10 ms

100 ms

1 ns
10 ns

100 ns
1 µs

10 µs
100 µs

rank

0.
05

 to
 0

.9
5 

qu
an

til
es

 o
f t

im
e 

di
ffe

re
nc

e 
to

 fa
st

es
t r

an
k

Figure A.1.: Relative time required for work and communication. Each bar depicts one rank.

The colours group ranks by physical nodes. Each bar depicts the range between the 0.05

and 0.95 quantile of the di�erence between the time required on the fastest rank and this

rank per work or communication package. Black dots indicate the median. We bin the values

into exponentially growing bins ([1 to 2) ns, [2 to 4) ns, [4 to 8) ns, . . .). There are 20 ranks

running on each node (one per physical CPU core). The fastest rank has a time di�erence to

the fastest rank (itself) of 0 ns. To be able to use a logarithmic scale, we show this as 1 ns.

as 1 ns. Rank 0 is often the �rst one to �nish. This is expected, as the load balancer assigns it

the least work if the amount of work is not evenly dividable (see Section 4.5.1).

A.2.2. Relative Di�erence of Time Required for Work and Communication

.

We measure how much the time required to complete the same work or communication

package di�ers between ranks. We measure the relative di�erences of the time required to

process work packages and communication packages between ranks. To ascertain the time

required by the fastest rank and the time required on average, we conduct one additional

81



A. Appendix

MPI_Allreduce call after each work package and its associated MPI_Allreduce operation. We

do not measure the time required for this operation. For simplicity, we call the relative

di�erences Package-Speci�c Slowdon (PSS).

We chose to compare against the average instead of against the fastest rank, as there

are outliers when looking at the minimum time (see Appendix A.2.1). Each rank computes

Crank/Caverage for each work or communication package. We choose to show only the range

between the 0.05 and the 0.95 quantile in Section 4.5.2. We show the same data from the 0.01

to the 0.99 quantile in Figure A.2 and a summary in Table A.2. In Figure A.3, we show the

data without removing any outliers.

Table A.2.: Summary on the relative di�erences of time required for work and communication.

We show the overall minimum (min) and maximum (max) value across all ranks. We show the

smallest value among the 0.01-quantiles of each rank in the column min(q01). Analogously,

we show the maximum value among the 0.99-quantiles of each rank in the column max(q99).

type dataset ranks min max min(q01) max(q99)
AA XiD4 160 0.14 11.0 0.87 1.15

DNA SongD1 360 0.09 11.0 0.61 1.65

DNA SongD1 400 0.09 11.0 0.57 1.75

DNA SongD1 80 0.09 11.0 0.51 1.55

DNA MisoD2a 20 0.09 11.0 0.69 1.15

DNA XiD4 160 0.09 11.0 0.80 1.35

DNA PrumD6 200 0.09 11.0 0.87 1.15

DNA ShiD9 20 0.09 11.0 0.87 1.25

A.2.3. Imbalance of Work and Communication

We want to spend as much time working and as few time communicating as possible, as

this increases the parallelization e�ciency and decreased the overall runtime. If a rank

�nishes with its work package, it waits at the barrier of the following MPI_Allreduce for all

the other ranks to �nish their work packages. It therefore spends a higher portion of time

inside MPI_Allreduce and less time outside of MPI_Allreduce calls than the other ranks. If

di�erent ranks spent di�erent amounts of time working and communicating, this points to

an imbalance in the distribution of work.

We measure the time inside MPI_Allreduce calls (communication) as well as the time

outside them (work). If we write a checkpoint, we discard the current work package. We

show the fraction of runtime spend doing work in Figure A.4. The work packages which are

discarded do also not count towards the total runtime. All time that is not spent processing

work packages is therefore spent waiting in MPI_Allreduce calls. We also compare the fraction

of total runtime spend working with site-repeats turned on and o� (see Figure A.5)

82



A. Appendix

Table A.3.: Distribution of work: Maximum number of sites assigned to a single rank.

type dataset ranks max sites
per rank

AA NagyA1 160 666

DNA SongD1 80 9,331

DNA SongD1 360 2,074

DNA SongD1 400 1,867

DNA MisoD2a 20 57,134

DNA XiD4 160 1,037

DNA PrumD6 200 1,133

DNA ShiD9 20 666

The run on MisoD2a on 20 ranks has the most sites per rank (57,134; see Table A.3) and

the highest work to communication ratio. The run ShiD9 on 20 ranks has the least sites per

rank (666) but has a higher work to communication ratio than for example SongD1 on 400

ranks (1,867). As the 20 ranks of the ShiD9 all run on a single physical node, MPI can use

shared memory and local sockets for communication. On the SongD1 run, MPI has to conduct

communication between 20 nodes and 400 ranks. Some runs, for example on XiD4 with 1,037

sites per rank on 160 ranks or on PrumD6 with 1,133 sites per rank on 200 ranks have a work

to runtime ratio of around 0.5. This indicates that we use too few sites per rank for RAxML-ng

to e�ciently parallelize the three search. This does a�ect the overall runtime, but not the load

balance, which we want to investigate.

A.2.4. Number of MPI calls per Second

We measure the number of MPI_Allreduce calls per second (see Figure A.6). This gives us an

indication on how many work packages RAxML-ng processes every second. We measure the

most MPI_Allreduce calls per second, around 20,000, on the run on the ShiD9 dataset with 20

ranks (666 sites per rank, see Table A.3). When we, for example, evaluate the log-likelihood of

a tree, we conduct one allreduce operation after we �nished the local likelihood computation.

If there are fewer sites per rank, we have to perform fewer local likelihood operations and

therefore have to perform more allreduce operation per second.

83



A. Appendix

PrumD6 (DNA), 200 ranks ShiD9 (DNA), 20 ranks

MisoD2a (DNA), 20 ranks XiD4 (DNA), 160 ranks

SongD1 (DNA), 400 ranks SongD1 (DNA), 80 ranks

ChenA4 (AA), 160 ranks SongD1 (DNA), 360 ranks

MPI_Allreduce Work MPI_Allreduce Work

MPI_Allreduce Work MPI_Allreduce Work

MPI_Allreduce Work MPI_Allreduce Work

MPI_Allreduce Work MPI_Allreduce Work
1.00

1.25

1.50

1.75
2.00

1.0

1.5

2.0

2.5

1.00

1.25

1.50

1.75
2.00

1.00

1.25

1.50

1.75

1.0

1.5

2.0

1.0

1.5

2.0

1

2

3

1.0

1.2

1.4

1.6

rank

tim
e(

ra
nk

) 
/ t

im
e(

av
g)

Figure A.2.: Relative di�erences of the time required for work and communication packages.

Each rank computes Crank/Caverage for each work and communication package. We call this the

Package-Speci�c Slowdon (PSS). Each bar depicts the distribution of the PSSs of one rank.

The colours group together ranks on the same node. The bar ranges from the 0.01 to the 0.99

quantile of the PSS. Black dots indicate the median of the PSS. For example: A bar ranging up

to 1.6 means, that this rank required 60 % more time than the average rank for at least 1 % of

the work packages. We truncate the ~-axis below 1.

84



A. Appendix

PrumD6 (DNA), 200 ranks ShiD9 (DNA), 20 ranks

MisoD2a (DNA), 20 ranks XiD4 (DNA), 160 ranks

SongD1 (DNA), 400 ranks SongD1 (DNA), 80 ranks

ChenA4 (AA), 160 ranks SongD1 (DNA), 360 ranks

MPI_Allreduce Work MPI_Allreduce Work

MPI_Allreduce Work MPI_Allreduce Work

MPI_Allreduce Work MPI_Allreduce Work

MPI_Allreduce Work MPI_Allreduce Work

0.1

1.0

10.0

0.1

1.0

10.0

0.1

1.0

10.0

0.1

1.0

10.0

0.1

1.0

10.0

0.1

1.0

10.0

0.1

1.0

10.0

0.1

1.0

10.0

rank

tim
e(

ra
nk

) 
/ t

im
e(

av
g)

Figure A.3.: Relative di�erences of the time required for work and communication packages.

Each rank computes Crank/Caverage for each work and communication package. We call this the

Package-Speci�c Slowdon (PSS). Each bar depicts the distribution of the PSSs on one rank.

The colours group together ranks on the same node. The bar ranges from the the smallest to

the largest measurement of the PSS. Black dots indicate the median of the PSS. For example:

A bar ranging up to 1.6 means, that this rank required 60 % more time than the average rank

for at least one of its work packages. The histogram implementation we use saves all values

above 11 as 11 and all values below
1

11
as

1

11
.

85



A. Appendix

MisoD2a (DNA), 20 r. XiD4 (DNA), 160 r. PrumD6 (DNA), 200 r. ShiD9 (DNA), 20 r.

ChenA4 (AA), 160 r. SongD1 (DNA), 360 r. SongD1 (DNA), 400 r. SongD1 (DNA), 80 r.

5 10 15 20 0 50 100 150 0 50 100 150 200 5 10 15 20

0 50 100 150 0 100 200 300 0 100 200 300 400 0 20 40 60 80
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

one dot per rank

tim
e 

sp
en

t d
oi

ng
 w

or
k 

/ t
ot

al
 r

un
tim

e

Figure A.4.: Fraction of total runtime spend outside of MPI_Allreduce calls (“working”, bigger

is better). A rank which �nishes its current work package waits at the barrier of the following

MPI_Allreduce for all the other ranks. It therefore spends a higher portion of time inside

MPI_Allreduce and less time outside than the other ranks. If di�erent ranks spent di�erent

amounts of time working and communicating, this points to an imbalance in the distribution

of work.

86



A. Appendix

SongD1 (DNA), 360 r. SongD1 (DNA), 400 r. MisoD2a (DNA), 20 r. ShiD9 (DNA), 20 r.

site−
repeats O

F
F

site−
repeats O

N

0 100 200 300 0 100 200 300 400 5 10 15 20 5 10 15 20

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

one dot per rank

tim
e 

sp
en

t d
oi

ng
 w

or
k 

/ t
ot

al
 r

un
tim

e

Figure A.5.: In�uence of site-repeats on the time spend working vs communicating. Each

rank computes how much time it spends outside of MPI_Allreduce calls (“working”, more is

better) vs inside MPI_Allreduce calls (“communicating”, less is better). A rank which �nishes

its current work package waits at the barrier of the following MPI_Allreduce for all the

other ranks. It therefore spends a higher portion of time inside MPI_Allreduce and less time

outside than the other ranks. If di�erent ranks spent di�erent amounts of time working and

communicating, this points to an imbalance in the distribution of work.

87



A. Appendix

0

5000

10000

15000

20000

0.00 0.25 0.50 0.75 1.00
fraction of runtime for this task

nu
m

be
r 

of
 M

P
I_

A
llr

ed
uc

e 
ca

lls
 p

er
 s

ec
on

d

dataset

ShiD9 (DNA), 20 ranks

XiD4 (DNA), 160 ranks

PrumD6 (DNA), 200 ranks

SongD1 (DNA), 400 ranks

SongD1 (DNA), 360 ranks

SongD1 (DNA), 80 ranks

ChenA4 (AA), 160 ranks

MisoD2a (DNA), 20 ranks

Figure A.6.: Number of MPI_Allreduce calls per second by di�erent datasets. Measured over

the complete runtime of one RAxML-ng run. See Section 4.4 for a description of the datasets.

There are 20 ranks running on each node (one rank per physical CPU core).

88



A. Appendix

A.3. File Sizes of MSA data

We list the sizes of the MSA datasets described in Section 4.4 in Table A.4. The biggest AA

dataset is ChenA4 (100MiB); the biggest DNA dataset is PeteD8 (500MiB).

Table A.4.: File size of the MSA datasets. See Table 4.1 for a description of the datasets.

datatype dataset �le size [MiB]
AA NagyA1 10

AA YangA8 46

AA ChenA4 100

DNA XiD4 11

DNA ShiD9 16

DNA SongD1 48

DNA MisoD2a 171

DNA PeteD8 500

A.4. Fault Tolerant RAxML-ng

A.4.1. Checkpointing the Tree

Mini-checkpointing consists of updating the model parameters and the tree topology. We

evaluate the model parameter updates in Section 6.2.3. Updating the backup copy of the tree

topology is a local operation. We therefore expect it to be faster than updating the model

parameters, which requires possibly multiple broadcast operations. We measure all tree

update operations in one tree search (190 to 14,203 depending on the dataset; see Figure A.7).

We benchmark on eight di�erent datasets with 37 to 174 taxa. The time required to update the

backup copy of the tree correlates with the number of taxa in the tree (Pearson-correlation:

corr = 0.99, ? < 2 · 10−06).

A.4.2. Overhead of Restoration and Mini-Checkpointing

In Table A.5 we list the benchmark results on the recovery and mini-checkpoint algorithms

discussed in Section 6.2.3 and Section 6.3.3.

89



A. Appendix

0.0

0.2

0.4

0.6

D
N

A 
So

ng
D

1 
@

 4
00

 ra
nk

s
37

 ta
xa

D
N

A 
Xi

D
4 

@
 1

60
 ra

nk
s

46
 ta

xa

AA
 T

ar
vD

7 
@

 4
00

 ra
nk

s
36

 ta
xa

AA
 C

he
nA

4 
@

 4
00

 ra
nk

s
58

 ta
xa

AA
 C

he
nA

4 
@

 1
60

 ra
nk

s
58

 ta
xa

AA
 N

ag
yA

1 
@

 8
0 

ra
nk

s
60

 ta
xa

AA
 Y

an
gA

8 
@

 8
0 

ra
nk

s
95

 ta
xa

D
N

A 
Pe

te
D

8 
@

 2
60

 ra
nk

s
17

4 
ta

xa

AA
 K

at
zA

10
 @

 4
0 

ra
nk

s
79

8 
ta

xa

D
N

A 
Sh

iD
9 

@
 2

0 
ra

nk
s

81
5 

ta
xa

AA
 G

itz
A1

2 
@

 2
0 

ra
nk

s
18

97
 ta

xa

dataset

tim
e 

to
 b

ac
ku

p 
th

e 
cu

rr
en

t b
es

t t
re

e 
[m

s]

Figure A.7.: Time required for updating the backup copy of tree we need to restore in case

of failure. We update the backup copy of the tree each time we improve the current tree

topology. We measure all tree update operations in one tree search (190 to 14,203, depending

on the dataset).

Table A.5.: Time required for mini-checkpoints and recovery after a failure. For YangA8, we

measure seven recoverys, for all other datasets ten. We measure all model updates and tree

recoveries in one run (at least 29).

dataset ranks taxa sites models recovery update models update tree
[ms] [ms] [ms]

NagyA1 80 60 172,073 594 90 ± 4 5.5 ± 0.01 0.039 ± 0.001

ChenA4 160 58 1,806,035 1 27 ± 3 0.3 ± 0.02 0.032 ± 0.001

YangA8 80 95 504,850 1,122 263 ± 11 11.1 ± 0.2 0.099 ± 0.002

SongD1 400 37 1,338,678 1 34 ± 5 0.24 ± 0.01 0.015 ± 0.001

XiD4 160 46 239,763 1 13 ± 1 0.21 ± 0.01 0.017 ± 0.001

TarvD7 400 36 21,410,970 1 46 ± 4 0.66 ± 0.06 0.025 ± 0.001

PeteD8 260 174 3,011,099 4116 535 ± 19 72.0 ± 0.9 0.21 ± 0.01

KatzA10 40 798 34,991 1 0.8 ± 0.1 0.310 ± 0.008

GitzA12 20 1,897 18,328 1 1.8 ± 0.8 0.575 ± 0.006

ShiD9 20 815 20,364 29 0.71 ± 0.02 0.320 ± 0.008

90



A. Appendix

A.5. Additional image sources

The tree, list, and disk icon were made by Freepik from www.flaticon.com.

The model icon was made by Eucalyp from www.flaticon.com.

91

www.flaticon.com
www.flaticon.com


Acronyms

AA Amino Acid. 7, 19, 21, 49, 52, 94, 97, 98

ABFT Algorithm Based Fault Tolerance. 32

BFS Breadth First Search. 71

CLV Conditional Likelihood Vector. 32, 48–50, 56, 66, 74

DFS Depth First Search. 57

DNA Deoxyribonucleic Acid. 5–7, 19, 21, 49, 52, 94, 97, 98

HPC High Performance Computing. 2, 3, 14, 31, 32, 35, 36, 63, 77

IUPAC International Union of Pure and Applied Chemistry. 52

LLH Log-Likelihood. 16

MPI Message Passing Interface. v, 4, 14, 16, 17, 19, 21, 31–37, 40, 45–47, 77, 94, 97

MPICH MPI Chameleon. 33

MSA Multiple Sequence Alignment. iii, v, vi, viii, 7, 14, 15, 38, 40, 48–57, 59–63, 66, 73, 74, 76,

78, 97, 98

MSB Most Signi�cant Bit. 58

MTBF Mean Time Between Failure. 31

MTTF Mean Time To Failure. viii, 31, 38

P2P Peer-to-Peer. 63

PE Processing Element. iii, 3, 4, 15, 16, 31, 33, 35, 52, 55, 56, 60, 62–69, 71, 73, 78, 79

PMPI Pro�le Layer of MPI. 17, 77

PSS Package-Speci�c Slowdon. 21, 23–25, 92, 93

92



Acronyms

RAID Redundant Array of Inexpensive Disks. 63

RDMA Remote Direct Memory Access. 73

SCC Steinbruch Center for Computing. 18

SIMD Single Instruction Multiple Data stream. 19, 63

SPR Subtree Pruning and Regrafting. vi, 9–11, 19, 22, 38, 39, 41, 43, 44, 77

ULFM User Level Failure Mitigation. vi, viii, 33–37, 39, 40, 46, 47, 76, 77

93



Glossary

Multiple Sequence Alignment A set of amino acid or DNA sequences which are aligned to

each other. Sequence alignment has the goal to insert gaps of varying lengths into the

sequences such that those regions which share a common evolutionary history are

aligned to each other. On possible heuristic for computing an MSA is to minimize the

number of di�erences between the aligned sites of the MSA [18].

User Level Failure Mitigation A MPI implementation which supports detecting and mitigating

rank failures. See Section 5.2.

Conditional Likelihood Vector A cache for partial likelihood computations. The majority of

the memory used by RAxML-ng stores CLVs. See Section 2.2.1.

Subtree Pruning and Regra�ing A method for optimizing the topology of a phylogenetic tree.

It consists of removing (pruning) a subtree from the currently best scoring tree and

reinserting (regrafting) it into a neighbouring branch. See Section 2.2.2.1.

CPUs, Ranks, Nodes, and PEs See Section 1.4

(Log-) Likelihood score of a tree The probability of seeing the sequence data given the tree

topology, branch lengths, and evolutionary model. Not the probability that this is the

correct tree. Section 2.2.1.

94



Bibliography

[1] Micah Adler, John W. Byers, and Richard M. Karp. “Scheduling parallel communica-

tion: The ℎ-relation problem”. In: Lecture Notes in Computer Science. Springer Berlin

Heidelberg, 1995, pp. 1–20. doi: 10.1007/3-540-60246-1_109.

[2] Nikolaos Alachiotis and Alexandros Stamatakis. “A Generic and Versatile Architecture

for Inference of Evolutionary Trees under Maximum Likelihood”. In: Conference Record
of the 44th IEEE Asilomar Conference on Signals, Systems and Computers (ASILOMAR)
Studies. Nov. 2010.

[3] Md Mohsin Ali et al. “Complex scienti�c applications made fault-tolerant with the

sparse grid combination technique”. In: The International Journal of High Performance
Computing Applications 30.3 (July 2016), pp. 335–359. doi: 10.1177/1094342015628056.

[4] C. Ané, O. Eulenstein, and R. Piaggio-Talice. Phylogenetic compression and model
selection: an improved encoding scheme. Tech. rep. 2005.

[5] Cécile Ané and Michael J. Sanderson. “Missing the Forest for the Trees: Phylogenetic

Compression and Its Implications for Inferring Complex Evolutionary Histories”. In:

Systematic Biology 54.1 (Feb. 2005). Ed. by Mike Steel, pp. 146–157. doi: 10.1080/

10635150590905984.

[6] Richard P. Anstee. “A polynomial algorithm for1-matchings: An alternative approach”.

In: Information Processing Letters 24.3 (Feb. 1987), pp. 153–157. doi: 10.1016/0020-

0190(87)90178-5.

[7] Rizwan A. Ashraf, Saurabh Hukerikar, and Christian Engelmann. “Shrink or Substitute:

Handling Process Failures in HPC Systems using In-situ Recovery”. In: (Jan. 14, 2018).

arXiv: 1801.04523v1 [cs.DC].

[8] Ivo Baar et al. “Data Distribution for Phylogenetic Inference with Site Repeats via

Judicious Hypergraph Partitioning”. In: (Mar. 2019). doi: 10.1101/579318.

[9] David Bader, Moret Bernard, and Lisa Vawter. “Industrial applications of high-performance

computing for phylogeny reconstruction”. In: Proc. SPIE 4528, Commercial Applications
for High-Performance Computing. 27. 2001. doi: 10.1117/12.434868.

[10] Charles F. Baer, Michael M. Miyamoto, and Dee R. Denver. “Mutation rate variation

in multicellular eukaryotes: causes and consequences”. In: Nature Reviews Genetics 8.8

(Aug. 2007), pp. 619–631. doi: 10.1038/nrg2158.

95

https://doi.org/10.1007/3-540-60246-1_109
https://doi.org/10.1177/1094342015628056
https://doi.org/10.1080/10635150590905984
https://doi.org/10.1080/10635150590905984
https://doi.org/10.1016/0020-0190(87)90178-5
https://doi.org/10.1016/0020-0190(87)90178-5
https://arxiv.org/abs/1801.04523v1
https://doi.org/10.1101/579318
https://doi.org/10.1117/12.434868
https://doi.org/10.1038/nrg2158


Bibliography

[11] Wesley Bland et al. “Post-failure recovery of MPI communication capability”. In: The
International Journal of High Performance Computing Applications 27.3 (June 2013),

pp. 244–254. doi: 10.1177/1094342013488238.

[12] David Boehme et al. “The Case for a Common Instrumentation Interface for HPC

Codes”. In: 2019 IEEE/ACM International Workshop on Programming and Performance
Visualization Tools (ProTools). IEEE, Nov. 2019. doi: 10.1109/protools49597.2019.

00010.

[13] George Bosilca. Post pbSToy94RhI/xUrFBx_1DAAJ on the ULFM mailing list. Jan. 2020.

[14] George Bosilca et al. “Algorithmic Based Fault Tolerance Applied to High Performance

Computing”. In: (June 19, 2008). arXiv: 0806.3121v1 [cs.DC].

[15] R. P. Brent. Algorithms for minimization without derivatives. Mineola, N.Y: Dover

Publications, 2002. isbn: 9780486419985.

[16] Franck Cappello et al. “toward exascale resilience: 2014 update”. In: Supercomputing
Frontiers and Innovations 1.1 (Sept. 2014). doi: 10.14529/jsfi140101.

[17] Henri Casanova, Frédéric Vivien, and Dounia Zaidouni. “Using Replication for Re-

silience on Exascale Systems”. In: Computer Communications and Networks. Springer

International Publishing, 2015, pp. 229–278. doi: 10.1007/978-3-319-20943-2_4.

[18] Maria Chatzou et al. “Multiple sequence alignment modeling: methods and applica-

tions”. In: Brie�ngs in Bioinformatics 17.6 (Nov. 2015), pp. 1009–1023. doi: 10.1093/

bib/bbv099.

[19] Meng-Yun Chen, Dan Liang, and Peng Zhang. “Selecting Question-Speci�c Genes to

Reduce Incongruence in Phylogenomics: A Case Study of Jawed Vertebrate Backbone

Phylogeny”. In: Systematic Biology 64.6 (Aug. 2015), pp. 1104–1120. doi: 10.1093/

sysbio/syv059.

[20] Zizhong Chen and Jack Dongarra. “A Scalable Checkpoint Encoding Algorithm for

Diskless Checkpointing”. In: 2008 11th IEEE High Assurance Systems Engineering
Symposium. IEEE, Dec. 2008. doi: 10.1109/hase.2008.13.

[21] Tzi-Cker Chiueh and Peitao Deng. “Evaluation of checkpoint mechanisms for mas-

sively parallel machines”. In: Proceedings of Annual Symposium on Fault Tolerant
Computing. IEEE Comput. Soc. Press, 1996. doi: 10.1109/ftcs.1996.534622.

[22] B. Chor and T. Tuller. “Maximum likelihood of evolutionary trees: hardness and

approximation”. In: Bioinformatics 21.Suppl 1 (June 2005), pp. i97–i106. doi: 10.1093/

bioinformatics/bti1027.

[23] Charles Darwin. On the origin of species by means of natural selection. John Murray,

Nov. 1859.

[24] Alexandros G. Dimakis et al. “Network Coding for Distributed Storage Systems”.

In: IEEE Transactions on Information Theory 56.9 (Sept. 2010), pp. 4539–4551. doi:

10.1109/tit.2010.2054295.

96

https://doi.org/10.1177/1094342013488238
https://doi.org/10.1109/protools49597.2019.00010
https://doi.org/10.1109/protools49597.2019.00010
https://arxiv.org/abs/0806.3121v1
https://doi.org/10.14529/jsfi140101
https://doi.org/10.1007/978-3-319-20943-2_4
https://doi.org/10.1093/bib/bbv099
https://doi.org/10.1093/bib/bbv099
https://doi.org/10.1093/sysbio/syv059
https://doi.org/10.1093/sysbio/syv059
https://doi.org/10.1109/hase.2008.13
https://doi.org/10.1109/ftcs.1996.534622
https://doi.org/10.1093/bioinformatics/bti1027
https://doi.org/10.1093/bioinformatics/bti1027
https://doi.org/10.1109/tit.2010.2054295


Bibliography

[25] Jack Dongarra, Thomas Herault, and Yves Robert. Fault tolerance techniques for high-
performance computing. https://www.netlib.org/lapack/lawnspdf/lawn289.pdf.

2015.

[26] Richard Durbin, Sean R. Eddy, and Anders Krogh. Biological Sequence Analysis. Cam-

bridge University Press, 1998. 370 pp. isbn: 0521629713. url: https://www.ebook.

de/de/product/3242471/richard_durbin_sean_r_eddy_anders_krogh_biological_

sequence_analysis.html.

[27] E. N. Elnozahy and J. S. Plank. “Checkpointing for peta-scale systems: a look into the

future of practical rollback-recovery”. In: IEEE Transactions on Dependable and Secure
Computing 1.2 (Apr. 2004), pp. 97–108. issn: 1941-0018. doi: 10.1109/TDSC.2004.15.

[28] Encycloaedia Britannica. Phylogeny. Ed. by John L. Gittleman. Sept. 13, 2016. url:

https://www.britannica.com/science/phylogeny.

[29] Christian Engelmann and Al Geist. “A Diskless Checkpointing Algorithm for Super-

Scale Architectures Applied to the Fast Fourier Transform”. In: Proceedings of the 1st
International Workshop on Challenges of Large Applications in Distributed Environments.
CLADE ’03. USA: IEEE Computer Society, 2003, p. 47. isbn: 0769519849.

[30] Shimon Even and R. Endre Tarjan. “Network Flow and Testing Graph Connectivity”.

In: SIAM Journal on Computing 4.4 (Dec. 1975), pp. 507–518. doi: 10.1137/0204043.

[31] J. Felsenstein. “Maximum Likelihood and Minimum-Steps Methods for Estimating

Evolutionary Trees from Data on Discrete Characters”. In: Systematic Biology 22.3

(Sept. 1973), pp. 240–249. doi: 10.1093/sysbio/22.3.240.

[32] Joseph Felsenstein. “Evolutionary trees from DNA sequences: A maximum likelihood

approach”. In: Journal of Molecular Evolution 17.6 (Nov. 1981), pp. 368–376. doi: 10.

1007/bf01734359.

[33] Joseph Felsenstein. “The Number of Evolutionary Trees”. In: Systematic Zoology 27.1

(Mar. 1978), p. 27. doi: 10.2307/2412810.

[34] José Luis Fernández-García. “Phylogenetics for Wildlife Conservation”. In: Phyloge-
netics. InTech, Sept. 2017. doi: 10.5772/intechopen.69240.

[35] Walter M. Fitch. “Toward De�ning the Course of Evolution: Minimum Change for

a Speci�c Tree Topology”. In: Systematic Zoology 20.4 (Dec. 1971), pp. 406–416. doi:

10.2307/2412116.

[36] R. Fletcher. Practical methods of optimization. Chichester New York: Wiley, 1987. isbn:

9780471915478.

[37] L. R. Ford. Flows in networks. Princeton, N.J. Woodstock: Princeton University Press,

2010. isbn: 9780691146676.

[38] G. Fox et al. “The phylogeny of prokaryotes”. In: Science 209.4455 (July 1980), pp. 457–

463. doi: 10.1126/science.6771870.

97

https://www.netlib.org/lapack/lawnspdf/lawn289.pdf
https://www.ebook.de/de/product/3242471/richard_durbin_sean_r_eddy_anders_krogh_biological_sequence_analysis.html
https://www.ebook.de/de/product/3242471/richard_durbin_sean_r_eddy_anders_krogh_biological_sequence_analysis.html
https://www.ebook.de/de/product/3242471/richard_durbin_sean_r_eddy_anders_krogh_biological_sequence_analysis.html
https://doi.org/10.1109/TDSC.2004.15
https://www.britannica.com/science/phylogeny
https://doi.org/10.1137/0204043
https://doi.org/10.1093/sysbio/22.3.240
https://doi.org/10.1007/bf01734359
https://doi.org/10.1007/bf01734359
https://doi.org/10.2307/2412810
https://doi.org/10.5772/intechopen.69240
https://doi.org/10.2307/2412116
https://doi.org/10.1126/science.6771870


Bibliography

[39] Vincent W. Freeh et al. “Just-in-time dynamic voltage scaling: Exploiting inter-node

slack to save energy in MPI programs”. In: Journal of Parallel and Distributed Computing
68.9 (Sept. 2008), pp. 1175–1185. doi: 10.1016/j.jpdc.2008.04.007.

[40] Sunil P. Gavaskar and Ch D. V. Subbarao. “a survey of distributed fault tolerance strate-

gies”. In: International Journal of Advanced Research in Computer and Communication
Engineering 2.11 (Nov. 2013). issn: 2278-1021.

[41] GeneBank. GenBank and WGS Statistics. Apr. 1, 2020. url: https://www.ncbi.nlm.

nih.gov/genbank/statistics/.

[42] Matthew A. Gitzendanner et al. “Plastid phylogenomic analysis of green plants: A

billion years of evolutionary history”. In: American Journal of Botany 105.3 (Mar. 2018),

pp. 291–301. doi: 10.1002/ajb2.1048.

[43] Toni I. Gossmann et al. “Ice-Age Climate Adaptations Trap the Alpine Marmot in a

State of Low Genetic Diversity”. In: Current Biology 29.10 (May 2019), pp. 1712–1720.

doi: 10.1016/j.cub.2019.04.020.

[44] William Gropp. “MPICH2: A New Start for MPI Implementations”. In: Proceedings of
the 9th European PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual
Machine and Message Passing Interface. Berlin, Heidelberg, 7: Springer-Verlag, 2002.

[45] Stéphane Guindon and Olivier Gascuel. “A Simple, Fast, and Accurate Algorithm to

Estimate Large Phylogenies by Maximum Likelihood”. In: Systematic Biology 52.5 (Oct.

2003). Ed. by Bruce Rannala, pp. 696–704. doi: 10.1080/10635150390235520.

[46] Saurabh Gupta et al. “Failures in large scale systems”. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis. ACM,

Nov. 2017. doi: 10.1145/3126908.3126937.

[47] Paul H. Hargrove and Jason C. Duell. “Berkeley lab checkpoint/restart (BLCR) for

Linux clusters”. In: Journal of Physics: Conference Series 46 (Sept. 2006), pp. 494–499.

doi: 10.1088/1742-6596/46/1/067.

[48] J. A. Hartigan. “Minimum Mutation Fits to a Given Tree”. In: Biometrics 29.1 (Mar.

1973), p. 53. doi: 10.2307/2529676.

[49] Octavio Herrera-Ruiz and Taieb Znati. “Performance of redundancy methods in P2P

networks under churn”. In: 2012 International Conference on Computing, Networking
and Communications (ICNC). IEEE, Jan. 2012. doi: 10.1109/iccnc.2012.6167437.

[50] Bert Huang and Tony Jebara. “Fast 1-matching via Su�cient Selection Belief Propaga-

tion”. In: Proceedings of the Fourteenth International Conference on Arti�cial Intelligence
and Statistics. Ed. by Geo�rey Gordon, David Dunson, and Miroslav Dudík. Vol. 15.

Proceedings of Machine Learning Research. Fort Lauderdale, FL, USA: PMLR, 2011,

pp. 361–369. url: http://proceedings.mlr.press/v15/huang11a.html.

98

https://doi.org/10.1016/j.jpdc.2008.04.007
https://www.ncbi.nlm.nih.gov/genbank/statistics/
https://www.ncbi.nlm.nih.gov/genbank/statistics/
https://doi.org/10.1002/ajb2.1048
https://doi.org/10.1016/j.cub.2019.04.020
https://doi.org/10.1080/10635150390235520
https://doi.org/10.1145/3126908.3126937
https://doi.org/10.1088/1742-6596/46/1/067
https://doi.org/10.2307/2529676
https://doi.org/10.1109/iccnc.2012.6167437
http://proceedings.mlr.press/v15/huang11a.html


Bibliography

[51] Bert Huang and Tony Jebara. “Loopy Belief Propagation for Bipartite Maximum Weight

1-Matching”. In: Proceedings of the Eleventh International Conference on Arti�cial
Intelligence and Statistics. Ed. by Marina Meila and Xiaotong Shen. Vol. 2. Proceedings

of Machine Learning Research. San Juan, Puerto Rico: PMLR, 2007, pp. 195–202. url:

http://proceedings.mlr.press/v2/huang07a.html.

[52] David A. Hu�man. “A method for the construction of minimum-redundancy codes”.

In: Resonance 11.2 (Feb. 2006), pp. 91–99. doi: 10.1007/bf02837279.

[53] IUPAC. Nucleotide Codes. url: https://www.bioinformatics.org/sms/iupac.html.

[54] Fernando Izquierdo-Carrasco, Stephen A. Smith, and Alexandros Stamatakis. “Algo-

rithms, data structures, and numerics for likelihood-based phylogenetic inference of

huge trees”. In: BMC Bioinformatics 12.1 (Dec. 2011). doi: 10.1186/1471-2105-12-470.

[55] E. D. Jarvis et al. “Whole-genome analyses resolve early branches in the tree of life of

modern birds”. In: Science 346.6215 (Dec. 2014), pp. 1320–1331. doi: 10.1126/science.

1253451.

[56] Thomas H. Jukes and Charles R. Cantor. “Evolution of Protein Molecules”. In: Mam-
malian Protein Metabolism. Elsevier, 1969, pp. 21–132. doi: 10.1016/b978-1-4832-

3211-9.50009-7.

[57] T. Kameda and I. Munro. “A O(|V|·|E|) algorithm for maximum matching of graphs”.

In: Computing 12.1 (Mar. 1974), pp. 91–98. doi: 10.1007/bf02239502.

[58] Laura A. Katz and Jessica R. Grant. “Taxon-Rich Phylogenomic Analyses Resolve the

Eukaryotic Tree of Life and Reveal the Power of Subsampling by Sites”. In: Systematic
Biology 64.3 (Dec. 2014), pp. 406–415. doi: 10.1093/sysbio/syu126.

[59] Michael Kerrisk. Manual Page of Linux’s kill. http://man7.org/linux/man-pages/

man1/kill.1.html.

[60] Michael Kerrisk. Manual Page of Linux’s raise. http : / / man7 . org / linux / man -

pages/man3/raise.3.html.

[61] Michael Kerrisk. Manual Pages of Linux’s Signals. http://man7.org/linux/man-
pages/man7/signal.7.html.

[62] Arif Khan et al. “E�cient Approximation Algorithms for Weighted 1-Matching”. In:

SIAM Journal on Scienti�c Computing 38.5 (Jan. 2016), S593–S619. doi: 10.1137/

15m1026304.

[63] Andreas Knüpfer et al. “Score-P: A Joint Performance Measurement Run-Time In-

frastructure for Periscope,Scalasca, TAU, and Vampir”. In: Tools for High Performance
Computing 2011. Ed. by Holger Brunst et al. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2012, pp. 79–91. isbn: 978-3-642-31476-6.

[64] Y. Kodama, M. Shumway, and R. Leinonen. “The sequence read archive: explosive

growth of sequencing data”. In: Nucleic Acids Research 40.D1 (Oct. 2011), pp. D54–D56.

doi: 10.1093/nar/gkr854.

99

http://proceedings.mlr.press/v2/huang07a.html
https://doi.org/10.1007/bf02837279
https://www.bioinformatics.org/sms/iupac.html
https://doi.org/10.1186/1471-2105-12-470
https://doi.org/10.1126/science.1253451
https://doi.org/10.1126/science.1253451
https://doi.org/10.1016/b978-1-4832-3211-9.50009-7
https://doi.org/10.1016/b978-1-4832-3211-9.50009-7
https://doi.org/10.1007/bf02239502
https://doi.org/10.1093/sysbio/syu126
http://man7.org/linux/man-pages/man1/kill.1.html
http://man7.org/linux/man-pages/man1/kill.1.html
http://man7.org/linux/man-pages/man3/raise.3.html
http://man7.org/linux/man-pages/man3/raise.3.html
http://man7.org/linux/man-pages/man7/signal.7.html
http://man7.org/linux/man-pages/man7/signal.7.html
https://doi.org/10.1137/15m1026304
https://doi.org/10.1137/15m1026304
https://doi.org/10.1093/nar/gkr854


Bibliography

[65] Nils Kohl et al. “A Scalable and Extensible Checkpointing Scheme for Massively

Parallel Simulations”. In: (Aug. 28, 2017). arXiv: 1708.08286v2 [cs.DC].

[66] Dénes König. “Gráfok és alkalmazásuk a determinánsok és a halmazok elméletére”.

In: Matematikai és Természettudoményi Értesít. 1916. Chap. 34, pp. 104–119.

[67] B. Korber. “Timing the Ancestor of the HIV-1 Pandemic Strains”. In: Science 288.5472

(June 2000), pp. 1789–1796. doi: 10.1126/science.288.5472.1789.

[68] Alexey Kozlov. “Models, Optimizations, and Tools forLarge-Scale Phylogenetic Infer-

ence,Handling Sequence Uncertainty,and Taxonomic Validation”. PhD thesis. Karl-

sruher Institut für Technologie (KIT), Jan. 17, 2018.

[69] Alexey M. Kozlov, Andre J. Aberer, and Alexandros Stamatakis. “ExaML version 3 a

tool for phylogenomic analyses on supercomputers”. In: Bioinformatics 31.15 (Mar.

2015), pp. 2577–2579. doi: 10.1093/bioinformatics/btv184.

[70] Alexey M. Kozlov et al. “RAxML-NG: a fast, scalable and user-friendly tool for maxi-

mum likelihood phylogenetic inference”. In: Bioinformatics 35.21 (May 2019). Ed. by

Jonathan Wren, pp. 4453–4455. doi: 10.1093/bioinformatics/btz305.

[71] M. K. Kuhner and Joe Felsenstein. “A simulation comparison of phylogeny algorithms

under equal and unequal evolutionary rates.” In: Molecular Biology and Evolution (May

1994). doi: 10.1093/oxfordjournals.molbev.a040126.

[72] Ignacio Laguna et al. “Evaluating and extending user-level fault tolerance in MPI

applications”. In: The International Journal of High Performance Computing Applications
30.3 (July 2016), pp. 305–319. doi: 10.1177/1094342015623623.

[73] Charles H. Langley and Walter M. Fitch. “An examination of the constancy of the rate

of molecular evolution”. In: Journal of Molecular Evolution 3.3 (Sept. 1974), pp. 161–177.

doi: 10.1007/bf01797451.

[74] Charng-Da Lu. “Failure Data Analysis of HPC Systems”. In: (Feb. 20, 2013). arXiv:

1302.4779v1 [cs.DC].

[75] Bunjamin Memishi et al. “Fault Tolerance in MapReduce: A Survey”. In: Computer
Communications and Networks. Springer International Publishing, 2016, pp. 205–240.

doi: 10.1007/978-3-319-44881-7_11.

[76] Message Passing Interface Forum. ULFM Speci�cation. http://fault-tolerance.org/

wp-content/uploads/2012/10/20170221-ft.pdf. Feb. 2017.

[77] B. Misof et al. “Phylogenomics resolves the timing and pattern of insect evolution”.

In: Science 346.6210 (Nov. 2014), pp. 763–767. doi: 10.1126/science.1257570.

[78] László G. Nagy et al. “Latent homology and convergent regulatory evolution underlies

the repeated emergence of yeasts”. In: Nature Communications 5.1 (July 2014). doi:

10.1038/ncomms5471.

100

https://arxiv.org/abs/1708.08286v2
https://doi.org/10.1126/science.288.5472.1789
https://doi.org/10.1093/bioinformatics/btv184
https://doi.org/10.1093/bioinformatics/btz305
https://doi.org/10.1093/oxfordjournals.molbev.a040126
https://doi.org/10.1177/1094342015623623
https://doi.org/10.1007/bf01797451
https://arxiv.org/abs/1302.4779v1
https://doi.org/10.1007/978-3-319-44881-7_11
http://fault-tolerance.org/wp-content/uploads/2012/10/20170221-ft.pdf
http://fault-tolerance.org/wp-content/uploads/2012/10/20170221-ft.pdf
https://doi.org/10.1126/science.1257570
https://doi.org/10.1038/ncomms5471


Bibliography

[79] Lam-Tung Nguyen et al. “IQ-TREE: A Fast and E�ective Stochastic Algorithm for

Estimating Maximum-Likelihood Phylogenies”. In: Molecular Biology and Evolution
32.1 (Nov. 2015), pp. 268–274. doi: 10.1093/molbev/msu300.

[80] Michael Obersteiner et al. “A highly scalable, algorithm-based fault-tolerant solver

for gyrokinetic plasma simulations”. In: Proceedings of the 8th Workshop on Latest
Advances in Scalable Algorithms for Large-Scale Systems - ScalA ’17. ACM Press, 2017.

doi: 10.1145/3148226.3148229.

[81] David A. Patterson et al. “Introduction to redundant arrays of inexpensive disks

(RAID)”. In: Digest of Papers. COMPCON Spring 89. Thirty-Fourth IEEE Computer
Society International Conference: Intellectual Leverage. IEEE Comput. Soc. Press, Mar. 3,

1989. doi: 10.1109/cmpcon.1989.301912.

[82] Ralph S. Peters et al. “Evolutionary History of the Hymenoptera”. In: Current Biology
27.7 (Apr. 2017), pp. 1013–1018. doi: 10.1016/j.cub.2017.01.027.

[83] Wayne Pfei�er and Alexandros Stamatakis. “Hybrid MPI/Pthreads parallelization of

the RAxML phylogenetics code”. In: 2010 IEEE International Symposium on Parallel
& Distributed Processing, Workshops and Phd Forum (IPDPSW). IEEE, Apr. 2010. doi:

10.1109/ipdpsw.2010.5470900.

[84] J. S. Plank. “Improving the performance of coordinated checkpointers on networks

of workstations using RAID techniques”. In: Proceedings 15th Symposium on Reliable
Distributed Systems. IEEE Comput. Soc. Press, 1996. doi: 10.1109/reldis.1996.

559700.

[85] J. S. Plank, Kai Li, and M. A. Puening. “Diskless checkpointing”. In: IEEE Transactions
on Parallel and Distributed Systems 9.10 (1998), pp. 972–986. doi: 10.1109/71.730527.

[86] James S. Plank. A Tutorial on Reed-Solomon Coding for Fault-Tolerance inRAID-like Sys-
tems. Tech. rep. University of Tennessee, Department of Computer Science, 107 Ayres

Hall, Knoxville, TN 37996, U.S.A.(email: plank@cs.utk.edu): University of Tennessee,

Nov. 1997.

[87] Morgan N. Price, Paramvir S. Dehal, and Adam P. Arkin. “FastTree 2 – Approximately

Maximum-Likelihood Trees for Large Alignments”. In: PLoS ONE 5.3 (Mar. 2010).

Ed. by Art F. Y. Poon, e9490. doi: 10.1371/journal.pone.0009490.

[88] Richard O. Prum et al. “A comprehensive phylogeny of birds (Aves) using targeted

next-generation DNA sequencing”. In: Nature 526.7574 (Oct. 2015), pp. 569–573. doi:

10.1038/nature15697.

[89] Fatemeh Rajabi-Alni, Alireza Bagheri, and Behrouz Minaei-Bidgoli. “An O(=3) time

algorithm for the maximum weight 1-matching problem on bipartite graphs”. In:

(Oct. 13, 2014). arXiv: 1410.3408v2 [cs.DS].

[90] Eric Roman. A Survey of Checkpoint/Restart Implementations. Tech. rep. Lawrence

Berkeley National Laboratory, 2002.

101

https://doi.org/10.1093/molbev/msu300
https://doi.org/10.1145/3148226.3148229
https://doi.org/10.1109/cmpcon.1989.301912
https://doi.org/10.1016/j.cub.2017.01.027
https://doi.org/10.1109/ipdpsw.2010.5470900
https://doi.org/10.1109/reldis.1996.559700
https://doi.org/10.1109/reldis.1996.559700
https://doi.org/10.1109/71.730527
https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1038/nature15697
https://arxiv.org/abs/1410.3408v2


Bibliography

[91] Barry Rountree et al. “Adagio: making DVS practical for complex HPC applications”.

In: Proceedings of the 23rd international conference on Conference on Supercomputing -
ICS ’09. ACM Press, 2009. doi: 10.1145/1542275.1542340.

[92] Peter Sanders et al. Sequential and ParallelData Structures and Algorithms The Basic
Toolbox. 2019, pp. 402–404.

[93] T. Santos and J. Barbosa. “Examining Checkpoint and Storage Schemes for Fault

Tolerance in Computing Clusters”. In: Doctoral Symposium in Informatics Engineering
(2012), pp. 103–114.

[94] Constantin Scholl et al. “The divisible load balance problem with shared cost and its

application to phylogenetic inference”. In: (Jan. 2016). doi: 10.1101/035840.

[95] Florian Schornbaum and Ulrich Rüde. “Extreme-Scale Block-Structured Adaptive

Mesh Re�nement”. In: SIAM Journal on Scienti�c Computing (SISC) 40-3 (2018), pp.
C358-C387 (Apr. 22, 2017). doi: 10.1137/17M1128411. arXiv: 1704.06829v3 [cs.DC].

[96] Russell Schwartz and Alejandro A. Schä�er. “The evolution of tumour phylogenetics:

principles and practice”. In: Nature Reviews Genetics 18.4 (Feb. 2017), pp. 213–229. doi:

10.1038/nrg.2016.170.

[97] John Shalf, Sudip Dosanjh, and John Morrison. “Exascale Computing Technology

Challenges”. In: Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2011,

pp. 1–25. doi: 10.1007/978-3-642-19328-6_1.

[98] Je� J. Shi and Daniel L. Rabosky. “Speciation dynamics during the global radiation of

extant bats”. In: Evolution 69.6 (June 2015), pp. 1528–1545. doi: 10.1111/evo.12681.

[99] Marc Snir et al. “Addressing failures in exascale computing”. In: The International
Journal of High Performance Computing Applications 28.2 (Mar. 2014), pp. 129–173.

doi: 10.1177/1094342014522573.

[100] S. Song et al. “Resolving con�ict in eutherian mammal phylogeny using phylogenomics

and the multispecies coalescent model”. In: Proceedings of the National Academy of
Sciences 109.37 (Aug. 2012), pp. 14942–14947. doi: 10.1073/pnas.1211733109.

[101] Alexandros Stamatakis. “distributed and parallel algorithms and systems for inference

of huge phylogenetic trees based on the maximum likelihood method”. PhD thesis.

Technische Universität München, June 2004.

[102] Alexandros Stamatakis. “RAxML version 8: a tool for phylogenetic analysis and post-

analysis of large phylogenies”. In: Bioinformatics 30.9 (Jan. 2014), pp. 1312–1313. doi:

10.1093/bioinformatics/btu033.

[103] Alexandros Stamatakis. “RAxML-VI-HPC: maximum likelihood-based phylogenetic

analyses with thousands of taxa and mixed models”. In: Bioinformatics 22.21 (Aug.

2006), pp. 2688–2690. doi: 10.1093/bioinformatics/btl446.

102

https://doi.org/10.1145/1542275.1542340
https://doi.org/10.1101/035840
https://doi.org/10.1137/17M1128411
https://arxiv.org/abs/1704.06829v3
https://doi.org/10.1038/nrg.2016.170
https://doi.org/10.1007/978-3-642-19328-6_1
https://doi.org/10.1111/evo.12681
https://doi.org/10.1177/1094342014522573
https://doi.org/10.1073/pnas.1211733109
https://doi.org/10.1093/bioinformatics/btu033
https://doi.org/10.1093/bioinformatics/btl446


Bibliography

[104] Alexandros Stamatakis, T. Ludwig, and H. Meier. “Computing Large Phylogenies with

Statistical Methods: Problems & Solutions”. In: Proceedings of 4th International Confer-
ence on Bioinformatics and Genome Regulation and Structure (BGRS2004). Novosibirsk,

Russia, 2014.

[105] Alexandros Stamatakis, T. Ludwig, and H. Meier. “RAxML-III: a fast program for

maximum likelihood-based inference of large phylogenetic trees”. In: Bioinformatics
21.4 (Dec. 2004), pp. 456–463. doi: 10.1093/bioinformatics/bti191.

[106] Paola Stefanelli et al. “Whole genome and phylogenetic analysis of two SARS-CoV-2

strains isolated in Italy in January and February 2020: additional clues on multiple

introductions and further circulation in Europe”. In: Eurosurveillance 25.13 (Apr. 2020).

doi: 10.2807/1560-7917.es.2020.25.13.2000305.

[107] Steinbruch Center for Computing (SCC). ForHLR - Hardware and Architecture. https:
//wiki.scc.kit.edu/hpc/index.php/ForHLR_-_Hardware_and_Architecture. 2020.

[108] Steinbruch Center for Computing (SCC). Kon�guration des ForHLR II. https://www.
scc.kit.edu/dienste/forhlr2.php. 2020.

[109] James E. Tarver et al. “The Interrelationships of Placental Mammals and the Limits of

Phylogenetic Inference”. In: Genome Biology and Evolution 8.2 (Jan. 2016), pp. 330–344.

doi: 10.1093/gbe/evv261.

[110] S. Tavare. “Some probabilistic and statistical problems in the analysis of DNA se-

quences”. In: Lectures on Mathematics in the Life Sciences. Providence: Amer. Math. Soc
(1986). Ed. by R. M. Miura, pp. 57–58.

[111] Keita Teranishi and Michael A. Heroux. “Toward Local Failure Local Recovery Re-

silience Model using MPI-ULFM”. In: Proceedings of the 21st European MPI Users’ Group
Meeting on - EuroMPI/ASIA ’14. ACM Press, 2014. doi: 10.1145/2642769.2642774.

[112] The Open MPI Project. MPI_Allreduce man page. Mar. 20, 2020.

[113] The OpenMPI Project. OpenMPI FAQ. https://www.open-mpi.org/faq/?category=

perftools. Accessed 11th May 2020. May 2019.

[114] Thomas N. Theis and H.-S. Philip Wong. “The End of Moore’s Law: A New Beginning

for Information Technology”. In: Computing in Science & Engineering 19.2 (Mar. 2017),

pp. 41–50. doi: 10.1109/mcse.2017.29.

[115] M. Vijay and R. Mittal. “Algorithm-based fault tolerance: a review”. In: Microprocessors
and Microsystems 21.3 (Dec. 1997), pp. 151–161. doi: 10.1016/s0141-9331(97)00029-

x.

[116] Ti�any Williams and Bernard Moret. “An Investigation of Phylogenetic Likelihood

Methods”. In: Proceedings of 3rd IEEE Symposium on Bioinformatics and Bioengineering
(BIBE’03). 2003, pp. 79–86.

103

https://doi.org/10.1093/bioinformatics/bti191
https://doi.org/10.2807/1560-7917.es.2020.25.13.2000305
https://wiki.scc.kit.edu/hpc/index.php/ForHLR_-_Hardware_and_Architecture
https://wiki.scc.kit.edu/hpc/index.php/ForHLR_-_Hardware_and_Architecture
https://www.scc.kit.edu/dienste/forhlr2.php
https://www.scc.kit.edu/dienste/forhlr2.php
https://doi.org/10.1093/gbe/evv261
https://doi.org/10.1145/2642769.2642774
https://www.open-mpi.org/faq/?category=perftools
https://www.open-mpi.org/faq/?category=perftools
https://doi.org/10.1109/mcse.2017.29
https://doi.org/10.1016/s0141-9331(97)00029-x
https://doi.org/10.1016/s0141-9331(97)00029-x


Bibliography

[117] C. R. Woese, O. Kandler, and M. L. Wheelis. “Towards a natural system of organisms:

proposal for the domains Archaea, Bacteria, and Eucarya.” In: Proceedings of the
National Academy of Sciences 87.12 (June 1990), pp. 4576–4579. doi: 10.1073/pnas.87.

12.4576.

[118] G. A. Wray, J. S. Levinton, and L. H. Shapiro. “Molecular Evidence for Deep Precam-

brian Divergences Among Metazoan Phyla”. In: Science 274.5287 (Oct. 1996), pp. 568–

573. doi: 10.1126/science.274.5287.568.

[119] Zhenxiang Xi et al. “Coalescent versus Concatenation Methods and the Placement of

Amborella as Sister to Water Lilies”. In: Systematic Biology 63.6 (July 2014), pp. 919–932.

doi: 10.1093/sysbio/syu055.

[120] Ya Yang et al. “Dissecting Molecular Evolution in the Highly Diverse Plant Clade

Caryophyllales Using Transcriptome Sequencing”. In: Molecular Biology and Evolution
32.8 (Apr. 2015), pp. 2001–2014. doi: 10.1093/molbev/msv081.

[121] Ziheng Yang. “Maximum likelihood phylogenetic estimation from DNA sequences

with variable rates over sites: Approximate methods”. In: Journal of Molecular Evolution
39.3 (Sept. 1994), pp. 306–314. doi: 10.1007/bf00160154.

[122] Xiaofan Zhou et al. “Evaluating Fast Maximum Likelihood-Based Phylogenetic Pro-

grams Using Empirical Phylogenomic Data Sets”. In: Molecular Biology and Evolution
35.2 (Nov. 2017), pp. 486–503. doi: 10.1093/molbev/msx302.

[123] Ilya Zhukov et al. “Scalasca v2: Back to the Future”. In: Tools for High Performance
Computing 2014. Springer International Publishing, 2015, pp. 1–24. doi: 10.1007/978-

3-319-16012-2_1.

104

https://doi.org/10.1073/pnas.87.12.4576
https://doi.org/10.1073/pnas.87.12.4576
https://doi.org/10.1126/science.274.5287.568
https://doi.org/10.1093/sysbio/syu055
https://doi.org/10.1093/molbev/msv081
https://doi.org/10.1007/bf00160154
https://doi.org/10.1093/molbev/msx302
https://doi.org/10.1007/978-3-319-16012-2_1
https://doi.org/10.1007/978-3-319-16012-2_1

