'I' Karlsruher Institut fiir Technologie Lehrstuhl Algorithm Engineering

Fakultat fir Informatik Prof. Dr. Peter Sanders

Master’s thesis

Engineering QuickHeaps

Description

Priority queues are a fundamental data structure used in many algorithms, such as
Dijkstra’s algorithm or task scheduling. Probably the most popular priority queue
implementation is binary heaps. They are straightforward to implement and offer
O(log n) worst-case running times for both insertions and deletions. Another promising
approach to priority queues are quick heaps, first described by Navarro and Paredes'.
The core idea of quick heaps is, reminiscent of quick sort, to keep the elements
in recursively split partitions. In theory, they offer several advantages over binary
heaps, including higher cache locality of similar elements and more opportunities
for parallelization. A key challenge is to keep the partitions balanced for arbitrary
operation sequences to guarantee efficient operations. Randomized quick heaps?
approach this by repartitioning on each insertion with some probability. Despite their
potential, quick heaps received relatively little attention, and a lot of possibilities are
still unexplored.

Goal of the Thesis

The goal of this thesis is to explore the design space of quick heaps further. We can
develop a more specific goal with you according to your strengths and interests. There
are many aspects to work on, such as

o Parallelization. Devise a design that allows multiple threads to insert and delete
elements concurrently.

¢ Pivot selection. A robust pivot selection strategy is key to balanced partitions that
are needed for fast operations.

e Rebalancing. Even with optimal pivots, the partitions can become skewed over
time due to insertions. Devise an algorithm to rebalance the data structure dyna-
mically.

¢ SIMD implementation. Utilize data parallelism to enhance the throughput even
further.

There are also interesting open theoretical questions, especially regarding the compa-
rison to binary heaps and the potential speedups achievable with SIMD.

Implementations can be in C++ or Rust.

Requirements
e Solid foundation in (concurrent) algorithms and data structures
e Experience in C++ or Rust
e Experience in parallel programming is a plus

! mttps://www.worldscientific.com/doi/abs/10.1142/50129054111008507

2 https://link.springer.com/article/10.1007/s00453-010-9400-6

3 https://curiouscoding.nl/posts/quickheap

4 https://commons.wikimedia.org/wiki/File:Shortest_path_with_direct_weights.svg

Pivots Layers

oo —» ‘24 21 21 36 35 40 20 39 25 20 25 29 38

20| — (15 13 19 20 20 17 13 183
ol ~emen b

L push
5| — (51,4 3

| Y3

1
L pop

G ®

Contact: Marvin Williams and Ragnar Groot Koerkamp

(ragnar.grootkoerkampOgmail . com)

Informatikgebaude am Fasanengarten, Raum 206



https://www.worldscientific.com/doi/abs/10.1142/S0129054111008507
https://link.springer.com/article/10.1007/s00453-010-9400-6
https://curiouscoding.nl/posts/quickheap
https://commons.wikimedia.org/wiki/File:Shortest_path_with_direct_weights.svg
williams@kit.edu
ragnar.grootkoerkamp@gmail.com

