Sanders: Algorithms II - pecemver7, 2020 &(IT

Karlsruhe Institute of Technology

Algorithmen / Algorithms 11

Peter Sanders
Exercise:
Daniel Seemaier, Tobias Heuer

Institute of Theoretical Informatics

Web:
http://algo2.iti.kit.edu/AlgorithmenII_WS20.php

Sanders: Algorithms II - pecemver7, 2020 . Q(IT
8 Approximation Algorithms

A possibility to tackle NP-hard problems

Observation: Almost all interesting optimization problems are NP-hard

Options:

] Still try to find an optimal solution but risk that the algorithm doesn’t
finish

] Ad-hoc heuristics. Will find a solution but how good is it?

] Approximation algorithms:
Polynomial running time.

Solutions guaranteed to be “close” to optimal.

[| Redefine/specialize Problem...

Sanders'. AlgOFZtth II = December 7, 2020) &(IT
Scheduling of independet weighted jobs

on parallel machines

. _ . 1 2 3 45 n
x(j): machine that runs Job j _

L;: Zx(j):itjs Load of machine i

Objective function: Minimize makespan

Lmax = max; L; @ @

Details: identical machines, independent jobs,

known running times, offline

Sanders: Algorithms Il - pecember7, 2020 8-3 &(IT
List Scheduling

ListScheduling(n, m, t)
J=A{1,...,n}
array L[1..m| = [0,...,0]
while J # 0 do
pickany j € J
J=J\{J}
// Shortest Queue:
pick i such that L[i] is minimized
X(j) =1
Lli] == L[i]+1;
return x

Sanders: Algorithms II - pecemver7, 2020

Many small jobs

Lemma 1. If { is the job that finishes last, then

I;i m
Linax <)~ +
jm

Proof

Lmax—t+t€<z —I—f :Z
j# " J

l-.
L+
m

m

Karlsruhe Institute of Technology

:t*m<:a”_t|

Sanders: Algorithms Il - pecember7, 2020 8-5 QQ(IT

Lower bounds

t .
Lemma 2. L.« > Z -
= m

J

Lemma 3. L;,x > maxt;
J

Sanders: Algorithms Il - pecember7, 2020 8-6 QQ(IT

The approximation ratio

Definition:
A minimization algorithms achieves approximation ratio p with respect
to a objective function f if for all inputs 7, it finds a solution x(/) , such

" (D))
x(/
foe (1) =P

where x*(I) is the optimal solution for input 1.

Sanders: Algorithms Il - pecember7, 2020 8-7 QQ(IT

1
Theorem: ListScheduling achieves approximation ratio 2 — —.
m
Proof:
f(x)
- (upper bound Lemma 1)
f(x)
gZJ]i o X (lower bound Lemma 2)
f(x*) m f(x*)
m—1
<1+ : - (lower bound Lemma 3)
m f(x*)
— 1 1
<+ =0~

Sanders: Algorithms II - pecember 7, 2020 8-8 &(IT

Karlsruhe Institute of Technology

This bound is optimal

Input: m(m — 1) jobs of size 1 and one job of size m.

List Scheduling: 2m-1 OPT: m

Therefore, the approximation ratio is > 2 — 1/m.

Sanders: Algorithms II - pecemver 7, 2020 — Supplement ‘e 8-9 & (IT
More About Scheduling)

(] 4/3 approximation: Sort jobs decreasing by size.

Then list scheduling. Time O(nlogn).

[] Fast7 / 6 approximation: Guess makespan (binary search). then

Best Fit Decreasing.

[] PTAS...later...

] Uniform machines: Machine i has speed v;, job j needs time tj/v,-

on machine j. ~~ relatively easy generalization

I Unrelated machines: Job j needs time 7;; on machine j.

2 approximation. Very different algorithm.

L] And many more: different objective functions, order restrictions, . ..

Sanders,' AlgOi”lﬂ/lWLS 11 - December 7, 2020 8-10 &(IT
Inapproximability of the Traveling Salesman
Problem (TSP)

Given a graph G = (V,V x V), find a simple cycle

C = (vi,v2,...,Vs,v1) such that n = |V| and Z d(u,v)is
(u,v)eC
minimized.

Theorem: Approximate TSP to any ratio a is NP-hard.

Proof idea: It is sufficient to show that

HamiltonCycle <, a-approximation of TSP

Sanders'. AlgOI”lﬂ/lWLS II = December 7, 2020 8-11 &(IT
a-Approximation of TSP

Given:

Graph G = (V,V x V) with edge weights d(u, V),
parameter W.

We need an algorithm with the following properties:

|G, W] is accepted — 3 tour with weight < aW.
|G, W] is rejected — A tour with weight < W.

Sandel”S.' AlgOFltth II = December 7, 2020 8-12 &(IT
HamiltonCycle<, a Approximation of TSP

Let G = (V, E) an arbitrary undirected graph.

)
1 i (u,v) € E
Define d(u,v) = < ()

\ 1+an else
= TSP tour with cost n
If and only if G has a Hamiltonian cycle

(otherwise: optimal cost > (n— 1) -1+ (an+ 1) = an+n > an)

Decision algorithms for Hamiltonian cycle:

Run a approx TSP on |G, n].

|s accepted

— d tour with weight < an

— d tour with weight n — d Hamiltonian path
otherwise A Hamiltonian path

Sanders: Algorithms II - pecemver7, 2020 8-13 ﬂ(IT
TSP with Triangle Inequality

G (undirected) satisfies triangle inequality
Yu,vyw e V 1 d(u,w) < d(u,v)+d(v,w)

Metric completion

Consider arbitrary undirected graph G = (V, E') with weight function
c: E — R,. Define

d(u,v) := Length of shortest path from u to v

Example: (undirected) road graph — distance table

Sanders-. AlgOFltth II = December 7, 2020 3-14 &(IT
Eulerian Path/Cycle

Consider arbitrary connected undirected (multi-)graph G = (V, E') with
|E| =m.

A path P = (eq,...,ey) is called a Eulerian cycle if
{el,...,e;m} = E. (every edge is visited exactly once)

Theorem: G has Eulerian cycle iff G is connected and
Vv € V :degree(v) is even.
Eulerian cycles can be found in time O(|E| + V).

Sanders'. AlgOI”lﬂ/lWLS II = December 7, 2020 8-15 &(IT
2 Approximation by Minimum Spanning Tree =

Lemma 4.
Total weight of an MST <
Total weight of every TSP tour

Algorithm:

T:=MST(G) Il weight(T') <opt
T':= T with every edge doubled Il weight(T") <2opt
T":= EulerianCycle(T") /Il weight(T") < 2opt

output removeDuplicates(7") // shortcutting

Sanders: Algorithms Il - pecember7, 2020 8-16 QQ(IT

Example
input weight: 12 doubled MST output
A
5 /4 5
3 2 A
$ weight
10
2 4
MST Euler cycle
12131415161

optimal weight: 6

Sanders: Algorithms II - pecemver7, 2020 8-17 & (IT
Proof of Weight MST < Weight TSP tour

Let 7" be the optimal TSP tour.
Removing an edge makes 7' lighter.
Now 7" is a spanning tree

that cannot be lighter than the MST

General technique: Relaxation

here: a TSP path is a special case of a spanning tree

Sanders: Algorithms II - pecember7, 2000 — Supplement ‘e 8-18 & (IT
More TSP

| In practice better 2 approximations, e.g. lightest edge first

| Relatively easy but inpractical 3/2 approximation

(MST+min. weight perfect matching-+Eulerian cycle)
| PTAS for Euclidean TSP
| Guinea pig for virtually every optimization heuristic

| Optimal solutions for practical inputs. Rule of thumb:
If it fits into memory, you can solve it.
[http://www.tsp.gatech.edu/concorde.html]

Six-figure number of code lines.

] TSP-like applications are usually more complicated

Sanders: Algorithms II - pecemver7, 2020

Pseudo- Polynomial Time Algorithms

2/ is pseudo-polynomial time algorithms if
Time, (n) € P(n)

where n is the number of input bits,

if all numbers are in unary coding (k = 1%).

Karlsruhe Institute of Technology

Sanders: Algorithms II - pecemver7, 2020

Example: Knapsack Problem

20

15

o

]

| n items with weight w; € N and value p;.

Wilog:Vie l.n:w; < W

[| Choose a subset x of items

Ll Suchthat) ;cxw; < W and

L1 Maximize the value) ;cx Pi

8-20

Karlsruhe Institute of Technology

Sanders: Algorithms II - pecember 7, 2020 8-21 &(IT

Karlsruhe Institute of Technology

Dynamic Programming by Value

C(i,P):= smallest capacity for items 1,...,i that add up to value > P.

Lemma 5.

V1<i<n:C(i,P) =min(C(i—1,P),
C(i— 1,P—p,-)+w,-)

Sanders: Algorithms Il - pecember7, 2020 8-22 &(IT
Dynamic programming by value
Let P be an upper bound for the value (e.g.)_; pi).

Time: O(nﬁ) pseudo-polynomial
e.g. fill 0..n x 0..P table C(i, P) column-wise

Space: P+ O(n) machine words plus Prn bits.

Sanders: Algorithms II - pecemver7, 2020 8-23 &(IT

Karlsruhe Institute o f Technology

Fully Polynomial Time Approximation Scheme

Algorithm .27 is a

(Fully) Polynomial Time Approximation Scheme
minimization ,

for ~ problem I if:
maximization

Input: Instance I, error parameter €
< (14¢€

N 1_g)opt

Output quality: f(x)

Time: Polynomial in |I| (and 1/¢)

Sanders: Algorithms II - pecemver7, 2020 824 & (IT
Examples for bounds

PTAS FPTAS
|
n+ 21/ n> 4 =
E
! 1
nlog = n+ —
E
I
ne n/e
3
n42/£
221000/8
n

Sanders: Algorithms Il - pecember7, 2020 8-25 QQ(IT

FPTAS for Knapsack
P:= max; p; // maximum single value
eP
= — // scaling factor
n
pi= | & // scaled values

x":= dynamicProgrammingByProfit(p’, w, C)

return X’

Sanders: Algorithms II - pecember7, 2020 8-26 & (IT
Lemma 6. p-x' > (1 —€)opt.

Proof. Consider the optimal solution x*.
- g k)
1ex* | K

<Y (n—k(5-1)) = Ik,

so, Kp'-x* > p-x* —nK. Also,

Kp - x* <Kp'- X—ZK{ J<ZK = p-x. Thus,

icx’

p-xX >Kp'-x*>p-x"—nK=opt—e_P > (1—¢)opt
<opt

Sanders: Algorithms Il - pecember7, 2020 8-27 QQ(IT

Lemma 7. Running time O(n’/¢).

Proof. The running time O (nﬁ’) of dynamic programming

dominates:

A P P 3
nP' <n-(n-maxp))=n’|=| =n’ e §n—.
i=1 K EP €

Sandel’s; AlgO}"ll'th I[= December 7, 2020 — Sl/lpplemenf m) 8-28 &(IT
The Best Known FPTAS

[Kellerer, Pferschy 04]

1 log?i
O(min{nlog+ g38,...}>
E E

I Fewer buckets C; (non-uniform)

| Sophisticated dynamic programming

tttttttttttttttttttttttttttttt

Near linear running time for almost all inputs! In theory and practice.

[Beier, Vocking, An Experimental Study of Random Knapsack
Problems, European Symposium on Algorithms, 2004.]

[Kellerer, Pferschy, Pisinger, Knapsack Problems, Springer 2004.]

