

Algorithmen / Algorithms II

Peter Sanders

Exercise:

Daniel Seemaier, Tobias Heuer

Institute of Theoretical Informatics

Web:

http://algo2.iti.kit.edu/AlgorithmenII_WS20.php

8 Approximation Algorithms

A possibili [.]	ty to	tackle	NP-hard	problems
--------------------------	-------	--------	---------	----------

Observation:	Almost all	interesting	optimization	problems	are NP-hard	t
Options:						

Still try to	find a	ın optimal	solution	but risk	that the	algorithm	doesn't
finish							

	Ad-hoc heuristics.	Will find	a so	lution	but	how	good	is	it?
--	--------------------	-----------	------	--------	-----	-----	------	----	-----

Δn	proxi	imat	ion	al	aori	thr	ne.
Λþ		IIIIai		ai	gon	um	113.

Polynomial running time.

Solutions guaranteed to be "close" to optimal.

☐ Redefine/specialize Problem...

n

m

Scheduling of independet weighted jobs on parallel machines

 $\mathbf{x}(j)$: machine that runs Job j

 L_i : $\sum_{\mathbf{x}(j)=i} t_j$, Load of machine i

Objective function: Minimize makespan

$$L_{\max} = \max_{i} L_{i}$$

Details: identical machines, independent jobs, known running times, offline

List Scheduling

```
ListScheduling(n, m, t)
    J := \{1, \ldots, n\}
     array L[1..m] = [0, ..., 0]
     while J \neq \emptyset do
          pick any j \in J
          J := J \setminus \{j\}
          //Shortest Queue:
          pick i such that L[i] is minimized
          \mathbf{x}(j) := i
          L[i] := L[i] + t_i
     return x
```


Many small jobs

Lemma 1. If ℓ is the job that finishes last, then

$$L_{\max} \leq \sum_{j} \frac{t_{j}}{m} + \frac{m-1}{m} t_{\ell}$$

Proof

$$L_{\max} = t + t_{\ell} \le \sum_{j \ne \ell} \frac{t_j}{m} + t_{\ell} = \sum_{j} \frac{t_j}{m} + \frac{m-1}{m} t_{\ell}$$

Lower bounds

Lemma 2.
$$L_{\max} \ge \sum_{j} \frac{t_{j}}{m}$$

Lemma 3. $L_{\max} \ge \max_{j} t_{j}$

Lemma 3.
$$L_{\max} \geq \max_{j} t_{j}$$

The approximation ratio

Definition:

A minimization algorithms achieves approximation ratio ρ with respect to a objective function f if for all inputs I, it finds a solution $\mathbf{x}(I)$, such that

$$\frac{f(\mathbf{x}(I))}{f(\mathbf{x}^*(I))} \le \rho$$

where $\mathbf{x}^*(I)$ is the optimal solution for input I.

Theorem: ListScheduling achieves approximation ratio $2 - \frac{1}{m}$.

Proof:

$$\frac{f(\mathbf{x})}{f(\mathbf{x}^*)} \qquad \text{(upper bound Lemma 1)}$$

$$\leq \frac{\sum_j t_j/m}{f(\mathbf{x}^*)} + \frac{m-1}{m} \cdot \frac{t_\ell}{f(\mathbf{x}^*)} \qquad \text{(lower bound Lemma 2)}$$

$$\leq 1 + \frac{m-1}{m} \cdot \frac{t_\ell}{f(\mathbf{x}^*)} \qquad \text{(lower bound Lemma 3)}$$

$$\leq 1 + \frac{m-1}{m} = 2 - \frac{1}{m}$$

This bound is optimal

Input: m(m-1) jobs of size 1 and one job of size m.

List Scheduling: 2m-1

OPT: m

Therefore, the approximation ratio is $\geq 2 - 1/m$.

More About Scheduling)

 \square 4/3 approximation: Sort jobs decreasing by size. Then list scheduling. Time $O(n \log n)$. Fast 7/6 approximation: Guess makespan (binary search). then Best Fit Decreasing. PTAS ... later ... Uniform machines: Machine i has speed v_i , job j needs time t_i/v_i on machine j. \rightsquigarrow relatively easy generalization Unrelated machines: Job j needs time t_{ii} on machine j. 2 approximation. Very different algorithm. And many more: different objective functions, order restrictions, ...

Inapproximability of the Traveling Salesman

Problem (TSP)

Given a graph $G = (V, V \times V)$, find a simple cycle

$$C = (v_1, v_2, \ldots, v_n, v_1)$$
 such that $n = |V|$ and $\sum_{(u,v) \in C} d(u,v)$ is

minimized.

Theorem: Approximate TSP to any ratio a is NP-hard.

Proof idea: It is sufficient to show that

HamiltonCycle $\leq_p a$ -approximation of TSP

a-Approximation of TSP

Given:

Graph $G = (V, V \times V)$ with edge weights d(u, v), parameter W.

We need an algorithm with the following properties:

[G,W] is accepted $\longrightarrow \exists$ tour with weight $\leq aW$.

[G,W] is rejected $\longrightarrow \mathbb{Z}$ tour with weight $\leq W$.

HamiltonCycle $\leq_p a$ **Approximation of TSP**

Let G = (V, E) an arbitrary undirected graph.

Define
$$d(u,v) = \begin{cases} 1 & \text{if } (u,v) \in E \\ 1+an & \text{else} \end{cases}$$

 \exists TSP tour with cost *n*

If and only if G has a Hamiltonian cycle

(otherwise: optimal cost
$$\geq (n-1) \cdot 1 + (an+1) = an + n > an$$
)

Decision algorithms for Hamiltonian cycle:

Run a approx TSP on [G, n].

Is accepted

- $\longrightarrow \exists$ tour with weight $\leq an$
- $\longrightarrow \exists$ tour with weight $n \longrightarrow \exists$ Hamiltonian path

otherwise ∄ Hamiltonian path

TSP with Triangle Inequality

G (undirected) satisfies triangle inequality

$$\forall u, v, w \in V : d(u, w) \le d(u, v) + d(v, w)$$

Metric completion

Consider arbitrary undirected graph G = (V, E) with weight function

 $c:E \to \mathbb{R}_+$. Define

d(u,v) := Length of shortest path from u to v

Example: (undirected) road graph ———— distance table

Eulerian Path/Cycle

Consider arbitrary connected undirected (multi-)graph G=(V,E) with $\vert E \vert = m.$

A path $P = \langle e_1, \dots, e_m \rangle$ is called a Eulerian cycle if $\{e_1, \dots, e_m\} = E$. (every edge is visited exactly once)

Theorem: G has Eulerian cycle iff G is connected and $\forall v \in V$:degree(v) is even.

Eulerian cycles can be found in time O(|E| + |V|).

2 Approximation by Minimum Spanning Tree

Lemma 4.

Total weight of an MST ≤
Total weight of every TSP tour

Algorithm:

```
T := \mathsf{MST}(G)
T' := T with every edge doubled T'' := \mathsf{EulerianCycle}(T') output \mathsf{removeDuplicates}(T'')
```

```
// weight(T) \leq opt

// weight(T') \leq 2 opt

// weight(T'') \leq 2 opt

// shortcutting
```


Example

Proof of Weight MST≤ Weight TSP tour

Let T be the optimal TSP tour.

Removing an edge makes T lighter.

Now *T* is a spanning tree

that cannot be lighter than the MST

General technique: Relaxation

here: a TSP path is a special case of a spanning tree

More TSP

In practice better 2 approximations, e.g. lightest edge first Relatively easy but inpractical 3/2 approximation (MST+min. weight perfect matching+Eulerian cycle) PTAS for Euclidean TSP Guinea pig for virtually every optimization heuristic Optimal solutions for practical inputs. Rule of thumb: If it fits into memory, you can solve it. [http://www.tsp.gatech.edu/concorde.html] Six-figure number of code lines.

TSP-like applications are usually more complicated

Pseudo- Polynomial Time Algorithms

 \mathscr{A} is pseudo-polynomial time algorithms if

$$\mathsf{Time}_{\mathscr{A}}(n) \in \mathbf{P}(n)$$

where n is the number of input bits, if all numbers are in unary coding ($k \equiv 1^k$).

Example: Knapsack Problem

- \square *n* items with weight $w_i \in \mathbb{N}$ and value p_i .
 - Wlog: $\forall i \in 1..n : w_i \leq W$
- Choose a subset x of items
- \square Such that $\sum_{i \in \mathbf{x}} w_i \leq W$ and
- \square Maximize the value $\sum_{i \in \mathbf{X}} p_i$

Dynamic Programming by Value

C(i,P):= smallest capacity for items 1, ..., i that add up to value $\geq P$. Lemma 5.

$$\forall 1 \le i \le n : C(i, P) = \min(C(i - 1, P),$$
$$C(i - 1, P - p_i) + w_i)$$

Dynamic programming by value

Let \hat{P} be an upper bound for the value (e.g. $\sum_i p_i$).

Time: $O(n\hat{P})$ pseudo-polynomial e.g. fill $0..n \times 0..\hat{P}$ table C(i,P) column-wise

Space: $\hat{P} + O(n)$ machine words plus $\hat{P}n$ bits.

SKIT

Fully Polynomial Time Approximation Scheme

Algorithm \mathscr{A} is a

(Fully) Polynomial Time Approximation Scheme

for $\begin{array}{c} \text{minimization} \\ \text{for } \\ \text{maximization} \end{array} \text{ problem } \Pi \text{ if: } \\ \end{array}$

Input: Instance I, error parameter \mathcal{E}

Output quality: $f(\mathbf{x}) \leq (1+\varepsilon)$ opt $1-\varepsilon$

Time: Polynomial in |I| (and $1/\varepsilon$)

Examples for bounds

PTAS	FPTAS
$n+2^{1/\varepsilon}$	$n^2 + \frac{1}{\varepsilon}$
$n^{\log \frac{1}{\varepsilon}}$	$n+\frac{1}{\varepsilon^4}$
$n^{rac{1}{arepsilon}}$	n/ε
n^{42/ε^3}	:
$n+2^{2^{1000/\varepsilon}}$:
:	:

FPTAS for Knapsack

```
P:=\max_i p_i // maximum single value K:=\frac{\varepsilon P}{n} // scaling factor p_i':=\lfloor \frac{p_i}{K} \rfloor // scaled values \mathbf{x}':=\operatorname{dynamicProgrammingByProfit}(\mathbf{p}',\mathbf{w},C) return \mathbf{x}'
```


Lemma 6. $\mathbf{p} \cdot \mathbf{x}' \ge (1 - \varepsilon)$ opt.

Proof. Consider the optimal solution \mathbf{x}^* .

$$\mathbf{p} \cdot \mathbf{x}^* - K\mathbf{p}' \cdot \mathbf{x}^* = \sum_{i \in \mathbf{x}^*} \left(p_i - K \left\lfloor \frac{p_i}{K} \right\rfloor \right)$$

$$\leq \sum_{i \in \mathbf{x}^*} \left(p_i - K \left(\frac{p_i}{K} - 1 \right) \right) = |x^*| K \leq nK,$$

so, $K\mathbf{p}' \cdot \mathbf{x}^* \ge \mathbf{p} \cdot \mathbf{x}^* - nK$. Also,

$$K\mathbf{p}' \cdot \mathbf{x}^* \le K\mathbf{p}' \cdot \mathbf{x}' = \sum_{i \in x'} K \left\lfloor \frac{p_i}{K} \right\rfloor \le \sum_{i \in x'} K \frac{p_i}{K} = \mathbf{p} \cdot \mathbf{x}'$$
. Thus,

$$\mathbf{p} \cdot \mathbf{x}' \ge K \mathbf{p}' \cdot \mathbf{x}^* \ge \mathbf{p} \cdot \mathbf{x}^* - nK = \text{opt} - \varepsilon \underbrace{P}_{\le \text{opt}} \ge (1 - \varepsilon) \text{opt}$$

Lemma 7. Running time $O(n^3/\varepsilon)$.

Proof. The running time $O(n\hat{P}')$ of dynamic programming dominates:

$$n\hat{P}' \le n \cdot (n \cdot \max_{i=1}^n p_i') = n^2 \left\lfloor \frac{P}{K} \right\rfloor = n^2 \left\lfloor \frac{Pn}{\varepsilon P} \right\rfloor \le \frac{n^3}{\varepsilon}.$$

The Best Known FPTAS

[Kellerer, Pferschy 04]

$$O\left(\min\left\{n\log\frac{1}{\varepsilon} + \frac{\log^2\frac{1}{\varepsilon}}{\varepsilon^3}, \dots\right\}\right)$$

- \square Fewer buckets C_i (non-uniform)
- Sophisticated dynamic programming

Optimal Algorithms for the Knapsack Problem

Near linear running time for almost all inputs! In theory and practice.

[Beier, Vöcking, An Experimental Study of Random Knapsack Problems, European Symposium on Algorithms, 2004.] [Kellerer, Pferschy, Pisinger, Knapsack Problems, Springer 2004.]