
Sanders: Algorithms II - December 7, 2020

Algorithmen / Algorithms II

Peter Sanders

Exercise:

Daniel Seemaier, Tobias Heuer

Institute of Theoretical Informatics

Web:

http://algo2.iti.kit.edu/AlgorithmenII_WS20.php

Sanders: Algorithms II - December 7, 2020 8-1

8 Approximation Algorithms

A possibility to tackle NP-hard problems

Observation: Almost all interesting optimization problems are NP-hard

Options:

� Still try to find an optimal solution but risk that the algorithm doesn’t

finish

� Ad-hoc heuristics. Will find a solution but how good is it?

� Approximation algorithms:

Polynomial running time.

Solutions guaranteed to be “close” to optimal.

� Redefine/specialize Problem...

Sanders: Algorithms II - December 7, 2020 8-2

Scheduling of independet weighted jobs

on parallel machines

...

1 2 m

???

t i
...

1 2 3 4 5 n

...

...

x(j): machine that runs Job j

Li: ∑x(j)=i t j, Load of machine i

Objective function: Minimize makespan

Lmax = maxi Li

Details: identical machines, independent jobs,

known running times, offline

Sanders: Algorithms II - December 7, 2020 8-3

List Scheduling

ListScheduling(n, m, t)

J := {1, . . . ,n}

array L[1..m] = [0, . . . ,0]

while J 6= /0 do

pick any j ∈ J

J := J \{ j}

//Shortest Queue:

pick i such that L[i] is minimized

x(j) := i

L[i] := L[i]+ t j

return x

Sanders: Algorithms II - December 7, 2020 8-4

Many small jobs

Lemma 1. If ℓ is the job that finishes last, then

Lmax ≤ ∑
j

t j

m
+

m−1

m
tℓ

Proof
t l

= t * m <= all − tl

t
Lmax = t + tℓ ≤ ∑

j 6=ℓ

t j

m
+ tℓ = ∑

j

t j

m
+

m−1

m
tℓ

Sanders: Algorithms II - December 7, 2020 8-5

Lower bounds

Lemma 2. Lmax ≥ ∑
j

t j

m

Lemma 3. Lmax ≥ max
j

t j

Sanders: Algorithms II - December 7, 2020 8-6

The approximation ratio

Definition:

A minimization algorithms achieves approximation ratio ρ with respect

to a objective function f if for all inputs I, it finds a solution x(I) , such

that

f (x(I))

f (x∗(I))
≤ ρ

where x∗(I) is the optimal solution for input I.

Sanders: Algorithms II - December 7, 2020 8-7

Theorem: ListScheduling achieves approximation ratio 2−
1

m
.

Proof:

f (x)

f (x∗)
(upper bound Lemma 1)

≤
∑ j t j/m

f (x∗)
+

m−1

m
·

tℓ

f (x∗)
(lower bound Lemma 2)

≤1+
m−1

m
·

tℓ

f (x∗)
(lower bound Lemma 3)

≤1+
m−1

m
= 2−

1

m

Sanders: Algorithms II - December 7, 2020 8-8

This bound is optimal

Input: m(m−1) jobs of size 1 and one job of size m.

List Scheduling: 2m−1 OPT: m

Therefore, the approximation ratio is ≥ 2−1/m.

Sanders: Algorithms II - December 7, 2020 – Supplement 8-9

More About Scheduling)

� 4/3 approximation: Sort jobs decreasing by size.

Then list scheduling. Time O(n logn).

� Fast 7/6 approximation: Guess makespan (binary search). then

Best Fit Decreasing.

� PTAS . . . later . . .

� Uniform machines: Machine i has speed vi, job j needs time t j/vi

on machine j. relatively easy generalization

� Unrelated machines: Job j needs time t ji on machine j.

2 approximation. Very different algorithm.

� And many more: different objective functions, order restrictions, . . .

Sanders: Algorithms II - December 7, 2020 8-10

Inapproximability of the Traveling Salesman

Problem (TSP)

Given a graph G = (V,V ×V), find a simple cycle

C = (v1,v2, . . . ,vn,v1) such that n = |V | and ∑
(u,v)∈C

d(u,v) is

minimized.

Theorem: Approximate TSP to any ratio a is NP-hard.

Proof idea: It is sufficient to show that

HamiltonCycle≤p a-approximation of TSP

Sanders: Algorithms II - December 7, 2020 8-11

a-Approximation of TSP

Given:

Graph G = (V,V ×V) with edge weights d(u,v),

parameter W .

We need an algorithm with the following properties:

[G,W] is accepted −→ ∃ tour with weight ≤ aW .

[G,W] is rejected −→6 ∃ tour with weight ≤W .

Sanders: Algorithms II - December 7, 2020 8-12

HamiltonCycle≤p a Approximation of TSP

Let G = (V,E) an arbitrary undirected graph.

Define d(u,v) =







1 if (u,v) ∈ E

1+an else

∃ TSP tour with cost n

If and only if G has a Hamiltonian cycle

(otherwise: optimal cost ≥ (n−1) ·1+(an+1) = an+n > an)

Decision algorithms for Hamiltonian cycle:

Run a approx TSP on [G,n].

Is accepted

−→ ∃ tour with weight ≤ an

−→ ∃ tour with weight n −→ ∃ Hamiltonian path

otherwise 6 ∃ Hamiltonian path

Sanders: Algorithms II - December 7, 2020 8-13

TSP with Triangle Inequality

G (undirected) satisfies triangle inequality

∀u,v,w ∈V : d(u,w)≤ d(u,v)+d(v,w)

Metric completion

Consider arbitrary undirected graph G = (V,E) with weight function

c : E → R+. Define

d(u,v) := Length of shortest path from u to v

Example: (undirected) road graph −→ distance table

Sanders: Algorithms II - December 7, 2020 8-14

Eulerian Path/Cycle

Consider arbitrary connected undirected (multi-)graph G = (V,E) with

|E|= m.

A path P = 〈e1, . . . ,em〉 is called a Eulerian cycle if

{e1, . . . ,em}= E . (every edge is visited exactly once)

Theorem: G has Eulerian cycle iff G is connected and

∀v ∈V :degree(v) is even.

Eulerian cycles can be found in time O(|E|+ |V |).

Sanders: Algorithms II - December 7, 2020 8-15

2 Approximation by Minimum Spanning Tree

Lemma 4.

Total weight of an MST ≤

Total weight of every TSP tour

Algorithm:

T := MST(G) // weight(T)≤opt

T ′:= T with every edge doubled // weight(T ′)≤2opt

T ′′:= EulerianCycle(T ′) // weight(T ′′)≤ 2opt

output removeDuplicates(T ′′) // shortcutting

Sanders: Algorithms II - December 7, 2020 8-16

Example

1

2

3

4

5 6
1

2

3

4

5 6

MST
12131415161

1

2

3

4

5 6

input weight: 12 doubled MST output

weight
10

optimal weight: 6

Euler cycle

Sanders: Algorithms II - December 7, 2020 8-17

Proof of Weight MST≤ Weight TSP tour

Let T be the optimal TSP tour.

Removing an edge makes T lighter.

Now T is a spanning tree

that cannot be lighter than the MST

General technique: Relaxation

here: a TSP path is a special case of a spanning tree

Sanders: Algorithms II - December 7, 2020 – Supplement 8-18

More TSP

� In practice better 2 approximations, e.g. lightest edge first

� Relatively easy but inpractical 3/2 approximation

(MST+min. weight perfect matching+Eulerian cycle)

� PTAS for Euclidean TSP

� Guinea pig for virtually every optimization heuristic

� Optimal solutions for practical inputs. Rule of thumb:

If it fits into memory, you can solve it.

[http://www.tsp.gatech.edu/concorde.html]

Six-figure number of code lines.

� TSP-like applications are usually more complicated

Sanders: Algorithms II - December 7, 2020 8-19

Pseudo- Polynomial Time Algorithms

A is pseudo-polynomial time algorithms if

TimeA (n) ∈ P(n)

where n is the number of input bits,

if all numbers are in unary coding (k ≡ 1
k).

Sanders: Algorithms II - December 7, 2020 8-20

Example: Knapsack Problem

W20

10
20

15

� n items with weight wi ∈ N and value pi.

Wlog: ∀i ∈ 1..n : wi ≤W

� Choose a subset x of items

� Such that ∑i∈x wi ≤W and

� Maximize the value ∑i∈x pi

Sanders: Algorithms II - December 7, 2020 8-21

Dynamic Programming by Value

C(i,P):= smallest capacity for items 1,. . . ,i that add up to value ≥ P.

Lemma 5.

∀1 ≤ i ≤ n : C(i,P) = min(C(i−1,P),

C(i−1,P− pi)+wi)

Sanders: Algorithms II - December 7, 2020 8-22

Dynamic programming by value

Let P̂ be an upper bound for the value (e.g. ∑i pi).

Time: O
(
nP̂
)

pseudo-polynomial

e.g. fill 0..n×0..P̂ table C(i,P) column-wise

Space: P̂+O(n) machine words plus P̂n bits.

Sanders: Algorithms II - December 7, 2020 8-23

Fully Polynomial Time Approximation Scheme

Algorithm A is a

(Fully) Polynomial Time Approximation Scheme

for
minimization

maximization
problem Π if:

Input: Instance I, error parameter ε

Output quality: f (x)
≤

≥
(
1+ε

1−ε
)opt

Time: Polynomial in |I| (and 1/ε)

Sanders: Algorithms II - December 7, 2020 8-24

Examples for bounds

PTAS FPTAS

n+21/ε n2 +
1

ε

nlog 1
ε n+

1

ε4

n
1
ε n/ε

n42/ε3 ...

n+221000/ε ...

...
...

Sanders: Algorithms II - December 7, 2020 8-25

FPTAS for Knapsack

P:= maxi pi // maximum single value

K:=
εP

n
// scaling factor

p′i:=
⌊

pi

K

⌋
// scaled values

x′:= dynamicProgrammingByProfit(p′,w,C)

return x′

Sanders: Algorithms II - December 7, 2020 8-26

Lemma 6. p ·x′ ≥ (1− ε)opt.

Proof. Consider the optimal solution x∗.

p ·x∗−Kp′ ·x∗ = ∑
i∈x∗

(

pi −K
⌊ pi

K

⌋)

≤ ∑
i∈x∗

(

pi −K
(pi

K
−1
))

= |x∗|K≤ nK,

so, Kp′ ·x∗ ≥ p ·x∗−nK. Also,

Kp′ ·x∗ ≤ Kp′ ·x′ = ∑
i∈x′

K

⌊ pi

K

⌋

≤ ∑
i∈x′

K
pi

K
= p ·x′. Thus,

p ·x′ ≥Kp′ ·x∗ ≥ p ·x∗−nK = opt− ε P
︸︷︷︸

≤opt

≥ (1− ε)opt

Sanders: Algorithms II - December 7, 2020 8-27

Lemma 7. Running time O
(
n3/ε

)
.

Proof. The running time O
(

nP̂′
)

of dynamic programming

dominates:

nP̂′ ≤n · (n ·
n

max
i=1

p′i) = n2

⌊
P

K

⌋

= n2

⌊
Pn

εP

⌋

≤
n3

ε
.

Sanders: Algorithms II - December 7, 2020 – Supplement 8-28

The Best Known FPTAS

[Kellerer, Pferschy 04]

O

(

min

{

n log
1

ε
+

log2 1
ε

ε3
, . . .

})

� Fewer buckets C j (non-uniform)

� Sophisticated dynamic programming

Sanders: Algorithms II - December 7, 2020 – Supplement 8-29

Optimal Algorithms for the Knapsack Problem

Near linear running time for almost all inputs! In theory and practice.

[Beier, Vöcking, An Experimental Study of Random Knapsack

Problems, European Symposium on Algorithms, 2004.]

[Kellerer, Pferschy, Pisinger, Knapsack Problems, Springer 2004.]

