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A-Stepping: A Parallel Single-Source Shortest-Path Algorithm.

You have honored small and simple steps

in a long, difficult and important Odyssey.
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From Dijkstra’s algorithm to parallel shortest paths
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@ Problem statement and previous work uli
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@ Average case linear time sequential algorithm Uli
o Multiple As Uli
@ Implementation experiences Peter
@ Subsequent work Peter
@ Conclusions and open problems Peter



History of Parallel Processing Motivation

time | algorithmics hardware

1970s | new new

1980s | intensive work ambitious/exotic projects

1990s | rapid decline bankruptcies / triumps of single proc. performance
2000s | almost dead beginning multicores

2010s | slow comeback 7  ubiquitous, exploding parallelism:
smartPhone, GPGPUs, cloud, Big Data,. ..

2020s | up to us

see also: [S., “Parallel Algorithms Reconsidered”, STACS 2015, invited talk]

42
Google Scholar citations of A-stepping paper Aug. 27, 2020
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Why Parallel Shortest Paths

e Large graphs,
e.g., huge implicitly defined state spaces
@ Stored distributedly
e Many iterations, edge weights may change every time

@ Even when independent SSSPs are needed:
memory may be insufficient for running all of them

Motivation




Single-Source Shortest Path (SSSP)
e Digraph: G = (V,E), |[V|=n, |E| =
e Single source: s

@ Non-negative edge weights: c(e) > 0
e Find: dist(v) = min{c(p) ; p path from s to v}
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Average-case setting:

independent random edge weights uniformly in [0, 1].
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PRAM Algorithms for SSSP — 20 years ago

Shared Memory

o+ o+ ¢ PRAM
® e e e
e Shared memory e Synchronized
e Uniform access time e Concurrent access

o Work = total number of operations < number of processors - parallel time

Key results:

Time: Work: Ref:

O(log Tl) O(n3+5) [Han, Pan, and Reif, Algorithmica 17(4), 1997}
O(n -logn) O(n -logn + m) [Paige, Kruskal, ICPP, 1985]

O(n* +n'=€)  O(n'*c), planar graphs  [TiAdf, Zaroliagis, JPDC 60(9), 2000]

Goal:
o(n) O(n-logn +m)

Search for hidden parallelism in sequential SSSP algorithms !



Sequential SSSP: What else was common 20 years ago?

1. Dijkstra with specialized priority queues:
@ (small) integer or float weights
@ Bit operations: RAM with word size w

2. Component tree traversal (label-setting):
@ rather involved
@ undirected: O(n + m) time [Thorup, JACM 46, 1999
@ directed: O(n + mlogw) time [Hagerup, ICALP, 2000]

3. Label-correcting algorithms:
@ rather simple
@ bad in the worst case, but often great in practice
@ average-case analysis largely missing

Our ESA-paper in 1998:
Simple label-correcting algorithm for directed SSSP with theoretical analysis.
Basis for various sequential and parallel extensions.



Dijkstra's Label-Setting Algorithm

e Partitioning: settled, queued, unreached nodes
@ Store tentative distances tent(v) in a priority-queue Q.

@ Settle nodes one by one in priority order:
v selected from Q = tent(v) = dist(v)

@ Relax outgoing edges

e O(nlogn + m) time  (comparison model)
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Hidden Parallelism in Dijkstra's Algorithm?

Question: Is there always more than one settled vertex in () with
tent(v) = dist(v) ?

Answer: Not in the worst case:

1 1 1 1 1 1

settled queued unreached settled queued
Lower Bound: At least as many phases as depth of shortest path tree.
In practice such trees are often rather flat ...

Challenge: Find provably good identification criteria for settled vertices.
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Tentative Distances
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Performance of Parallel Dijkstra [crauser, Mehihorn, M., 5., MFCS, 1998]

Random graphs: Dgn,cf/n) Road maps:

e Edge probability d/n Southern Germany: n = 157457.
e Weights indep. & uniform in [0, 1] INOUT: 6647 phases.

Analysis: n— 2. n:

OuUT: (\/ﬁ) phases whp.
INOUT: O(n'/?) phases whp.
Simulation:

OUT: 2.5-4/n phases on av.
INOUT: 6.0 - n'/? phases on av.

Random graph, n = 157,457, m = 3n

The number of phases is multi-
plied by approximately 1.63 ~ 2°-7.

Road map graph n =157, 457

100000 T T T T T T T 100000 T T T
queue size
10000 F 10000 L removed nodes ------- ]
1000 + 4 1000 [ 1
i ;M.Ar.vw»wwn}
100 | ‘A’, ' 3 100 F E
0 queue size b 10F 7
removed nodes
1 1 1 1 1
0 100 200 300 400 500 600 0 1000 2000 3000 4000 5000 6000 7000
delete phase delete phase

Promising approach but (at that time) still too many phases.
Recent revival: V. K. Garg 2018, Krainer/TrAdff 2019.



Basic A-Stepping

Q is replaced by array BJ:| of buckets having width A each.
Source s € B[0] and v € Q is kept in B[ [tent(v)/A] ].

active =~ R Neeeme- -

emptied filled potentially filled empty

Byt

In each phase: Scan all nodes from first nonempty bucket (“current bucket”,
Be..r) but only relax their outgoing light edges (c(e)) < A).

When B, finally remains empty: Relax all heavy edges of nodes settled in
Beur and search for next nonempty bucket.

Difference to Approximate Bucket Implementation™ of Dijkstra's Algorithm:

@ No FIFO order in buckets assumed.

@ Distinction between light and heavy edges.

>'g[Cherkassky, Goldberg, and Radzik, Math. Programming 73:129-174, 1996]



Choice of the Bucket Width A

08 8
Extreme cases: . . d
S 01 aol bol Ccol1 Qo4
o A = min edge weight in G bucket width = 0.1 bucket width = 0.8
— label-setting (no re-scans) ENRRRRRRRRENN B 11 ERRREEED

— potentially many buckets E T 1
traversed (Dinic—Algorithm*) .b‘ ‘ ‘ ‘q‘ ‘ ‘ ‘ ‘ ‘ ‘
o A = oo : ~ Bellman-Ford e T T TTTTT]
— label-correcting (potentially IE T TTTTT]
many re-inserts) N T TR

— less buckets traversed.

BIGGHER

BEEHED
Is there a provably good choice for A CGHER
that always beats Dijkstra? "GE

—> Label-correcting

@ not in general :-( B emptied bucket

@ but for many graph classes :-) [ current bucket

D unvisited bucket

[=]|
[a] [a]
(=l = =]

* [Dinic, Transportation Modeling Systems, 1978] -> Label-setting
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A-Stepping with i.i.d. Random Edge Weights Uniformly in [0, 1]

A\ cur Phase:
Ov]| t
,,,,,,,,,,,,,,,,,,,,,,,,, U/.V w1
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, T OOy | w2
**’O—'O?Or. v t+3

Lemma: # re-insertions(v) < # paths into v of weight < A (“A-paths”).
If d := max. degree in G = < d' paths of [ edges into v.

Lemma: Prob [ path of [ edges has weight < A ] < Al/l!
’ = Bl# reins.(v)] <3, d- AlJIN = O(1) for A = O(1/d) \

L := max. shortest path weight, graph dependent !

’ Thm: Sequential ©(2)-Stepping needs O(n +m + d - L) time on average.

Linearif d- L =0(n+m) eg. L= O(logn) for random graphs whp.

BUT: 3 sparse graphs with random weighs where any fixed A causes w(n) time.
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Number of Phases for ©(1/d)-Stepping with Random Edge Weights

Lemma: For A = O(1/d), no A-path contains more than
Ia = O(logn/loglogn) edges whp.

= At most [d- L -Ia] phases whp.

@ Active insertion of shortcut edges [M.,S., EuroPar, 2000] in @ preprocessing can
reduce the number of phases to O(d - £):
Insert direct edge (u,v) for each simple A-path u — v with same weight.

@ For random graphs from D(n, d/n) we have d = O(d + logn) and
L = O(logn/d) whp. yielding a polylogarithmic number of phases.

e Time for a phase depends on the exact parallelization.

@ We maintain linear work.
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Simple PRAM Parallelization

@ Randomized assignment of vertex indices to processors.

@ Problem: Requests for the same target queue must be transfered and
performed in some order, standard sorting is too expensive.

e Simple solution: Use commutativity of requests in a phase:
Assign requests to their appropriate queues in random order.

@ Technical tool: Randomized dart-throwing.

O(d - logn) time per ©(1/d)-Stepping phase.
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Improved PRAM Parallelization [m.s., Europar, 2000]

Central Tool: Grouping

@ Group relaxations concerning target nodes (blackbox: hashing & integer sorting).
@ Select strictest relaxation per group.
@ Transfer selected requests to appropriate Q;.

@ For each @;, perform selected relaxation.

oo

<0

O
"
9)

w0
|
L]

Ri (Req) spread grouped selected transferred

@ Relaxation-Request via edge (u,v)
u v

At most one request per target node = Improved Load-Balancing.

O(logn) time per ©(1/d)-Stepping phase.
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Intermediate Conclusions — A-Stepping with Fixed Bucket Width

A-Stepping works provably well with random edge weights on small to medium
diameter graphs with small to medium nodes in-degrees, e.g.:
e Random Graphs from D(n,d/n): O(log?n) parallel time and linear work.
@ Random Geometric Graphs with threshold parameter r € [0, 1]:
Choosing A = r yields linear work.

There are classes of sparse graphs with random edge weight where no good
fixed choice for A exists [M., Negoescu, Weichert, TAPAS, 2011]:

e A-Stepping: Q(n''"¢) time on average.
e ABI-Dijkstra: Q(n'?"¢), Dinic & Bellman-Ford: Q(n* )

= Develop algorithms with dynamically adapting bucket width A.

18 /35



Linear Average-Case SSSP for Arbitrary Degrees . sopa, 2001

Run A-Stepping with initial bucket width Ay = 1.
d* := max. degree in current bucket B, at phase start.

If Acyr > 1/d"
1. Split Beur into buckets of width < 1/d* each.
2. Settle nodes with “obvious” final distances.
3. Find new current bucket on next level.

Ap=1
= =0 :
L O L, | By, A=12
0 T O—’o L, -
Boix Bo; Boj

[0 emptied [ split O current [ unvisited

= creates at most » 2 -degree(v) = O(m) new buckets.

= High-degree nodes treated in narrow current buckets.
— Linear average-case bound for arbitrary graphs.
19/35



Parallel Independent Stepwidths [m., ipops, 2002

Direct parallelization of the splitting idea still

takes Q(maxdegree) phases.  Better: . E
o gy E /1 3 1/6:

1712
@ O(logn) cyclically traversed bucket arrays

with exponentially decreasing A.

@ All nodes v of degree d,, treated in
buckets of width ~ 2~%v no splitting.

.M(Z) M@E)

@ Parallel scanning from selected buckets.

.

RRRNNNNNNNAN: N O

@ Fast traversal of empty buckets.
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Improves the parallel running time from
T = O(log? n - min; {2* - B[£] + Z
T = O(log? n - min; {2* - B[] + E

vEG,degree(v)>27 degree(v)}) to

vEG,degree(v)>27 1})
Ex: Low-diameter graphs where vertex degrees follow a power law (5 = 2.1):

A-Stepping: Q(n%°) time and O(n + m) work on average.
Parallel Indep. Step Widths: O(n"**) time and O(n 4 m) work on average.



Beyond Parallelism

The linear average-case SSSP result from [M., sopa, 2001] has triggered various
alternative sequential solutions:

@ [A.V. Goldberg, A simple shortest path algorithm with linear average time. ESA, 2001]

> for integer weights
> based on radix heaps

@ [A.V. Goldberg, A Practical Shortest Path Alg. with Linear Expected Time. SIAM J. Comput., 2008]

> optimized code for realistic inputs with integer/float weights.
> implementation is nearly as efficient as plain BFS.

@ [T. Hagerup, Simpler Computation of SSSP in Linear Average Time. STACS, 2004]

» combination of heaps and buckets
> focus on simple common data structures and analysis

All approaches use some kind of special treatment for vertices with small
incoming edge weights (=~ IN-criterion).



Implementing A-Stepping — Shared Memory

graph data structure as in seq. case

lock-free edge relaxations (e.g., use CAS/fetch_and_min) with
little contention (few updates on average)

possibly replace decrease-key by insertion and lazy deletion

synchronized phases simplify concurrent bucket-priority-queue

@ load balanced traversal of current bucket

. work by

step i-1 == color coded
ase 6; processors
<3 o stop scan (lazy delete)

scan nodes o relaxation without effect
relax edges

decreaseKey ops

step i

Or use shared-memory implementation of a distributed-memory algorithm
[Madduri et al., “Parallel Shortest Path Algorithms for Solving Large-Scale Instances”, 9th
DIMACS Impl. Challenge, 2006]

[Duriakova et al. “Engineering a Parallel A-stepping Algorithm”, IEEE Big Data, 2019]



Implementing A-Stepping — Distributed Memory

@ 1D partitioning: each PE responsible for some vertices
— owner computes paradigm
Procedure relax(u, v, w)
if v is local then relax locally
else send relaxation request (v, w) to owner of v
@ Two extremes in a Tradeoff:

> use graph partitioning: high locality
> random assignment: good load balance

work by

color coded

processors
Q search frontier

e Extensive tuning on RMAT graphs (very low diameter).
~> algorithms with complexity O(n - diameter)
(unscanned vertices pull relevant relaxations)
[Chakravarthy et al., Scalable single source shortest path algorithms for massively parallel systems,
IEEE TPDS 28(7), 2016]
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Implementing A-Stepping — GPU

[Davidson et al. Work-Efficient Parallel GPU Methods for Single-Source
Shortest Paths, IPDPS 2014]:

@ Partition edges to be relaxed ~~ fine-grained parallelization

o Fastest algorithm is sth like A-Stepping without a PQ.
Rather, identify vertices in next bucket brute-force from a “far pile”.

[Ashkiani et al., GPU Multisplit: An Extended Study of a Parallel Algorithm,
ACM TPC 4(1), 2017]:
bucket queue is now useful

Control

[[
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GPU
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NVIDIA, Creative Commons Attribution 3.0 Unported
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Implementing A-Stepping — Summary

@ Better than Dijkstra or Bellman-Ford

@ Several implementation difficulties:
load balancing, contention, parameter tuning,. ..
~~ implementation details can dominiate experimental performance

@ Viable for low diameter graphs. Challenging for high diameter
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Subsequent Work — Radius Stepping

[Blelloch et al., Parallel shortest paths using radius stepping SPAA 2016]
Generalization of A-stepping:

@ choose A adaptively
@ add shortcuts such that from any vertex p vertices are reached in one step

Work=Time tradeoff n
mlogn 4+ np” work versus — log nlog p - maxEdgeWeight time
p

for tuning parameter p

p reached nodes
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Subsequent/Related Work — Relaxed Priority Queues

How to choose A in practice?
Perhaps adapt dynamically to keep a given amount of parallelism?

Then why not do this directly?
~~ relaxed priority queue.

27 /35



Relaxed Priority Queues — Bulk Parallel View Subsequent Work

Procedure RPQ-SSSP(G, s)
dist[v]:= oo for all v € V;  dist[s]:= 0
RelaxedPriorityQueue @ = {(s,0)}

while Q # () do // Globally synchronized iterations

L*:= @Q.deleteMin* // get the O(p) smallest labels
foreach (v,¢) € L™ dopar

if dist[v] = ¢ then // still up to date?

foreach e = (v, w) € E do relax((v, w), x)

deleteMin*

- FK K —a
p processors

deleteMin™ can be implemented with logarithmic latency

[S., Randomized priority queues for fast parallel access JPDC 49(1), 86-97, 1998]

and respecting the owner-computes paradigm

[Hiibschle-Schneider, S., Communication Efficient Algorithms for Top-k Selection Problems,
IPDPS 2016]
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Relaxed Priority Queues — Asynchronous View Subsequent Work

Procedure asynchronousRPQ-SSSP(G, s)
dist[v]:= oo for all v € V;  dist[s]:= 0
AsynchronousRelaxedPriorityQueue @ = {(s,0)}
foreach thread dopar

while no global termination do // asynchronous parallelism
(v, £):= Q.approxDeleteMin // get a “small” label
if dist[v] = ¢ then // still up to date?

foreach e = (v,w) € E do relax((v, w), x)

p threads

29 /35



Relaxed Concurrent Priority Queues Subsequent Work

MultiQueues:
@ c - p sequential queues, ¢ > 1
@ insert: into random queue

@ approxDeleteMin: minimum of minimum of two (or more) random queues

TVVY

e "Waitfree" locking

vaS nt

o)é\ min
) approxDeleteMin
—_— p threads

random choice

[Rihani et al., MultiQueues: Simpler, Faster, and Better
Relaxed Concurrent Priority Queues, SPAA 2015]
[Alistarh et al., The power of choice in priority scheduling, PODC 2017]
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Subsequent Work — Speedup Techniques

Idea: preprocess graph. Then support fast s—t queries.

Successful example Contraction Hierarchies (CHs):
Aggressive (obviously wrong) heuristics:
Sort vertices by “importance”. Consider only up—down routes —

/" Ascend to more and more important vertices

N\ Descend to less and less important vertices

Make that correct by inserting appropriate shortcuts.

About 10 000 times faster than Dijkstra for large road networks.
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Parallel Contraction Hierarchies Subsequent Work

@ Construction of CHs can be parellelized.
Roughly: Contract locally least important vertices
@ Trivial parallelization of
multiple point-to-point queries
@ Distributable using
graph partitioning
@ “polylogarithmic” parallel time
one-to-all/few-to-all queries
using PHAST

& & ez
edge cut 3860

[Geisberger et al., Exact Routing in Large Road Networks using Contraction Hierarchies,
Transportation Science 46(3), 2012]

[Kieritz et al., Distributed Time-Dependent Contraction Hierarchies, SEA 2010]

[Delling et al., PHAST: Hardware-accelerated shortest path trees, JPDC 73(7), 2013]



Subsequent Work — Multi-objective Shortest Paths

Given d objective functions, s,
for (one/all) t, find all Pareto optimal s—t paths,
i.e., those that are not dominated by any other path wrt all objectives.

NP-hard, efficient “output-sensitive” sequential algorithms

Example: time/changes/footpaths tradeoff for public transportation




Multi-Objective Generalization of Dijkstra’s Algorithm  Subsequent Work

Procedure paPaSearch(G, s) // was: Dijkstra
dist[v]:= 0 for all v € V; dist[s]:= {O‘i}
ParetoQueue Q = {(s, Od)} // was: PriorityQueue
while Q # 0 do
L*:= @Q.deleteParetoOptimal // was: deleteMin
foreach (v,¢) € L* do // was: one label

foreach e = (v,w) € E do

P
relax((v, w), x) 13— a 21
(3.1)
Theorem: < n iterations 7 ,

y | I \b ey 2L S
Theorem for d = 2: 1 id 13) -
efficient parallelization with e
time O(n log plog totalWork) 2/ » :\_/
(Search trees, 1 4
geometry meets graph algorithms) (2 5 A%
1 \ A i Jd
All the hard stuff is parallelizable /. e T o
[S., Mandow, Parallel Label-Setting Multi- T S
Objective Shortest Path Search, IPDPS 2013] ﬁ :'1 "
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Conclusion and Open Problems

@ Main theoretical question still open:
work optimal SSSP (even BFS) with o(n) time? (beyond bounded
treewidth [Chaudhuri—ZaroIiagis/Bodlaender—Hagerup])
> special graph classes?
> average case, smoothed analysis?
@ Better relaxed priority queues (RPQs) in theory and practice:

> small rank error: no large elements deleted very early

> “fairness”: no small elements deleted very late

> cache efficient

> better understand termination detection

> analyze SSSP and other applications with RPQs (e.g., branch-and-bound)

@ Algorithm engineering for (distributed-memory) SSSP
> A/radius-stepping/generalized Dijkstra/Independent stepwidth/relaxed PQs

> asynchronous algorithms P.S.
> tradeoff partitioning versus randomization is
> diverse inputs hiring!

@ More inputs in all experiments, e.g.,:
> use geometric graphs with their natural distances
(e.g., Delaunay, random geometric, hyperbolic)
[Funke et al. Communication-free massively distributed graph generation, JPDC 2019]
> Graph Delaunay Diagrams use low diameter SSSP in high diameter graphs
[Mehlhorn, A faster approximation algorithm for the Steiner problem in graphs, IPL 1988]
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