$\Delta\operatorname{-Stepping:}$ A Parallel Single-Source Shortest-Path Algorithm

Ulrich Meyer and Peter Sanders

ESA Test-of-Time Award 2019

Thank You for the ESA Test-of-Time Award 2019 for

 Δ -Stepping: A Parallel Single-Source Shortest-Path Algorithm.

You have honored small and simple steps in a long, difficult and important Odyssey.

CC BY-SA 3.0, Hamilton Richards

CC BY 2.0, ORNL and Carlos Jones

From Dijkstra's algorithm

to

parallel shortest paths

Motivation	Peter
 Problem statement and previous work 	Uli
Parallel Dijkstra	Uli
• Basic Δ -stepping	Uli
 Average case linear time sequential algorithm 	Uli
• Multiple Δs	Uli
Implementation experiences	Peter
• Subsequent work	Peter
Conclusions and open problems	Peter

time	algorithmics	hardware
1970s	new	new
1980s	intensive work	ambitious/exotic projects
1990s	rapid decline	bankruptcies / triumps of single proc. performance
2000s	almost dead	beginning multicores
2010s	slow comeback ?	ubiquitous, exploding parallelism:
		smartPhone, GPGPUs, cloud, Big Data,
2020s	up to us	

see also: [S., "Parallel Algorithms Reconsidered", STACS 2015, invited talk]

Why Parallel Shortest Paths

- Large graphs, e.g., huge implicitly defined state spaces
- Stored distributedly
- Many iterations, edge weights may change every time
- Even when independent SSSPs are needed: memory may be insufficient for running all of them

Motivation

Single-Source Shortest Path (SSSP)

- Digraph: G = (V, E), |V| = n, |E| = m
- Single source: s
- Non-negative edge weights: $c(e) \ge 0$
- Find: $dist(v) = min\{c(p) ; p \text{ path from } s \text{ to } v\}$

Average-case setting:

independent random edge weights uniformly in [0, 1].

PRAM Algorithms for SSSP – 20 years ago

- Shared memory
- Uniform access time

- Synchronized
- Concurrent access
- \bullet Work = total number of operations $\ \leq \$ number of processors \cdot parallel time

Key results:

Time:	Work:	Ref:
$\mathcal{O}(\log n)$	$\mathcal{O}(n^{3+\epsilon})$	[Han, Pan, and Reif, Algorithmica 17(4), 1997]
$\mathcal{O}(n \cdot \log n)$	$\mathcal{O}(n \cdot \log n + m)$	Paige, Kruskal, <i>ICPP</i> , 1985]
$\mathcal{O}(n^{2\epsilon} + n^{1-\epsilon})$	$\mathcal{O}(n^{1+\epsilon})$, planar graphs	[TrÃďff, Zaroliagis, JPDC 60(9), 2000]

Goal:

o(n) $O(n \cdot \log n + m)$

Search for hidden parallelism in sequential SSSP algorithms !

Sequential SSSP: What else was common 20 years ago?

1. Dijkstra with specialized priority queues:

- (small) integer or float weights
- $\bullet\,$ Bit operations: RAM with word size w

2. Component tree traversal (label-setting):

- rather involved
- undirected: $\mathcal{O}(n+m)$ time [Thorup, JACM 46, 1999]
- directed: $\mathcal{O}(n + m \log w)$ time [Hagerup, ICALP, 2000]

3. Label-correcting algorithms:

- rather simple
- bad in the worst case, but often great in practice
- average-case analysis largely missing

Our ESA-paper in 1998:

Simple label-correcting algorithm for directed SSSP with theoretical analysis. Basis for various sequential and parallel extensions.

Dijkstra's Sequential Label-Setting Algorithm

- Partitioning: settled, queued, unreached nodes
- Store tentative distances tent(v) in a priority-queue Q.
- Settle nodes one by one in priority order:
 v selected from Q ⇒ tent(v) = dist(v)
- Relax outgoing edges
- $\mathcal{O}(n\log n + m)$ time (comparison model)

Dijkstra's Sequential Label-Setting Algorithm

- Partitioning: settled, queued, unreached nodes
- Store tentative distances tent(v) in a priority-queue Q.
- Settle nodes one by one in priority order:
 v selected from Q ⇒ tent(v) = dist(v)
- Relax outgoing edges
- $\mathcal{O}(n\log n + m)$ time (comparison model)

Question: Is there always more than one settled vertex in Q with $\operatorname{tent}(v) = \operatorname{dist}(v)$?

Answer: Not in the worst case:

Lower Bound: At least as many phases as depth of shortest path tree. In practice such trees are often rather flat ...

Challenge: Find provably good identification criteria for settled vertices.

Performance of Parallel Dijkstra [Crauser, Mehlhorn, M., S., MFCS, 1998]

Random graphs: $\mathcal{D}(n, \bar{d}/n)$

- Edge probability d/n
- \bullet Weights indep. & uniform in $\left[0,1\right]$

Analysis:

OUT: $\mathcal{O}(\sqrt{n})$ phases whp. INOUT: $\mathcal{O}(n^{1/3})$ phases whp.

Simulation:

Road maps:

Southern Germany: n = 157457.

INOUT: 6647 phases.

 $n \rightarrow 2 \cdot n$:

The number of phases is multiplied by approximately $1.63\approx 2^{0.7}.$

Promising approach but (at that time) still too many phases.

Recent revival: V. K. Garg 2018, Krainer/TrÃďff 2019.

$\mathsf{Basic}\ \Delta\text{-}\mathsf{Stepping}$

Q is replaced by array $B[\cdot]$ of buckets having width Δ each. Source $s \in B[0]$ and $v \in Q$ is kept in $B[\lfloor tent(v)/\Delta \rfloor]$.

In each phase: Scan all nodes from first nonempty bucket ("current bucket", B_{cur}) but only relax their outgoing light edges $(c(e)) < \Delta$).

When B_{cur} finally remains empty: Relax all heavy edges of nodes settled in B_{cur} and search for next nonempty bucket.

Difference to Approximate Bucket Implementation* of Dijkstra's Algorithm:

- No FIFO order in buckets assumed.
- Distinction between light and heavy edges.

^{*[}Cherkassky, Goldberg, and Radzik, Math. Programming 73:129–174, 1996]

Choice of the Bucket Width Δ

Extreme cases:

- $\Delta = \min \operatorname{edge} \operatorname{weight} \operatorname{in} G$
 - \rightarrow label-setting (no re-scans)
 - ightarrow potentially many buckets traversed (Dinic-Algorithm^{*})
- $\Delta = \infty$: \simeq Bellman-Ford
 - \rightarrow label-correcting (potentially many re-inserts)
 - \rightarrow less buckets traversed.

Is there a provably good choice for Δ that always beats Dijkstra?

- not in general :-(
- but for many graph classes :-)

$\Delta\operatorname{-Stepping}$ with i.i.d. Random Edge Weights Uniformly in [0,1]

Lemma: # re-insertions $(v) \le \#$ paths into v of weight $< \Delta$ (" Δ -paths"). If $d := \max$. degree in $G \Rightarrow \le d^l$ paths of l edges into v.

Lemma: Prob [path of *l* edges has weight $\leq \Delta$] $\leq \Delta^l / l!$ $\Rightarrow E[\# \text{ re-ins.}(v)] \leq \sum_l d^l \cdot \Delta^l / l! = \mathcal{O}(1) \text{ for } \Delta = \mathcal{O}(1/d)$

 $\mathcal{L} := \mathsf{max.}$ shortest path weight, graph dependent !

Thm: Sequential $\Theta(\frac{1}{d})$ -Stepping needs $\mathcal{O}(n+m+d\cdot\mathcal{L})$ time on average.

Linear if $d \cdot \mathcal{L} = \mathcal{O}(n+m)$ e.g. $\mathcal{L} = \mathcal{O}(\log n)$ for random graphs whp.

BUT: \exists sparse graphs with random weighs where any fixed Δ causes $\omega(n)$ time.

Lemma: For $\Delta = O(1/d)$, no Δ -path contains more than $l_{\Delta} = O(\log n / \log \log n)$ edges whp.

 \Rightarrow At most $\left\lceil d \cdot \mathcal{L} \cdot l_{\Delta} \right\rceil$ phases whp.

- Active insertion of shortcut edges [M.S., EuroPar, 2000] in a preprocessing can reduce the number of phases to O(d · L): Insert direct edge (u, v) for each simple Δ-path u → v with same weight.
- For random graphs from $\mathcal{D}(n, \bar{d}/n)$ we have $d = \mathcal{O}(\bar{d} + \log n)$ and $\mathcal{L} = \mathcal{O}(\log n/\bar{d})$ whp. yielding a polylogarithmic number of phases.
- Time for a phase depends on the exact parallelization.
- We maintain linear work.

Simple PRAM Parallelization

- Randomized assignment of vertex indices to processors.
- Problem: Requests for the same target queue must be transfered and performed in *some* order, standard sorting is too expensive.
- Simple solution: Use commutativity of requests in a phase: Assign requests to their appropriate queues in random order.
- Technical tool: Randomized dart-throwing.

 $\mathcal{O}(d \cdot \log n)$ time per $\Theta(1/d)$ -Stepping phase.

Central Tool: Grouping

- Group relaxations concerning target nodes (blackbox: hashing & integer sorting).
- Select strictest relaxation per group.
- Transfer selected requests to appropriate Q_i .
- For each Q_i , perform selected relaxation.

At most one request per target node \Rightarrow Improved Load-Balancing. $\mathcal{O}(\log n) \text{ time per } \Theta(1/d)\text{-}\mathsf{Stepping phase}.$

 $\Delta\textsc{-Stepping}$ works provably well with random edge weights on small to medium diameter graphs with small to medium nodes in-degrees, e.g.:

- Random Graphs from $\mathcal{D}(n, \overline{d}/n)$: $\mathcal{O}(\log^2 n)$ parallel time and linear work.
- Random Geometric Graphs with threshold parameter $r \in [0, 1]$: Choosing $\Delta = r$ yields linear work.

There are classes of sparse graphs with random edge weight where no good fixed choice for Δ exists [M., Negoescu, Weichert, TAPAS, 2011]:

- Δ -Stepping: $\Omega(n^{1,1-\epsilon})$ time on average.
- ABI-Dijkstra: $\Omega(n^{1.2-\epsilon})$, Dinic & Bellman-Ford: $\Omega(n^{2-\epsilon})$

 \Rightarrow Develop algorithms with dynamically adapting bucket width $\Delta.$

Linear Average-Case Sequential SSSP for Arbitrary Degrees [M., SODA, 2001]

Run Δ -Stepping with initial bucket width $\Delta_0 = 1$. $d^* := \max$. degree in current bucket B_{cur} at phase start.

If $\Delta_{cur} > 1/d^*$

- 1. Split B_{cur} into buckets of width $\leq 1/d^*$ each.
- 2. Settle nodes with "obvious" final distances.
- 3. Find new current bucket on next level.

 \Rightarrow creates at most $\sum_{v} 2 \cdot \text{degree}(v) = \mathcal{O}(m)$ new buckets.

- \Rightarrow High-degree nodes treated in narrow current buckets.
 - \rightarrow Linear average-case bound for arbitrary graphs.

- $\Theta(\log n)$ cyclically traversed bucket arrays with exponentially decreasing Δ .
- All nodes v of degree d_v treated in buckets of width $\simeq 2^{-d_v}$, no splitting.
- Parallel scanning from selected buckets.
- Fast traversal of empty buckets.

Improves the parallel running time from

$$T = \mathcal{O}(\log^2 n \cdot \min_i \{2^i \cdot \mathbf{E}[\mathcal{L}] + \sum_{v \in G, \text{degree}(v) > 2^i} \frac{\text{degree}(v)}{(v)}\}) \qquad \text{tc}$$
$$T = \mathcal{O}(\log^2 n \cdot \min_i \{2^i \cdot \mathbf{E}[\mathcal{L}] + \sum_{v \in G, \text{degree}(v) > 2^i} 1\})$$

Ex: Low-diameter graphs where vertex degrees follow a power law ($\beta = 2.1$): Δ -Stepping: $\Omega(n^{0.90})$ time and $\mathcal{O}(n+m)$ work on average. Parallel Indep. Step Widths: $\mathcal{O}(n^{0.48})$ time and $\mathcal{O}(n+m)$ work on average.

The linear average-case SSSP result from [M., SODA, 2001] has triggered various alternative sequential solutions:

- [A.V. Goldberg, A simple shortest path algorithm with linear average time. ESA, 2001]
 - for integer weights
 - based on radix heaps
- [A.V. Goldberg, A Practical Shortest Path Alg. with Linear Expected Time. SIAM J. Comput., 2008]
 - optimized code for realistic inputs with integer/float weights.
 - implementation is nearly as efficient as plain BFS.
- [T. Hagerup, Simpler Computation of SSSP in Linear Average Time. STACS, 2004]
 - combination of heaps and buckets
 - focus on simple common data structures and analysis

All approaches use some kind of special treatment for vertices with small incoming edge weights (\simeq IN-criterion).

Implementing Δ -Stepping – Shared Memory

- graph data structure as in seq. case
- lock-free edge relaxations (e.g., use CAS/fetch_and_min) with little contention (few updates on average)
- possibly replace decrease-key by insertion and lazy deletion
- synchronized phases simplify concurrent bucket-priority-queue
- load balanced traversal of current bucket

Or use shared-memory implementation of a distributed-memory algorithm [Madduri et al., "Parallel Shortest Path Algorithms for Solving Large-Scale Instances", 9th DIMACS Impl. Challenge, 2006] [Duriakova et al. "Engineering a Parallel Δ -stepping Algorithm", IEEE Big Data, 2019]

Implementing $\Delta\textsc{-Stepping}-\textsc{Distributed}$ Memory

- $\bullet~1D$ partitioning: each PE responsible for some vertices
 - owner computes paradigm
 - Procedure relax(u, v, w)if v is local then relax locally else send relaxation request (v, w) to owner of v
- Two extremes in a Tradeoff:
 - use graph partitioning: high locality
 - random assignment: good load balance

 Extensive tuning on RMAT graphs (very low diameter).
 → algorithms with complexity O(n · diameter) (unscanned vertices pull relevant relaxations)

[Chakravarthy et al., *Scalable single source shortest path algorithms for massively parallel systems*, IEEE TPDS 28(7), 2016]

[Davidson et al. Work-Efficient Parallel GPU Methods for Single-Source Shortest Paths, IPDPS 2014]:

- Partition edges to be relaxed \rightsquigarrow fine-grained parallelization
- Fastest algorithm is sth like Δ -Stepping without a PQ. Rather, identify vertices in next bucket brute-force from a "far pile".

[Ashkiani et al., GPU Multisplit: An Extended Study of a Parallel Algorithm, ACM TPC 4(1), 2017]:

bucket queue is now useful

NVIDIA, Creative Commons Attribution 3.0 Unported

Implementing Δ -Stepping – Summary

- Better than Dijkstra or Bellman-Ford
- Several implementation difficulties: load balancing, contention, parameter tuning,...
 ~> implementation details can dominiate experimental performance
- Viable for low diameter graphs. Challenging for high diameter

[Blelloch et al., Parallel shortest paths using radius stepping SPAA 2016] Generalization of Δ -stepping:

- $\bullet\,$ choose $\Delta\,$ adaptively
- $\bullet\,$ add shortcuts such that from any vertex ρ vertices are reached in one step

Work-Time tradeoff $m \log n + n\rho^2$ work versus $\frac{n}{\rho} \log n \log \rho \cdot \max$ EdgeWeight time for tuning parameter ρ

Subsequent/Related Work – Relaxed Priority Queues

How to choose Δ in practice?

Perhaps adapt dynamically to keep a given amount of parallelism?

Then why not do this directly? ~> relaxed priority queue.

Subsequent Work

deleteMin* can be implemented with logarithmic latency

[S., Randomized priority queues for fast parallel access JPDC 49(1), 86–97, 1998]

and respecting the owner-computes paradigm

[Hübschle-Schneider, S., Communication Efficient Algorithms for Top-k Selection Problems, IPDPS 2016]

MultiQueues:

- $\bullet \ c \cdot p$ sequential queues, c > 1
- insert: into random queue
- approxDeleteMin: minimum of minimum of two (or more) random queues
- "Waitfree" locking

[Rihani et al., MultiQueues: Simpler, Faster, and Better Relaxed Concurrent Priority Queues, SPAA 2015] [Alistarh et al., The power of choice in priority scheduling, PODC 2017] Idea: preprocess graph. Then support fast *s*-*t* queries. Successful example **Contraction Hierarchies (CHs)**: Aggressive (obviously wrong) heuristics: Sort vertices by "importance". Consider only up-down routes –

 \nearrow Ascend to more and more important vertices

 \searrow Descend to less and less important vertices

Make that correct by inserting appropriate shortcuts.

About 10 000 times faster than Dijkstra for large road networks.

Parallel Contraction Hierarchies

Subsequent Work

- Construction of CHs can be parellelized. Roughly: Contract locally least important vertices
- Trivial parallelization of multiple point-to-point queries
- Distributable using graph partitioning
- "polylogarithmic" parallel time one-to-all/few-to-all queries using PHAST

[Geisberger et al., Exact Routing in Large Road Networks using Contraction Hierarchies, Transportation Science 46(3), 2012] [Kieritz et al., Distributed Time-Dependent Contraction Hierarchies, SEA 2010] [Delling et al., PHAST: Hardware-accelerated shortest path trees, JPDC 73(7), 2013]

Subsequent Work - Multi-objective Shortest Paths

Given d objective functions, s, for (one/all) t, find all Pareto optimal s-t paths, i.e., those that are not dominated by any other path wrt all objectives.

NP-hard, efficient "output-sensitive" sequential algorithms

Example: time/changes/footpaths tradeoff for public transportation

Theorem: $\leq n$ iterations

Theorem for d = 2: efficient parallelization with time $O(n \log p \log \text{totalWork})$ (Search trees, geometry meets graph algorithms)

"All the hard stuff is parallelizable" [S., Mandow, Parallel Label-Setting Multi-Objective Shortest Path Search, IPDPS 2013]

Conclusion and Open Problems

• Main theoretical question still open:

work optimal SSSP (even BFS) with o(n) time? (beyond bounded treewidth [Chaudhuri–Zaroliagis/Bodlaender–Hagerup])

- special graph classes?
- average case, smoothed analysis?
- Better relaxed priority queues (RPQs) in theory and practice:
 - small rank error: no large elements deleted very early
 - "fairness": no small elements deleted very late
 - cache efficient
 - better understand termination detection
 - analyze SSSP and other applications with RPQs (e.g., branch-and-bound)
- Algorithm engineering for (distributed-memory) SSSP
 - Δ /radius-stepping/generalized Dijkstra/Independent stepwidth/relaxed PQs
 - asynchronous algorithms
 P.S.
 - tradeoff partitioning versus randomization
 - diverse inputs
- More inputs in all experiments, e.g.,:
 - use geometric graphs with their natural distances (e.g., Delaunay, random geometric, hyperbolic)
 [Funke et al. Communication-free massively distributed graph generation, JPDC 2019]
 - Graph Delaunay Diagrams use low diameter SSSP in high diameter graphs [Mehlhorn, A faster approximation algorithm for the Steiner problem in graphs, IPL 1988]

is

hiring!