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Thank You for the ESA Test-of-Time Award 2019 for
∆-Stepping: A Parallel Single-Source Shortest-Path Algorithm.

You have honored small and simple steps
in a long, difficult and important Odyssey.

CC BY-SA 3.0, Hamilton Richards CC BY 2.0, ORNL and Carlos Jones

From Dijkstra’s algorithm to parallel shortest paths
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Overview

Motivation Peter
Problem statement and previous work Uli
Parallel Dijkstra Uli
Basic ∆-stepping Uli
Average case linear time sequential algorithm Uli
Multiple ∆s Uli
Implementation experiences Peter
Subsequent work Peter
Conclusions and open problems Peter
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History of Parallel Processing Motivation

time algorithmics hardware
1970s new new
1980s intensive work ambitious/exotic projects
1990s rapid decline bankruptcies / triumps of single proc. performance
2000s almost dead beginning multicores
2010s slow comeback ? ubiquitous, exploding parallelism:

smartPhone, GPGPUs, cloud, Big Data,. . .
2020s up to us

see also: [S., “Parallel Algorithms Reconsidered”, STACS 2015, invited talk]

∆Google Scholar citations of   −stepping paper Aug. 27, 2020

42
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Why Parallel Shortest Paths Motivation

Large graphs,
e.g., huge implicitly defined state spaces
Stored distributedly
Many iterations, edge weights may change every time
Even when independent SSSPs are needed:
memory may be insufficient for running all of them
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Single-Source Shortest Path (SSSP)

Digraph: G = (V,E), |V | = n, |E| = m

Single source: s

Non-negative edge weights: c(e) ≥ 0

Find: dist(v) = min{c(p) ; p path from s to v}
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Average-case setting:
independent random edge weights uniformly in [0, 1].
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PRAM Algorithms for SSSP – 20 years ago

P P P Pg g g g6 6 6 6? ? ? ?

Shared Memory

PRAM

• Shared memory
• Uniform access time

• Synchronized
• Concurrent access

• Work = total number of operations ≤ number of processors · parallel time

Key results:
Time:
O(log n)
O(n · log n)
O(n2ε + n1−ε)

Goal:
o(n)

Work:
O(n3+ε)
O(n · log n + m)
O(n1+ε), planar graphs

O(n · log n + m)

Ref:
[Han, Pan, and Reif, Algorithmica 17(4), 1997]
[Paige, Kruskal, ICPP, 1985]
[TrÃďff, Zaroliagis, JPDC 60(9), 2000]

Search for hidden parallelism in sequential SSSP algorithms !
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Sequential SSSP: What else was common 20 years ago?

1. Dijkstra with specialized priority queues:
(small) integer or float weights
Bit operations: RAM with word size w

2. Component tree traversal (label-setting):
rather involved
undirected: O(n + m) time [Thorup, JACM 46, 1999]
directed: O(n + m log w) time [Hagerup, ICALP, 2000]

3. Label-correcting algorithms:
rather simple
bad in the worst case, but often great in practice
average-case analysis largely missing

Our ESA-paper in 1998:
Simple label-correcting algorithm for directed SSSP with theoretical analysis.
Basis for various sequential and parallel extensions.
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Dijkstra’s Sequential Label-Setting Algorithm

Partitioning: settled, queued, unreached nodes

Store tentative distances tent(v) in a priority-queue Q.

Settle nodes one by one in priority order:
v selected from Q ⇒ tent(v) = dist(v)

Relax outgoing edges

O(n logn+m) time (comparison model)
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Dijkstra’s Sequential Label-Setting Algorithm
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Hidden Parallelism in Dijkstra’s Algorithm?

Question: Is there always more than one settled vertex in Q with
tent(v) = dist(v) ?

Answer: Not in the worst case:

1
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Lower Bound: At least as many phases as depth of shortest path tree.
In practice such trees are often rather flat ...

Challenge: Find provably good identification criteria for settled vertices.
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Performance of Parallel Dijkstra [Crauser, Mehlhorn, M., S., MFCS, 1998]

Random graphs: D(n, d̄/n)
• Edge probability d̄/n
• Weights indep. & uniform in [0, 1]
Analysis:
OUT: O(

√
n) phases whp.

INOUT: O(n1/3) phases whp.
Simulation:
OUT: 2.5 ·

√
n phases on av.

INOUT: 6.0 · n1/3 phases on av.

Road maps:
Southern Germany: n = 157457.
INOUT: 6647 phases.
n→ 2 · n:
The number of phases is multi-
plied by approximately 1.63 ≈ 20.7.
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Random graph, n = 157,457, m = 3n
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queue size
removed nodes

Promising approach but (at that time) still too many phases.
Recent revival: V. K. Garg 2018, Krainer/TrÃďff 2019.
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Basic ∆-Stepping

Q is replaced by array B[·] of buckets having width ∆ each.

Source s ∈ B[0] and v ∈ Q is kept in B[ btent(v)/∆c ].

Bi+k+1B Bi−1 B B0 i i+1

emptied filled potentially filled

active

Bi+k Bn−1

empty

In each phase: Scan all nodes from first nonempty bucket (“current bucket”,
Bcur ) but only relax their outgoing light edges (c(e)) < ∆).

When Bcur finally remains empty: Relax all heavy edges of nodes settled in
Bcur and search for next nonempty bucket.

Difference to Approximate Bucket Implementation∗ of Dijkstra’s Algorithm:
No FIFO order in buckets assumed.

Distinction between light and heavy edges.

∗[Cherkassky, Goldberg, and Radzik, Math. Programming 73:129–174, 1996]
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Choice of the Bucket Width ∆

Extreme cases:

∆ = min edge weight in G
→ label-setting (no re-scans)
→ potentially many buckets

traversed (Dinic-Algorithm∗)

∆ = ∞ : ' Bellman-Ford
→ label-correcting (potentially

many re-inserts)
→ less buckets traversed.

Is there a provably good choice for ∆
that always beats Dijkstra?

not in general :-(
but for many graph classes :-)

∗[Dinic, Transportation Modeling Systems, 1978]
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∆-Stepping with i.i.d. Random Edge Weights Uniformly in [0, 1]

Phase:

t
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v

v
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u u u
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Lemma: # re-insertions(v) ≤ # paths into v of weight < ∆ (“∆-paths”).
If d := max. degree in G ⇒ ≤ d l paths of l edges into v.

Lemma: Prob [ path of l edges has weight ≤ ∆ ] ≤ ∆l/l!

⇒ E[# re-ins.(v)] ≤
∑

l
d l ·∆l/l! = O(1) for ∆ = O(1/d)

L := max. shortest path weight, graph dependent !

Thm: Sequential Θ( 1
d
)-Stepping needs O(n+m+ d · L) time on average.

Linear if d · L = O(n+m) e.g. L = O(logn) for random graphs whp.

BUT: ∃ sparse graphs with random weighs where any fixed ∆ causes ω(n) time.
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Number of Phases for Θ(1/d)-Stepping with Random Edge Weights

Lemma: For ∆ = O(1/d), no ∆-path contains more than
l∆ = O(logn/ log logn) edges whp.

⇒ At most dd · L · l∆e phases whp.

Active insertion of shortcut edges [M.,S., EuroPar, 2000] in a preprocessing can
reduce the number of phases to O(d · L):
Insert direct edge (u, v) for each simple ∆-path u→ v with same weight.

For random graphs from D(n, d̄/n) we have d = O(d̄+ logn) and
L = O(logn/d̄) whp. yielding a polylogarithmic number of phases.

Time for a phase depends on the exact parallelization.

We maintain linear work.
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Simple PRAM Parallelization

Randomized assignment of vertex indices to processors.

Problem: Requests for the same target queue must be transfered and
performed in some order, standard sorting is too expensive.

Simple solution: Use commutativity of requests in a phase:
Assign requests to their appropriate queues in random order.

Technical tool: Randomized dart-throwing.

O(d · logn) time per Θ(1/d)-Stepping phase.

Buf

Buf

Buf

Buf

P P P P

Buf

Buf

Buf

Buf

P P P P
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Improved PRAM Parallelization [M.,S., EuroPar, 2000]

Central Tool: Grouping
Group relaxations concerning target nodes (blackbox: hashing & integer sorting).
Select strictest relaxation per group.
Transfer selected requests to appropriate Qi.
For each Qi, perform selected relaxation.

P

P

P

P

1

2

3

spread grouped selected transferredR (Req )ii

0

Relaxation-Request via edge (u,v)
vu

At most one request per target node ⇒ Improved Load-Balancing.

O(logn) time per Θ(1/d)-Stepping phase.
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Intermediate Conclusions – ∆-Stepping with Fixed Bucket Width

∆-Stepping works provably well with random edge weights on small to medium
diameter graphs with small to medium nodes in-degrees, e.g.:

Random Graphs from D(n, d̄/n): O(log2 n) parallel time and linear work.
Random Geometric Graphs with threshold parameter r ∈ [0, 1]:
Choosing ∆ = r yields linear work.

There are classes of sparse graphs with random edge weight where no good
fixed choice for ∆ exists [M., Negoescu, Weichert, TAPAS, 2011]:

∆-Stepping: Ω(n1.1−ε) time on average.
ABI-Dijkstra: Ω(n1.2−ε), Dinic & Bellman-Ford: Ω(n2−ε)
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⇒ Develop algorithms with dynamically adapting bucket width ∆.

18 / 35



Linear Average-Case Sequential SSSP for Arbitrary Degrees [M., SODA, 2001]

Run ∆-Stepping with initial bucket width ∆0 = 1.
d∗ := max. degree in current bucket Bcur at phase start.
If ∆cur > 1/d∗

1. Split Bcur into buckets of width ≤ 1/d∗ each.
2. Settle nodes with “obvious” final distances.
3. Find new current bucket on next level.
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⇒ creates at most
∑

v
2 · degree(v) = O(m) new buckets.

⇒ High-degree nodes treated in narrow current buckets.
→ Linear average-case bound for arbitrary graphs.
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Parallel Independent Stepwidths [M., IPDPS, 2002]

Direct parallelization of the splitting idea still
takes Ω(maxdegree) phases. Better:

Θ(log n) cyclically traversed bucket arrays
with exponentially decreasing ∆.
All nodes v of degree dv treated in
buckets of width ' 2−dv , no splitting.
Parallel scanning from selected buckets.
Fast traversal of empty buckets.

1/64 1/128

1 2B : 1 6

1/161/81/4

53

1/32

B : 32−63B : 16−31B : 8−15B : 4−7B : 2−3 4

M(2)

M

M(5)

M(4)

M(3)

M(1)

M(6)

Improves the parallel running time from
T = O(log2 n ·mini{2i ·E[L] +

∑
v∈G,degree(v)>2i degree(v)}) to

T = O(log2 n ·mini{2i ·E[L] +
∑

v∈G,degree(v)>2i 1})

Ex: Low-diameter graphs where vertex degrees follow a power law (β = 2.1):
∆-Stepping: Ω(n0.90) time and O(n+m) work on average.
Parallel Indep. Step Widths: O(n0.48) time and O(n+m) work on average.
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Beyond Parallelism

The linear average-case SSSP result from [M., SODA, 2001] has triggered various
alternative sequential solutions:

[A.V. Goldberg, A simple shortest path algorithm with linear average time. ESA, 2001]
I for integer weights
I based on radix heaps

[A.V. Goldberg, A Practical Shortest Path Alg. with Linear Expected Time. SIAM J. Comput., 2008]
I optimized code for realistic inputs with integer/float weights.
I implementation is nearly as efficient as plain BFS.

[T. Hagerup, Simpler Computation of SSSP in Linear Average Time. STACS, 2004]
I combination of heaps and buckets
I focus on simple common data structures and analysis

All approaches use some kind of special treatment for vertices with small
incoming edge weights (' IN-criterion).
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Implementing ∆-Stepping – Shared Memory

graph data structure as in seq. case
lock-free edge relaxations (e.g., use CAS/fetch and min) with
little contention (few updates on average)
possibly replace decrease-key by insertion and lazy deletion
synchronized phases simplify concurrent bucket-priority-queue
load balanced traversal of current bucket

stop scan (lazy delete)

relaxation without effectstep i

step i−1

scan nodes

relax edges

decreaseKey ops

... ...

color coded
processors

work by

decreaseKey ops

Or use shared-memory implementation of a distributed-memory algorithm
[Madduri et al., “Parallel Shortest Path Algorithms for Solving Large-Scale Instances”, 9th
DIMACS Impl. Challenge, 2006]
[Duriakova et al. “Engineering a Parallel ∆-stepping Algorithm”, IEEE Big Data, 2019]
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Implementing ∆-Stepping – Distributed Memory

1D partitioning: each PE responsible for some vertices
– owner computes paradigm
Procedure relax(u, v, w)

if v is local then relax locally
else send relaxation request (v, w) to owner of v

Two extremes in a Tradeoff:
I use graph partitioning: high locality
I random assignment: good load balance

color coded
processors

work by

search frontier

Extensive tuning on RMAT graphs (very low diameter).
 algorithms with complexity O(n · diameter)
(unscanned vertices pull relevant relaxations)

[Chakravarthy et al., Scalable single source shortest path algorithms for massively parallel systems,
IEEE TPDS 28(7), 2016]
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Implementing ∆-Stepping – GPU

[Davidson et al. Work-Efficient Parallel GPU Methods for Single-Source
Shortest Paths, IPDPS 2014]:

Partition edges to be relaxed  fine-grained parallelization
Fastest algorithm is sth like ∆-Stepping without a PQ.
Rather, identify vertices in next bucket brute-force from a “far pile”.

[Ashkiani et al., GPU Multisplit: An Extended Study of a Parallel Algorithm,
ACM TPC 4(1), 2017]:
bucket queue is now useful

Cache

ALUControl

ALU

ALU

ALU

DRAM

CPU

DRAM

GPU

NVIDIA, Creative Commons Attribution 3.0 Unported
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Implementing ∆-Stepping – Summary

Better than Dijkstra or Bellman-Ford
Several implementation difficulties:
load balancing, contention, parameter tuning,. . .
 implementation details can dominiate experimental performance
Viable for low diameter graphs. Challenging for high diameter
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Subsequent Work – Radius Stepping

[Blelloch et al., Parallel shortest paths using radius stepping SPAA 2016]
Generalization of ∆-stepping:

choose ∆ adaptively
add shortcuts such that from any vertex ρ vertices are reached in one step

Work–Time tradeoff
m logn+ nρ2 work versus n

ρ
logn log ρ ·maxEdgeWeight time

for tuning parameter ρ

∆

ρ reached nodes

26 / 35



Subsequent/Related Work – Relaxed Priority Queues

How to choose ∆ in practice?
Perhaps adapt dynamically to keep a given amount of parallelism?

∆?

Then why not do this directly?
 relaxed priority queue.
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Relaxed Priority Queues – Bulk Parallel View Subsequent Work

Procedure RPQ-SSSP(G, s)
dist[v]:= ∞ for all v ∈ V ; dist[s]:= 0
RelaxedPriorityQueue Q = {(s, 0)}
while Q 6= ∅ do // Globally synchronized iterations

L∗:= Q.deleteMin∗ // get the O(p) smallest labels
foreach (v, `) ∈ L∗ dopar

if dist[v] = ` then // still up to date?
foreach e = (v, w) ∈ E do relax((v, w), x)

bulk PQ

p processors

deleteMin*

deleteMin∗ can be implemented with logarithmic latency
[S., Randomized priority queues for fast parallel access JPDC 49(1), 86–97, 1998]
and respecting the owner-computes paradigm
[Hübschle-Schneider, S., Communication Efficient Algorithms for Top-k Selection Problems,
IPDPS 2016] 28 / 35



Relaxed Priority Queues – Asynchronous View Subsequent Work

Procedure asynchronousRPQ-SSSP(G, s)
dist[v]:= ∞ for all v ∈ V ; dist[s]:= 0
AsynchronousRelaxedPriorityQueue Q = {(s, 0)}
foreach thread dopar

while no global termination do // asynchronous parallelism
(v, `):= Q.approxDeleteMin // get a “small” label
if dist[v] = ` then // still up to date?

foreach e = (v, w) ∈ E do relax((v, w), x)

p threads

relaxed PQ

in
s
e
rt

in
se

rt

approxDeleteMin
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Relaxed Concurrent Priority Queues Subsequent Work

MultiQueues:
c · p sequential queues, c > 1
insert: into random queue
approxDeleteMin: minimum of minimum of two (or more) random queues
“Waitfree” locking

approxDeleteMin
min

p threads
random choice

c*p sequential priority queues
in

se
rt

min min

[Rihani et al., MultiQueues: Simpler, Faster, and Better
Relaxed Concurrent Priority Queues, SPAA 2015]
[Alistarh et al., The power of choice in priority scheduling, PODC 2017]
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Subsequent Work – Speedup Techniques

Idea: preprocess graph. Then support fast s–t queries.
Successful example Contraction Hierarchies (CHs):
Aggressive (obviously wrong) heuristics:
Sort vertices by “importance”. Consider only up–down routes –

↗ Ascend to more and more important vertices
↘ Descend to less and less important vertices

Make that correct by inserting appropriate shortcuts.

a
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d

e

f gf hh

1 2
1 1

1
1

1

3

About 10 000 times faster than Dijkstra for large road networks.
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Parallel Contraction Hierarchies Subsequent Work

Construction of CHs can be parellelized.
Roughly: Contract locally least important vertices
Trivial parallelization of
multiple point-to-point queries
Distributable using
graph partitioning
“polylogarithmic” parallel time
one-to-all/few-to-all queries
using PHAST

[Geisberger et al., Exact Routing in Large Road Networks using Contraction Hierarchies,
Transportation Science 46(3), 2012]
[Kieritz et al., Distributed Time-Dependent Contraction Hierarchies, SEA 2010]
[Delling et al., PHAST: Hardware-accelerated shortest path trees, JPDC 73(7), 2013]
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Subsequent Work – Multi-objective Shortest Paths

Given d objective functions, s,
for (one/all) t, find all Pareto optimal s–t paths,
i.e., those that are not dominated by any other path wrt all objectives.

NP-hard, efficient “output-sensitive” sequential algorithms

Example: time/changes/footpaths tradeoff for public transportation
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Multi-Objective Generalization of Dijkstra’s Algorithm Subsequent Work

Procedure paPaSearch(G, s) // was: Dijkstra
dist[v]:= ∅ for all v ∈ V ; dist[s]:=

{
0d
}

ParetoQueue Q =
{

(s, 0d)
}

// was: PriorityQueue
while Q 6= ∅ do

L∗:= Q.deleteParetoOptimal // was: deleteMin
foreach (v, `) ∈ L∗ do // was: one label

foreach e = (v, w) ∈ E do
relax((v, w), x)

Theorem: ≤ n iterations

Theorem for d = 2:
efficient parallelization with
time O(n log p log totalWork)
(Search trees,
geometry meets graph algorithms)

“All the hard stuff is parallelizable”
[S., Mandow, Parallel Label-Setting Multi-
Objective Shortest Path Search, IPDPS 2013]
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Conclusion and Open Problems

Main theoretical question still open:
work optimal SSSP (even BFS) with o(n) time? (beyond bounded
treewidth [Chaudhuri–Zaroliagis/Bodlaender–Hagerup])

I special graph classes?
I average case, smoothed analysis?

Better relaxed priority queues (RPQs) in theory and practice:
I small rank error: no large elements deleted very early
I “fairness”: no small elements deleted very late
I cache efficient
I better understand termination detection
I analyze SSSP and other applications with RPQs (e.g., branch-and-bound)

Algorithm engineering for (distributed-memory) SSSP
I ∆/radius-stepping/generalized Dijkstra/Independent stepwidth/relaxed PQs
I asynchronous algorithms P.S.
I tradeoff partitioning versus randomization is
I diverse inputs hiring!

More inputs in all experiments, e.g.,:
I use geometric graphs with their natural distances

(e.g., Delaunay, random geometric, hyperbolic)
[Funke et al. Communication-free massively distributed graph generation, JPDC 2019]

I Graph Delaunay Diagrams use low diameter SSSP in high diameter graphs
[Mehlhorn, A faster approximation algorithm for the Steiner problem in graphs, IPL 1988]
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