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Abstract

The edge coloring problem asks for assigning colors from a
minimum number of colors to edges of a graph such that no
two edges with the same color are incident to the same node.
We give polynomial time algorithms for approximate edge
coloring of multigraphs, i.e., parallel edges are allowed. The
best previous algorithms achieve a fixed constant approxi-
mation factor plus a small additive offset. Our algorithms
achieve arbitrarily good approximation factors at the cost of
slightly larger additive terms. In particular, for any € > 0
we achieve a solution quality of (1 + €)opt + O(1/€). The
execution times of one algorithm are independent of € and
polynomial in the number of nodes and the logarithm of the
maximum edge multiplicity.

1 Introduction

One of the most fundamental coloring problems asks
for assigning colors to edges of a (multi)graph such
that no two edges with the same color meet at a node.
The number of different colors is to be minimized. For
example, if edges represent data packets then an edge
coloring with ¢ colors specifies a schedule for exchanging
the packets directly and without node contention.

The minimal number of colors needed to color the
edges of a graph G = (V,E) is the chromatic index
X'(G). There are two obvious lower bounds:

(1.1) X' > A:= maxdegree(v)
veV
E(H
(1.2) X' > I':i= max 1EUH)]

HCV

LIH|/2]

where E(H) denotes the set of edges of the subgraph
induced by the vertex set H. For bipartite multigraphs
we actually have ' = A and optimal colorings can
be found very quickly [2]. For simple graphs, Vizing’s
algorithm [13] gives a coloring with A +1 colors in time
O(|E|(|[V| + A)) but it is NP-hard to decide whether
X' = A. Vizing’s algorithm can be generalized to color
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multigraphs with A + p colors where g is the maximum
multiplicity of an edge.

There is a 4/3-approximation algorithm for multi-
graphs but any better constant factor approximation is
NP-hard to obtain [6]. However, if we allow a small ad-
ditive error, much better approximation factors can be
obtained. In a sequence of results, approximation guar-
antees of 7x'/6+2/3,9x'/8+0.75 [5], and 11x'/10+0.8
[8] have been obtained. All these algorithms have the
same basic structure and it can be expected that any
approximation of the form (1 + 1/2k)x' + 1 — 1/k can
be achieved. However, the actual algorithms became
more and more complex with a large number of case
distinctions that can only be managed using careful ex-
ploitation of symmetric cases. After eight more years,
the most recent improvement in this direction only af-
fected the additive constant improving it from 1 — 1/k
to 1—3/2k [1]. To break out of this road block, we relax
the requirement on the additive offset and in exchange
obtain better approximation factors. To understand the
basic idea behind this approach it is instructive to first
have a look at the previous algorithms:

The basic operations are coloring an edge, wun-
coloring an edge, and shifting, i.e., on a path with edges
alternatingly colored a and b, swap the colors a and b.
The edges are colored sequentially in arbitrary order. To
color an edge e, constant size subgraphs O containing e
are investigated that are defined by edges colored with
a small number of colors. Using an exhaustive case dis-
tinction, three basic outcomes are possible: (1) e can be
colored using a small number of operations originating
in 0. (2) O forms a witness that the number of colors
can be increased without getting too far away from the
optimum. In that case e is colored with the new color.
(3) O is enlarged by taking additional colors and nodes
into account; now an exhaustive case distinction for the
larger graph is necessary. This process eventually has
to terminate since for sufficiently large subgraphs, case
(1) or (2) has to be applicable. However, the approxi-
mation guarantee is determined by the size of the graph
for which a complete case distinction is feasible.

Our algorithm uses a similar basic approach but
avoids massive case distinctions by investing a small



number of additional colors that make it possible to im-
pose an additional structure on O so that the algorithm
can handle arbitrarily large subgraphs O. Our algo-
rithm is also more flexible in a number of other ways.
Rather than insisting on coloring an arbitrary edge, it
picks a multiply uncolored edge e and “balances” it by
coloring one of the parallel edges of e — possibly by un-
coloring a completely colored edge. Eventually this pro-
cess will terminate with a graph without multiply un-
colored edges. An additional coloring mechanism makes
sure that subgraphs induced by connected components
of uncolored edges must eventually be small. The re-
maining edges can then be colored using Vizing’s algo-
rithm. In Section 2 we give a summary of our algorithm
and then a detailed derivation.

All previous algorithms for general multigraph edge
coloring have execution time polynomial in |E| but are
only pseudopolynomial in the number of bits needed to
describe a multigraph since edge multiplicities can be
encoded as binary numbers. This problem can be fixed
by appropriately rounding edge multiplicities but this
costs additional colors. In Section 3 we develop a more
elegant solution that achieves the same approximation
guarantees as the pseudopolynomial algorithm. This
algorithm exploits that a graph with even edge multi-
plicities can be colored by coloring a graph with halved
edge multiplicities and then using each color twice.

Section 4 summarizes the paper and mentions some
open problems.

Related Work The fractional edge coloring problem
asks to find a set of matchings M and weights w(M)
such that >, .\, w(M) is minimized subject to Ve €
E: Z{MEM:EGM} w(M) > 1. The fractional chromatic
indexr X' denotes the total weight of the optimal solu-
tion. It is known that ¥’ = max(A,I') and it is conjec-
tured that ¥’ < x' < X' + 1[4, 12].

The fractional chromatic index can be found in
time polynomial in |E| [9, 3]. Kahn [7] showed that
X' < X'+o(x’) using the probabilistic method. Recently,
Plantholt has sharpened this result to x' < X' +
O(log(x')) also using a nonconstructive approach [10].
It looks like an interesting open problem to develop this
approach into a polynomial time algorithm.

Plantholt has also deveoped a polynomial time
algorithm that yields a coloring with at most Y’ +
O(v/nlogn) colors [11]. Note that this may yield a
better approximation than our algorithm for graphs
with A = Q(nlogn).

2 A Pseudopolynomial Algorithm

Since the details of our algorithm are fairly techni-
cal, we give an outline together with an overview of

the technical sections first. In this overview, we do
not quantify what adjectives like “small”, “sufficiently
many”,...mean since the appropriate thresholds can
only be derived when all the technical ingredients are
assembled.

The algorithm massages a partial coloring of the
edges 7 : E — {1,...,q} with ¢ > A. The maximum
color ¢ is increased when it can be proven that ¢ is
closer to x' than required for the claimed approximation
guarantee. Let G denote the subgraph induced by the
uncolored edges of the input graph G. Color ¢ is missing
at node v if none of its incident edges is colored c.

Our algorithm first produces a partial coloring such
that Gy is simple and has small connected components.
Then it calls Vizing’s algorithm to color Gy using fresh
colors. Since the maximum degree of a simple graph
with small components is small, this last step will only
consume few additional colors.

It is easy to ensure that the connected components
of Gy are small: Section 2.2 explains how to color an
edge when two nodes in the same component of G have
a common missing color. Hence, when this routine is
no longer applicable, nodes in a component of Gy have
disjoint missing colors. If there are sufficiently many free
colors at each node, this disjointness property limits the
size of components of Gy.

The difficult part of the algorithm is to make Gy
simple. Progress towards this goal is measured using the
potential function ® that is defined as the total number
of uncolored edges plus the number of bad edges where
bad edges are uncolored edges that are not simple in
Go. Note that ® can be reduced by coloring an edge
or by coloring a bad edge and uncoloring a lean edge
where an edge e is lean if e itself and all edges parallel
to it are colored.

In order to facilitate this balancing operation, we
define the concept of an edge orbit O in Section 2.3
that has a bad edge e as its nucleus. Edge orbits are
subgraphs with properties that allow us to color one
edge in e in exchange for uncoloring any other edge in
O. In particular, if O contains a lean edge, we can
reduce ®.

When an orbit O lacks a lean edge, we can try to
grow it using the techniques described in Section 2.4.
We show that this is possible whenever (1) there is
a color c¢ available that has not been used before to
grow the orbit. (2) There are at least two nodes in
O that either miss c or are incident to a c edge leaving
0. The additional structure imposed by only growing
the orbit using fresh colors is the main reason why our
algorithms are much simpler than the previous ones. In
particular, although growing the orbit requires complex
recoloring operations affecting the entire graph, the



basic properties of the orbits are invariant under these
transformations.

Finally, when an orbit O can neither be grown nor
contains a lean edge, we show that it witnesses that G
is hard to color — it either contains a very high degree
node or it has a high ratio of edges to nodes. In that
case, the number of colors ¢ can be increased without
going too far away from the lower bounds (1.1) and
(1.2).

Section 2.5 puts all the pieces together and analyzes
two algorithm variants. The simpler and faster variant
follows the classical framework of an asymptotic approx-
imation scheme. It starts with (1 4+ ¢)A colors and ter-
minates using at most max((1+¢e)A+1/e, x'+3/¢) col-
ors. For constant e, its running time is O(|E|(V + A))
which is asymptotically as good as the best previous al-
gorithms [8, 1] but gives a better approximation guaran-
tee except for very small values of x'. The second vari-
ant is slower but more adaptive to the input — it only
increases the number of colors when necessary. This
algorithms needs at most (1 4+ 1/4.5/x")x’ colors.

2.1 Notation Since we always refer to multigraphs,
we consider edges as abstract entities and not as two
element sets or pairs of nodes. The incidence relation is
defined by an implicitly given function + mapping edges
to two element subsets of V. An edge e is incident
to a node u, if u € (e). G = (V,E,7) is a partial
edge coloring or coloring with partial color function
7:E —{l,...,q}. An edge e has color ¢, if 7(e) = c.
Only proper colorings are considered, i.e., colored edges
incident to the same node must have different colors.

We consider a subgraph H C G to be uncolored,
i.e., we can write H C G and H C G even if the
edges of H are colored differently in the colorings G
and G'. A subgraph P leaves another subgraph H, if
V(P) € V(H). Let H be a subgraph of G and u a node,
then H — u denotes the subgraph obtained by removing
from H node u and all edges incident to w. Similarly
H\O denotes the subgraph obtained by removing from
H all nodes of O and all edges incident to these nodes.

For the following definitions consider some arbitrary
but fixed coloring G. Then E.:= 7 !(c) is the set of
edges of color ¢ and Eg:= E \ 771({1,...,q}) is the
set of uncolored edges. The graph G.:= (V, E.) is the
color class of color ¢ and Go:= (V, Ep) is the graph of
uncolored edges. If a node u is not incident to an edge
of color ¢, then ¢ is called missing at v and M (u) is the
set of all colors missing at a node u € V. We assume
that at least A colors are available in G, implying that
every node incident to an uncolored edge has at least
one missing color.

Let u be a node of a proper coloring G and let ¢

and d denote two colors, then Apath(u, ¢, d) denotes the
unique maximal path P C G that contains u and solely
consists of edges colored c or d. If ¢ € M (u), then we say
that Apath(u,c,d) is the c,d-alternating path starting
at u. One of our basic recoloring techniques, namely
the shift operation, consists of swapping the colors of
such a maximal alternating path. Since these paths are
maximal a proper coloring remains proper after a shift
operation.

Let uv:i=1"1({u,v}) be the set of edges incident
to both u and v and for each e € E let [e]:= ¢~ (c(e))
denote the set of all edges parallel to e. We partition
the edges E of GG into three sets, namely

— the lean edges E<::= {e € E : |[e] N Ey| = 0},
— the even edges E™:= {e € E : |[e] N Ep| =1}
— the fat edges E>):= {e € E : |[e] N Ey| > 1}.

We define the set of bad edges as E{”:= E’NEy. Now
the potential ®(G) of a coloring G is ®(G):= |Ey| +
|Ey™’|. Observe that ®(G) < 2|Ep|.

The lemmata and propositions in the following
three sections essentially represent functions mapping a
coloring G = (V, E, T) to a new coloring G' = (V, E, 7').
For each symbol o that was defined above for G, we
define an analogous symbol o' for G'. For example,
M’ (u) denotes the set of colors missing at u in G'.

2.2 Coloring Edges in Large Components of G
The following lemma is just a more abstract view of
the shift operation. With this operation we can move
a missing color along an uncolored edge. By repeated
application of this operation we can color edges in
large components of Gy until Gy only contains small
components.

With conditions 2.1b and 2.1c we ensure that an
iteration of the operation is possible.

LEMMA 2.1. (MissING COLOR MOVE) Consider an
uncolored edge e € uv N Ey between u and v in G and
let ¢ € M(u) denote a missing color of u. Then we can
either decrease the potential ® by assigning a color to e
or we can compute a coloring G' such that

a) c € M'(v), i.e., missing color ¢ moved to v in G',

b) Vo € V\{u,v} : M'(z) = M(z), i.e., the missing
colors of all other nodes were not changed, and

¢) Gy = Gy, i.e., the uncolored edges were also not
changed.

Proof. Let d € M(v) be some color missing at v and
let P:= Apath(u,c,d) denote the c,d-alternating path
starting at v and ending at 9. Now shift P to obtain
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Figure 1: Proposition 2.1.

G'. If 9 # v, then color d became missing at u and is
still missing at v, hence we can assign color d to edge
e. Otherwise, ¥ = v and color ¢ became missing at
v. Hence G’ fulfills condition 2.la. Furthermore G’
obviously fulfills conditions 2.1b and 2.1c.

DEFINITION 2.1. (COLOR ORBIT & WEAKNESS)
A color orbit O C G is a node induced subgraph of G
such that all nodes V(O) are connected by uncolored
edges.

A color orbit O is called weak, if there are nodes
w and v in O that have a common missing color ¢ €
M(u) N M(v). Otherwise the color orbit O is called
strong.

The next proposition explains how an iterated ap-
plication of Lemma 2.1 allows us to move a missing color
¢ along a path of uncolored edges until an uncolored
edge can be colored.

ProrosiTiON 2.1. If there is a weak color orbit O in G,
then we can decrease the potential ® by coloring some
uncolored edge of O.

Proof. By definition of a weak color orbit, two nodes u
and v in O have a common missing color ¢ and a path
P C Gy joins w and v. Now the proof is by induction
on the number of edges in P.

|[E(P)] = 1: In this case, P consists of a single
uncolored edges e € uv. Since u and v are assumed to
have a common missing color ¢, we can assign color ¢ to
edge e.

|E(P)| > 1: In that case, P contains an uncolored
edge e incident to u and some other node u' # v. We
compute G’ by applying Lemma 2.1 on e. If e became
colored in G', then the potential was decreased and our
proposition is true. Otherwise, color ¢ became missing
at u' and is still missing at v in G’ by 2.1a respectively
2.1b. Furthermore, by 2.1c the uncolored edges were not
changed and therefore P:= P —u is a path of uncolored
edges joining u' and v in G'. As P is strictly smaller

than P, we can use the induction hypothesis to color
some edge of P.

2.3 Edge Orbits Again, the following lemma is just
a more abstract view of the shift operation. It enables
us to move the leanness of an edge along an alternat-
ing path. Together with the concept of an edge orbit,
the operation is used to eliminate bad edges. Condi-
tions 2.2b-2.2d are needed to maintain invariants of the
edge orbit structure.

LeEMMA 2.2. (LEAN EDGE MOVE) Let e € xy be some
edge in G and P:= Apath(z,a,b) an alternating path
for some colors a € M(z) and b € M(y) such that P
contains a lean edge f € E(P)N E®.

Then we can either decrease the potential ® or
compute a coloring G' such that

a) e € B, i.e., leanness of f moved to e in G',

b) Ve & {a,b} : G = G, i.e., no color class besides
that of a or b was changed in G',

c) E>'" = E>  j.e., all fat edges in G are fat in G’

d) ®(G") = ®(G), i.e., the potential was not changed.
Proof. Suppose the lean edge f of P is incident to the
nodes u and v and node u appears before v in P. We
may assume that e is not lean, otherwise the proposition
is trivially true with G':= G. Let G™ be the coloring
obtained by uncoloring f. Since f was lean in G, it
is not fat in G. Thus we have ®(G") = ®(G) + 1.
Let P™ be the a,b-alternating path starting at z in
G, Observe that P ends at u, since either a or b
is missing at u. Now G® is obtained by shifting P™.
Clearly ®(G®) = ®(G™). In G® node z has missing
color b. Since b is still missing at y and e is assumed to
be not lean, there is an uncolored edge in [e], that can
be colored with color b. Let G® be this new coloring.
If e was fat in G, then in G® the number of uncolored
and bad edges decreased each by at least one. Hence
P(G®) < ¢(G?) — 2 < ®(G), i.e., the potential was
decreased. And if e was even in G, then e is lean in G®
and G':= G® fulfills conditions 2.2a-2.2d.

For iterating Lemma 2.2 we introduce inductively
defined subgraphs of G called edge orbits. In these
subgraphs some edges are marked.

DEFINITION 2.2. (EDGE ORBIT) The set of edge or-
bits in a coloring G is inductively defined as

a) For a bad edge e € xy the graph O C G induced
by x and y, in which all uncolored edges between x
and y are marked, is an edge orbit.



Figure 2: Lemma 2.2.

b) Consider an edge orbit O C G, nodes x and y in
O, and colors a € M(x) and b € M(y). If

— an edge between x and y is marked in O,
— no edge of color a or b is marked in O and
— the path P:= Apath(z,a,b) leaves O

then we obtain a larger edge orbit 0 from O by
adding all nodes of P and all edges incident to these
nodes. In O all edges from E(P) are marked. We
write O = O + P.

¢) Nothing else is an edge orbit.

We say a color ¢ is marked in an edge orbit O if
there are edges of color ¢ that are marked in O.

For each node that was added to an edge orbit O
at most two colors got marked in O. In a trivial edge
orbit, that consists of two nodes, no color is marked.
Therefore at most 2|V (O)| — 4 colors are marked in O.

Also note that an edge orbit is invariant under
recoloring operations, that do not involve marked edges.

DEFINITION 2.3. (EDGE ORBIT WEAKNESS) An edge
orbit O C G is weak, if an edge marked in O is lean.
Otherwise, the edge orbit O is strong.

In the next proposition we observe similarly to
Proposition 2.1 that given a weak edge orbit O we can
move the leanness of an edge towards the nucleus of O
until some bad edge gets colored and the potential is
decreased.

PRroprosITION 2.2. If a coloring G contains a weak edge
orbit O, then we can decrease the potential ®.

Proof. The proof is by induction on the size of the orbit.
[V(0O)| = 2: If O contains only two nodes, then O
is a trivial edge orbit induced by two nodes x and y

Figure 3: Proposition 2.2.

such that the edges between x and y are fat. Thus O
cannot be weak and the implication in the proposition
is trivially true.

|[V(0)| > 2: In this case O = O + P is induced
by the nodes of a smaller orbit O and an alternating
path P. Since O is weak, it contains a lean edge f.
We may assume that f is not marked in O but in P,
otherwise the induction hypothesis could be applied to
O. By definition of an edge orbit, there is an edge
e € zy marked in O such that P = Apath(z,a,b) for
some a € M(x),b € M(y).

Let G’ be the coloring obtained by applying Lemma,
2.2 to edge e and path P. If the potential was decreased
in G', then our proposition is true. So assume that
the potential remained unchanged in G' and G' fulfills
the conditions 2.2a—2.2d. Since colors a and b were not
marked in O, by conditions 2.2b and 2.2c, the marked
edges of O were not changed in G' and therefore O is
still an edge orbit in G'. By condition 2.2a, edge e
of O became lean. Thus we can apply the induction
hypothesis to compute a coloring of lower potential.

OBSERVATION. A strong edge orbit is also a color orbit.

Proof. Note that the nodes of an edge orbit are con-
nected by the edges marked in the orbit. Since no
marked edges of a strong edge orbit are lean, the nodes
of a strong edge orbit are also connected by paths of
uncolored edges.

Thus the worst case is that an edge orbit is both
strong and a strong color orbit.

DEFINITION 2.4. (HARD ORBIT) A subgraph O C G,
that is a strong edge orbit and a strong color orbit, is
called a hard orbit.

2.4 Growing Orbits We say that a color ¢ is leaving
O C G at node u € V(0), if there is an edge e € uu' of
color ¢ incident to v and a node u’ ¢ V(O).

A color ¢ is called incomplete in O C G, if there are
two nodes such that no c edge in O is incident to either
of them. Otherwise ¢ is called complete.

DEFINITION 2.5. (WITNESSES) For a hard orbit O two
types of witnesses are defined:



(A) :
(B) :

all missing colors of some node u in O are marked,

all incomplete colors of O are marked in O.

The intuition of these witnesses is the following.
Assume that very few colors are marked in O. In case
of an (A) witness, we found a node where the number
of incident edges is almost as large as the number
of available colors. And in case of a (B) witness, a
subgraph was found, in which almost all color classes
are maximal matchings. Thus these witnesses indicate,
that it is ‘almost’ impossible to color an additional edge
using only the available colors.

PRrROPOSITION 2.3. If O is a hard orbit, then we can
either increase the size of the orbit or find an (A) or
(B) witness.

For proving Proposition 2.3 we assume the following
lemma.

LeEMMA 2.3. Suppose O is a hard orbit and color c is
not marked in O.

In either of the following cases we can increase the
size of the orbit or find an (A) witness.

a) color ¢ is missing at a node u of O and leaving at
a node v of O

b) color c is leaving at nodes u and v in O.

Proof of Proposition 2.3. We may assume that there
is an incomplete unmarked color ¢, otherwise O has a
(B) witness. Let {u,v} C V(O) be two nodes with no
incident ¢ edges in O. If ¢ were missing at u and v,
then O would not be a strong color orbit contradicting
our hypothesis. Thus we can assume without loss of
generality that c is leaving O at v. Hence, either Lemma
2.3a or 2.3b is applicable.

Proof of Lemma 2.3a. Note that the nodes of an edge
orbit are connected by the edges marked in the orbit.
Thus there is a path P of edges marked in O joining u
and v. We may assume that every node of O has at least
one missing color not marked in O, otherwise we would
have found an (A) witness. The proof of the lemma is
by induction on the number of edges in P.

|[E(P)] = 1: There is an edge e € uv marked in
O. Since color ¢ is leaving O at v, the alternating
path Q:= Apath(v,d, c) leaves O for any d € M (v). As
mentioned before, we may assume that color d is not
marked in O. Then O = O + Q is an edge orbit of G
and strictly larger than O.

|[E(P)] > 1: Let e € wu' be the first edge in
P. Counsider the alternating path @Q:= Apath(u, ¢, d) for
some unmarked color d € M(u'). If @ leaves O, then

Figure 4: Lemma 2.3b.

O = O + Q is an edge orbit of G that is strictly larger
than O. So suppose () does not leave O and consider the
coloring G’ obtained by shifting ). Note that u and u'
are the only nodes of O that have missing colors ¢ or d,
since O is a hard orbit. Thus @ ends at node v’ and the
missing colors ¢ and d of nodes v and u' were exchanged
in G', in particular ¢ € M'(u'). Also note, that all edges
marked in O or not contained in O remained unchanged
in G'. Therefore O is still an edge orbit in G’ and color
c is still leaving at v. Now the induction hypothesis is
applicable on the path Q:= @ — u.

Proof of Lemma 2.3b. As in the proof of Lemma
2.3a we may assume that every node of O has at least
one missing color not marked in O. Consider the
alternating path Q:= Apath(u,d, ¢) for some unmarked
color d € M (u). We distinguish two cases.

1.) V(O)NnV(Q) = {u}: If u is the only node of O
contained in @), we can shift @) to obtain a new coloring,
such that color ¢ is missing at u and still leaving at v,
and apply Lemma 2.3a on this new coloring.

2) V(O)nV(Q) = {u,...,u'}: Let u’ be the last
node in @ that is still in O. Consider the alternating
path R:= Apath(u,d,e) for some unmarked color e €
M (u'). If R leaves O, then either d or e is leaving O and
therefore Lemma 2.3a is applicable either on color d or e.
So assume R does not leave O. Since O is a hard orbit,
v and u' are the only nodes of O, that have missing
colors d or e. Therefore R ends at u’'. Now consider the
coloring G’ obtained by shifting R. In G’ only edges
contained in O and not marked in O were changed.
Therefore O is an hard orbit in G’ and the subpath
Q of Q\(O — u') beginning at u' remained unchanged.
Since d € M'(u'), the alternating path Apath’(u',d,c)
equals ) and therefore {u'} = V(Q)NV(0') and we are
back to the first case.



2.5 Algorithms The following Proposition combines
the tools introduced in the preceeding sections into an
algorithm for producing a coloring without fat edges and
where components of Gy will turn out to be ‘small’.

PROPOSITION 2.4. (GENERAL COLORING ALGORITHM)
For a coloring G we can compute a coloring G* such
that every color orbit in G* is strong, no edge in G* is
fat and during the computation of G* the number q of
colors used in G* has only been increased if there was
an (A) or (B) witness in some hard orbit O C G' for
some intermediate coloring G'.

Proof. (By induction on the potential ® of G.)

For ¢ 0 the coloring G is complete and the
proposition is trivially true. Obviously our proposition
is correct, if there is no weak color orbit and no fat
edge. But if there is a weak color orbit in G, then we
can decrease the potential by Proposition 2.1 and the
induction hypothesis becomes applicable.

Therefore suppose all color orbits are strong and e is
a fat edge in G. Let O be the trivial edge orbit induced
by [e]. By Proposition 2.3, we can increase the size of
the orbit until it is no longer hard or has a witness.
In the case that the orbit is no longer a hard orbit, it
either became a weak edge orbit or strong edge orbit and
a weak color orbit, thus we can decrease the potential
either by Proposition 2.2 or 2.1. In case of a witness we
introduce a new color and can decrease the potential by
assigning this color to some uncolored edge. In either
case the induction hypothesis is applicable.

Clearly the running time of the algorithm described
above is in poly(|Ep|, |V, A), if | Ey| denotes the number
of uncolored edges in G. The dependence on A stems
from finding common missing colors and incomplete
colors. For the special case of constant size strong
color orbits it is worth having a closer look at the
exact complexity of the algorithm since it turns out
to match the complexity of previous algorithms with
weaker approximation guarantee.

PROPOSITION 2.5. Under the assumption, that the size
of a strong color orbit is always bounded by some con-

stant, the time complexity of the algorithm in Proposi-
tion 2.4 is O(|Eo|(|[V] + A)).

Proof. Since ® < 2|Ep|, it suffices to show that the
potential can be decreased in time O(|V| + A). We use
the collection (G.)?_, of color classes and the graph Gy
of uncolored edges to represent the coloring G. Clearly
we have ¢ € O(A), therefore we can find missing colors
and incomplete colors in O(A). Assigning a color to an
edge and uncoloring an edge can be done in constant

time. Shifting an a, b-alternating path can be done in
time proportional to the number of nodes in the path,
since we only have to modify two matchings, G, and
Gp. Since we greedily eliminate weak color orbits in
the algorithm, the maximum size of a weak color orbit
considered in the algorithm is just one more than the
maximum size of a strong color orbit.

We store a stack of fat edges in order to be able to
find an edge orbit in constant time. As long as it is hard,
we can grow it by Proposition 2.3 in time O(|V |+ A),
since we only have to perform a constant number of
shift and ‘color find’ operations.

After a constant number of iterations of Proposi-
tion 2.3 there is a witness in the orbit or the orbit is no
longer hard. In the first case we can reduce the potential
in constant time. In the latter case we apply Proposi-
tion 2.1 or 2.2. In both propositions we only perform a
constant number of shift and ‘color find’ operations.

If no more edges are fat, we compute the color
orbits of each node. As soon as we found a weak color
orbit, we use Proposition 2.1 to decrease the potential.
Since all considered color orbits have constant size, time
O(|JV] + A) is needed to decrease the potential.

Thus the total running time is O(|Ep|(]V]| + A).

Now we relate properties of our orbit structures to
the known lower bounds of x’. This will finally enable
us to design algorithms with guaranteed approximation
ratios.

LEMMA 2.4.

2
If O is a strong color orbit, then |V (0)| < g+

“qg—-A+2

Proof. Since no two nodes share a missing color, we have
> uev(oy 1M (u)| < g. Obviously, every node in O has
at least ¢ — A missing colors. Since O is connected by
uncolored edges, there are at least |V(O)| — 1 uncolored
edges in O and therefore at least 2(|V (O)|—1) additional
missing colors. Thus, the total number of missing colors
is at least [V (0)|(¢ — A) +2(]V(0O)| - 1).

LEMMA 2.5. Let O be a hard orbit.

a) If there is an (A) witness in O, then
qg—A+2<2[V(0)| —4.

b) If there is a (B) witness in O, then
g—T+2<2|V(0)| —4.

Proof. As noted before the number of marked colors in
an edge orbit O is at most 2|V(0)| — 4.

In a hard orbit every node is incident to at least
two uncolored edges and at most A — 2 colored edges.
Therefore every node in O has at least g — A + 2 missing
colors. If there is an (A) witness, then all missing



colors of some node in O are marked in O, this implies
g—A+2<2V(0) —4.

A hard orbit contains at least |V (O)| uncolored
edges and thus at most |E(O)| — |V (O)| colored edges,
i.e., there are at most % <TI- % <
I' — 2 complete colors and thus at least ¢ — I' + 2
incomplete colors. And if O has a (B) witness, then all
incomplete colors of O are marked, implying ¢ —T'+2 <
2|V (0)| — 4.

LEMMA 2.6. If ¢ > |(1 + €)A| =1 for some € > 0, then
the following statements hold.
a) If O is a strong color orbit, then |[V(0)| < 1/e+1
b) If there is a (A) witness, then ¢ < A+2/e—1
¢) If there is a (B) witness, then ¢ <T'+2/e—1

Proof. By plugging g > | (14 ¢)A| —1 into the inequal-
ity of Lemma 2.4, we obtain

La24 g +2 [(1+e)Al+1
Vol g-A+2-  [A]+1
S ﬁ'F].S 1/€+].

If we plug this into the inequalities in Lemma 2.5, then
we directly obtain the inequalities b) and c).

THEOREM 2.1. (ALGORITHM 1) For  every con-

stant ¢ > 0 there is an approximation algorithm
for the multigraph edge coloring problem with
time complezity O(|E|(|]V|+ A)) wusing at most

max {[(1+¢e)A] +1/e, X" + 3/e} colors.

Proof. Start with |(1 4+ €)A|—1 colors and apply Propo-
sition 2.4 to obtain G'’. The number of colors has

only been increased, if there was some witness, i.e., if
2.60,2.6¢c __ .
g < X +2/e—1 colors were available. Hence at

most max {[(1 +€)A] —1,X" + 2/e — 1} colors are used
in G'.

No edge in G’ is fat and by Lemma 2.6a all color
orbits are strong and of size at most 1/e¢ + 1. Using
Vizing’s algorithm and 1/e+ 1 additional colors, we can
now compute the desired complete coloring using a total
of at most max {[(1 +€)A] + 1/¢, X" + 3/€} colors.

Since the size of a strong color orbit during the
computation of G’ was bounded by the constant 1/e+1,
the running time of the algorithm is by Proposition 2.5

O(EI(IV]+A).

In the best case Algorithm I uses at least some
(1 + €)A colors. But from a practical point of view
it may be worthwhile not to use that many colors in the
beginning but to add colors in an adaptive manner.

Algorithm II relies on the following lemma.

LEMMA 2.7. If there is a witness in a hard color orbit
O of G, thenqg< X ++/2x" — 1.

Proof. Consider the following chain of inequalities

La.2.5 La.2.4 +

~ q+2
X +2 < 2IV(O)] -4 < _— -

qa—X = [V(0)] > —X +2

For positive and integral ¢ the solution is ¢ <

[§'+\/2>?+1J — 3. Hence ¢ fulfills the claimed
inequality.

The idea of Algorithm II is very simple. We start
with A colors and simplify Gy using Proposition 2.4.
Then we reduce the number of colors needed to color Gy
by iteratively adding new colors and applying Proposi-
tion 2.1. As soon as a stopping criterion is fulfilled, we
stop adding colors and use Vizing’s algorithm to com-
pute a complete coloring.

THEOREM 2.2. (ALGORITHM II) There is an approzi-
mation algorithm for the multigraph edge coloring prob-
lem with time complexity poly(|V|,|A]) using at most

(1 + ,/4575) X' colors.

Proof. Start with A colors. Then compute a partial
edge coloring of the input multigraph G by Propo-
sition 2.4. Now every color orbit is strong and no
edge is fat. Furthermore the number of colors has
only been increased if there was some witness, i.e., if
¢ T 2w -1

ed .

Now iteratively add new colors and apply Propo-
sition 2.1 until ¢ > A + U, where U is the number of
colors Vizing’s algorithm would use to color the current
Go.

Now we compute a complete coloring of G using

Vizing’s algorithm and U additional colors.
If g < A ++VA, then

A+U<q
g+U <

g<A+VA

2q—A " <  A+2/A

Otherwise,

2% —1

Y + /457

q+2

PRy is mono-

where the last inequality uses that ¢ +
tonically increasing for ¢ > A + V/A.

Note that the minimum of (1 + €)X’ + 3/e in € is
(1 + 4/ %) X', so the result of Theorem 2.2 is somewhat

better than the naive approach.



3 A Polynomial Algorithm

In the following we will generalize the results of Section
2 to obtain a balancing algorithm that tolerates up to
M uncolored parallel edges. This will be the main
mechanism driving our polynomial algorithm.

For an arbitrary M € N we partition the edges E
of coloring G into three parts, namely

— the lean edges E<M):= {e € E : |[e]N Ey| < M},
— the even edges E="):= {e € E : |[e]N Ep| = M},
— the fat edges ECM:= {e € E : |[e]N Ey| > M}.

Now the potential @ of coloring G is ®*:= |Ep| +
|[E>M N Ep|. Note that all lemmata and propositions
2.1-2.5 are still true, if we just replace the old definitions
of lean, even, and fat edges by these new ones. In the
following we refer to orbits and witnesses with respect
to the generalized definitions of lean, even and fat.

Now we refine the approximation lemmata of Sec-
tion 2.5.

LEMMA 3.1. Let O be a hard orbit for some M € N

a) If O has an (A) witness, then
g—A+2M <2|V(0)| —4.

b) If O has a (B) witness, then
q—T +2M < 2|V(0)| — 4.

The proof of the lemma is very similar to the proof
of Lemma 2.5.

Proof. In a hard orbit O every node u has at least
q — A + 2M missing colors, since u is connected to at
least two neighbors by even or fat edges and thus is
incident to at least 2M uncolored and at most A —2M
colored edges.

Furthermore, at least M|V (O)| edges are uncolored
in O and thus at most W <I- Ij\‘{l(‘g()cl)/)g =
I' — 2M colors do not leave O, i.e., at least g — ' + 2M
colors are leaving O. As noted before, at most 2|V (O)|—
4 colors are marked in O.

By definition of the witnesses, we know that if there
is an (A) witness, then for some w all missing colors are
marked in O, implying ¢ — A +2M < 2|V(0O)| — 4. If
there is a (B) witness, then all leaving colors are marked
in O, so that ¢ — ' + 2M < 2|V(0)| — 4.

LEMMA 3.2. If for M:=|V| a hard orbit O has some
witness, then ¢ < X'.

Proof. Trivially |V(O)] < M so that the inequality
follows from Lemma 3.1.

In the following we contract consecutive colors with
the same color class to color intervals, i.e. we represent a

coloring G by a collection of matchings (Gy,)i_, where
the I = [ag;bi] are intervals of colors with the same
color class and I is the number of these intervals. Then
all ‘color find’ operation need time O(I). The shift and
color operations need the same time as in the former
representation, but may increase the number of intervals
by at most a constant.

LEMMA 3.3. For any coloring G using at most X' colors
contracted to I intervals we can compute a coloring
G' in time poly(|Eyl|,|V|,I) using at most X' colors
contracted to I + poly(|Eo|, |V|) intervals such that at
most [V|? edges are uncolored.

Proof. Let M:= |V|. Then apply Proposition 2.4 on G
to obtain a coloring G’ with no fat edges. Therefore at
most M|V |* = |V|? edges remain uncolored in G'.

The number of colors has only been increased, if
La.3.2 _ .
there was a witness, i.e., ¢ < X'. Hence we still use

at most X' colors.

The number of shift and color operations is
polynomial in |Ep| and |V| and does not depend on I.
Thus the number of intervals increased polynomially in
|Ep| and |V|.

Since the ‘color find’ operations can be done in O(I)
time we use total time poly(|Ep|,|V],I).

We define the multiplicity-weighted adjacency ma-
trix of the multigraph G = (V,E) as A = (|uv|)u,vev
For any function f : N — N and multigraph G the nota-
tion f(G) means that f is applied on every entry of A.
The notation G + G' means the standard matrix addi-
tion of the multiplicity-weighted adjacency matrices A
and A’ of G respectively G'.

ProrosiTION 3.1. There is an algorithm with time
complezity poly(|V|,log ) that computes a coloring G*
of a multigraph G with maximum edge multiplicity p
such that at most |V |* edges of G* are uncolored and at
most X' colors are used in G*.

Proof. (By induction on p of G.)

For p = 0 the graph contains no edges and our
proposition is trivially true. Now suppose p > 0. We
partition the input graph into three parts, i.e., G =
2(|G/2])+ (G mod 2). Note that X'(G) > 2X'(|G/2]).

The algorithm recursively computes a coloring
|G/2]" of |G/2] that uses at most X' (|G/2]) colors and
has at most |[V'|* uncolored edges.

By simply doubling the endpoints of the intervals
in coloring |G/2]|", we obtain a coloring 2 |G/2]" of
2 |G/2], that uses at most 2X'(|G/2]) < X'(G) colors
and has at most 2|V|* uncolored edges. Obviously the
number of intervals did not increase by this doubling.



Now we add the edges of the graph (G mod 2) to
the coloring 2 |G/2]* and obtain a coloring G’ of G with
at most 2|V |> + |V|? uncolored edges.

The algorithm of Lemma 3.3 uses
poly(|E{|, 1V, I) = poly(|V|,I) time to color all
but at most |V]? colors and increases the number of
intervals polynomially in |V|. Let G* be this new
coloring.

Clearly the depth of recursion is O(logp). In
each recursive step the number of intervals increases
polynomially in |V|. Therefore the maximum number
I of intervals is polynomial in |V| and logu. Thus
only poly(|V],I) = poly(|V],logu) time is spend in
each recursive step and therefore the total time is also
poly(|V],log ).

The running time of the following algorithm de-
pends only logarithmically on g and is therefore poly-
nomial in the input size.

THEOREM 3.1. (POLYNOMIAL ALGORITHM) There is
an approzimation algorithm for the multigraph edge col-
oring problem with time complezity poly(|V|,logu) us-

ing at most (1 + ,/47,5) X' colors.

Proof. Use Proposition 3.1 and then apply Theorem
2.2.  After application of Proposition 3.1 only |V|3
uncolored edges remain and the number of intervals is
polynomial in |V| and log u. In the coloring obtained by
Proposition 3.1 at most X’ colors are used. Therefore the
algorithm in Theorem 2.2 runs in time polynomial in |V|
and log i to color the remaining uncolored edges and the

number of used colors is then at most (1 + 4/ 4)?—,5) X'

Note that for |V| € O(log|A|) the approximation
ratio of this algorithm decreases exponentially in the
size of the input.

4 Conclusion

Our edge coloring algorithms offer a way out of the
combinatorial explosion in the number of necessary case
distinctions for edge coloring algorithms along the lines
of [5, 8]. Our algorithms give better approximation
except for graphs with very small [8] or very large [11]
maximum degree.

If one wants to implement our algorithm to solve
real world instances, it would be interesting to add
further heuristics. For example, Algorithm II from
Section 2 could be refined such that before adding a
fresh color, it first tries to color edges by swapping
critical paths. It would then get optimal solutions
at least for bipartite multigraphs. It might also be
interesting to attempt to reduce the maximum degree

of Gy before switching to Vizing’s algorithm, e.g., using
balancing operations similar to the ones we apply to fat
edges. There are also many opportunities for speeding
up the algorithm. For example, after adding a fresh
color, one can color many edges by finding a maximal
matching in Gp.
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