
A Case Study in Object Oriented Programming.

Algebraic Structures in Ei�el

Peter Sanders

Lehrstuhl Informatik f�ur Ingenieure und Naturwissenschaftler

Universit�at Karlsruhe, Postfach 6980

76128 Karlsruhe, Germany

Email: sanders@ira.uka.de

Abstract

This paper explores the idea of using the well established theory of

abstract algebra as a testing ground for building reusable class hierarchies

in a modern object-oriented programming language such as Ei�el. The

paper discusses design experiences in trying to �nd the balance between a

too-simple and a too-complex class hierarchy.

Abstract algebra yields particularly clear examples for problems with

instances-creation involving type parameters and performing automatic

type conversion.

Another set of problems appears when it is tried to take formal speci�-

cation and subcontracting serious. It may be di�cult to keep preconditions

of subclass methods weaker than their speci�cation in a superclass due to

range limitations of data types, limitations of the type system and pecu-

liarities of the application itself. There are also some problems with the

use of assertions if quanti�cation or seemingly circular speci�cations are

necessary.

1 Introduction

The paradigm of object-oriented programming is increasingly replacing the con-

ventional notion of structured programming as the state of the art in programming

methodology. This paper is concerned with one particularly important aspect of

object-oriented programming: How to build a class hierarchy for very funda-

mental data types? These data types are understood here as being application

independent and specializeable for many di�erent uses. Also the same abstract

class can be implemented by a variety of concrete data structures and internal

representations. These data types have a very �ne-grained usage pattern in which

the reused methods are called very often and where most methods will only re-

place a few lines of traditional code. Therefore there is a need for a very 
exible,

e�cient and convenient interface.

Coming up with a good example for this setting is not easy. Many applications

are either too simple to show interesting phenomena concerning object-oriented

programming or they involve a prohibitively large amount of code.

A very important application is fundamental abstract data structures like lists,

arrays or trees. They have the aforementioned properties and some basic classes

are relatively easy to implement. But fundamental data structures also pose

problems: Class hierarchy design is not easy because there are a lot of more or

less arbitrary choices (see [Uhl 90]) that make it hard to decide if problems are due

1



to a bad hierarchy design or due to more fundamental problems with the language

or the methodology. In addition there are a number of practical constraints due

to existing classes and programming conventions that might interfere with the

goal of a clean and clear hierarchy design.

The mathematical structures investigated by abstract algebra (like groups,

rings or vector spaces) model even more fundamental concepts than abstract

data structures and therefore their implementations are also characterized by a

very �ne-grained code-reuse pattern and have a lot of code that is representation

independent. Hierarchy design is less arbitrary because more than a century

of mathematical research has provided us with a mesh of interrelated concepts

whose overall structure is widely acknowledged. A closer look shows that these

relations often resemble class/subclass relationships.

Abstract algebra classes are also useful. Computer algebra is becoming more

and more important for a wide area of applications from cryptography to theoreti-

cal physics. Although modern computer algebra knows very complex algorithms,

it is possible to implement basic operations and some interesting applications

with a relatively small amount of code. Finally many data structures that are

not math-speci�c (e.g. strings, matrices) have an underlying algebraic structure.

Therefore algebraic types might also be viewed as a starting point for a systematic

hierarchy of reusable data structures.

The programming language Ei�el was chosen because it has a number of

features that make it interesting. It combines the discipline of strong typing

with a clean design, the power of multiple inheritance and genericity. None of

the other readily available languages (like Smalltalk, C++, Simula or CLOS)

o�er this combination of capabilities. In addition to strong typing, Ei�el o�ers

an even more rigorous approach to high-quality software by providing assertion

statements that make it possible to incorporate a formal speci�cation into the

sources. This is particularly useful in the context of computer algebra because

many assertions can be taken from algebra textbooks.

Overview

Section 2 gives a short introduction to the implemented

1

classes. The main part

of the paper discusses class-hierarchy design (section 3), class-interface design

(section 4) and issues involving formal design methods (section 5). It is not the

purpose of this case study to work out every aspect of the design of reusable soft-

ware. Instead, certain aspects have been selected, for which the algebra example

appears to be particularly helpful in understanding important issues.

2 The Computer Algebra Example

This section introduces the mathematical background for the algebra hierarchy

and the classes used to implement the mathematical concepts. Rather than de-

scribing every detail of the actual design, a simpli�ed, less �ne-grained structure

is described. The resulting hierarchy is at the same time interesting enough to

describe the experiences made and simple enough to present it in a compact and

understandable way.

1

All the classes discussed here have been implemented in ISE-Ei�el 2.3. Due to time con-

straints and problems with getting a working Ei�el 3.0 compiler the classes have not been ported

to Ei�el 3.0 yet. Nevertheless the discussion in the paper is based on Ei�el 3.0.

2



2.1 The Structure Suggested by Mathematics

The basic idea of doing abstract algebra is to postulate a simple set of rules

(axioms) that are supposed to hold for the members of a set and to investigate the

implications of these rules. This abstract approach has two very useful properties:

� Everything that is known about a structure can be applied to any speci�c

set, given that the axioms are true for this set.

� When investigating a new structure, all theorems that have been proved for

a more general structure will also hold for the new structure.

These mathematical properties of abstract algebra correspond to well known

properties of the object-oriented programming paradigm. An abstract algebraic

structure that is de�ned by a set of axioms corresponds to a deferred class having

the axioms as invariants and introducing the basic operators as deferred features.

All code that can be de�ned in terms of the basic operations will be reusable in

all subclasses. Subset relations

2

between axiom sets can be mapped to subclass

relations between the corresponding classes.

Figure 1 shows the algebraic structures that are discussed here. The axioms

that hold for a structure and all its descendants but for none of its ancestors are

displayed along with the name of the structure.

ALGEBRAIC

x = x

x = y ) y = x

x = y ^ y = z ) x = z

SEMIGROUP

(x � y) � z = x � (y � z)

P

P

P

P

MONOID

x � 1 = 1 � x = x

GROUP

x

�1

� x = x � x

�1

= 1

RING

x+ y = y + x

x � (y + z) = x � y + x � z

(y + z) � x = y � x+ z � x

�

�

�

�

�

(

(

(

(

(

(

(

rename �, x

�1

, 1

to +, �, 0

EUCLIDEAN DOMAIN

x � y = y � x

b 6= 0)

9r; q : (a = b � q + r

^degree(r) < degree(a))

�

�

�

�

POLYNOMIAL

TOTAL ORDER

x � x

x � y ^ y � z ) x � z

x � y ^ y � x) y = x

x � y _ y � x

�

�

�

�

Z

QUOTIENT RING

FIELD

x � y = y � x

x 6= 0) x � x

�1

= 1

P

P

P

P

Figure 1: Algebraic class hierarchy. Class names plus axioms that are added in

a given class.

The most fundamental property of algebraic sets is that their elements can

be tested for equality. Elements of a total order are always comparable by a

relation \�".

Another branch of the hierarchy is concerned with generalizations of the arith-

metic operations. The term semigroup subsumes all structures with a binary

operator which is always applicable (total) and where parentheses can be omitted

2

It is su�cient that the old axioms can be deduced from the new axioms. But in most

practical cases the simple subset relationship applies.

3



(associativity). A monoid additionally requires the existence of a unique neu-

tral element which behaves analogously to the number 1 for multiplication, i.e.

it does not change the result when multiplied with an element of the algebraic

structure. A group is a monoid with an inversion function that behaves like the

1=x-function for the nonzero real numbers.

A ring subsumes all structures that understand two basic operations \�" and

\+" where the addition behaves like a (commutative) group and the multipli-

cation behaves like a monoid. These two operations are connected via the law

of distributivity. Many important structures of abstract algebra are specialized

rings. An Euclidean domain is a ring with a generalized analogue to the divi-

sion property known from the integers. Polynomials are expressions consisting

of the operations \+" and \�", constants from another ring (coe�cients) and

formal variables.

Elements of a quotient ring are Euclidean domain elements that are con-

sidered equal if they yield the same remainder when divided by a given basis

element. A �eld generalizes the arithmetic properties of real, complex and ra-

tional numbers i.e. it is a commutative ring with a multiplicative inverse for the

nonzero elements.

The integers are a typical example for an Euclidean domain and at the same

time they are totally ordered.

2.2 Basic Ideas for the Implementation

The starting point for the implementation is the idea of mapping each alge-

braic structure to a class. The classes ALGEBRAIC, TOTAL ORDER, SEMI -

GROUP, MONOID, GROUP, RING, EUCLIDEAN DOMAIN and FIELD are

inherently abstract and are therefore implemented as deferred classes.

The classes POLYNOMIAL, QUOTIENT RING and Z (integers) can be im-

plemented directly or used as abstract superclasses for several (possibly compati-

ble) implementations. POLYNOMIAL[R ! RING] is a generic class de�ning the

polynomial ring over coe�cients of the type parameter R. Analogously, quotient

rings are implemented as the generic class QUOTIENT RING[R ! EUCLID-

EAN DOMAIN].

Besides the basic arithmetic operations a number of interesting and useful yet

relatively simple algorithms of computer algebra have been implemented.

� The integer exponentiation (x

n

) has an e�cient (O(log n)) implementation

that works for any SEMI GROUP.

� The Euclidean algorithm for determining the greatest common divisor can

be de�ned in EUCLIDEAN DOMAIN.

� The Chinese remainder algorithm which is useful for applications like fast

long-integer arithmetic and polynomial interpolation can be de�ned to work

on any collection of QUOTIENT RING elements.

Beyond this relatively small number of classes

3

there is a virtually unlimited

potential for expansion. On the one hand the hierarchy can be expanded sideways

by including other abstract subhierarchies (e.g. vector spaces). On the other hand

downward expansion yields many more speci�c classes. The current implemen-

tation includes implementation classes for Z and POLYNOMIAL and the �elds

REAL R, RATIONAL[R ! EUCLIDEAN DOMAIN] and QUOTIENT FIELD.

3

The actual implementation is based on a more �ne-grained design. It includes the additional

abstract structures PARTIAL ORDER, ABELIAN GROUP and DIVISION RING.

4



3 Designing a Class Hierarchy

A well known saying of Albert Einstein is: \Make it as simple as possible but no

simpler." Translated into the design of class hierarchies this means that there is a

tradeo� between small and simple and large and powerful class hierarchies. A very

simple hierarchy may be too rudimentary to provide a basis for code inheritance

and too rigid to be suitable for a wide spectrum of applications. On the other

hand, a very complex hierarchy takes longer to develop, is hard to understand

and may be complicated to use. As in physics it is desirable to start with some

simple and generally applicable principles and derive a clean, easy-to-understand

and powerful hierarchy from these principles.

The algebra example yielded a number of examples that are able to bring out

this tradeo� in a particularly clear way.

3.1 Problems with Simple Hierarchies

Some typical problems of too-simple hierarchies have been encountered with the

standard library of ISE Ei�el 2.3:

� The only way to input a real number is using readreal on a FILE. But often

it is more desirable to get the number from a string or some other user-

de�ned data structure. The solution would be a class similar to Smalltalk's

streams that is more general than a �le.

� One possible implementation of POLYNOMIAL is to represent a polyno-

mial as an ordered collection of coe�cients. The operations on polynomials

are in principle independent of the implementation of a particular collection

class. In order to allow for �ne-tuning for various special purposes it might

therefore be useful to leave open the choice of the collection class imple-

mentation. (By introducing a generic parameter specifying the collection

class to be used.) But since there is no common interface for arrays, lists,

etc., this is not possible.

These examples have in common that a lack of depth in the library is a more

prominent problem than the sheer number of available classes and methods. On

the other hand it is often not easy to anticipate the needs of software developers.

Therefore it may be considered a fundamental constraint of the object-oriented

programming paradigm that, while it is simple to expand the inheritance graph

downward towards more speci�c classes, it is in general di�cult to let it grow

upward by subsuming common properties of several classes into a more general

class.

3.2 Explosion in the Number of Classes

The class hierarchy that tries to provide for all possible applications and changes

can also cause serious problems. A simple and very typical example is the inte-

gers. The subranges of positive, negative, nonnegative and nonpositive integers

have di�ering algebraic properties that might be expressed in the class hierar-

chy. On the other hand integers might be implemented as short integers or as

variable/constant-length long-integers with decimal, binary or residual represen-

tation. The problem is that every subrange can be combined with each imple-

mentation to yield a new class. It is a very cumbersome task to write, describe,

debug or understand such a large number of classes. This problem was avoided

by not using di�erent classes for di�erent integer ranges. As a consequence pre-

conditions had to be used in order to check for the appropriate ranges (e.g. in the

5



integer exponentiation which has di�erent domains for SEMIGROUP, MONOID

and GROUP). In general there seems to be a tradeo� between the complexity of

a class hierarchy and the complexity of assertions.

An interesting example for problems of a similar type ocurred when the de-

sign of a subhierarchy for matrices was considered. The least that a MATRIX

class must expect from the matrix elements is that their elements understand two

SEMIGROUP-operations \+" and \�" (i.e. \+", \�" must be total associative

functions). This is su�cient to de�ne a matrix multiplication. If the additive and

multiplicative identity elements zero, one are de�ned for the matrix elements it

becomes possible to de�ne the identity matrix. Elements of an ABELIAN RING

(which have a commutative multiplication) make Strassen's fast matrix multipli-

cation possible. FIELD elements (for which a division is de�ned) allow it to use

Gaussian elimination and related algorithms. Finally Gaussian elimination can

be made more accurate if an appropriate comparison is de�ned on the elements.

Another degree of freedom arises from the di�erent useful representations

for matrices. The straightforward way is to use a two-dimensional array. Also

important are various sparse-matrix representations or submatrices containing

a pointer to a parent matrix. Furthermore special representations for banded

matrices, homogeneous coordinate transformations, etc., might be useful.

Expressing the various combinations of representation and algebraic proper-

ties directly as a class hierarchy would be prohibitively complex. Fortunately

genericity o�ers a solution. The di�erent representations can be implemented

as compatible subclasses of a nonalgebraic class MATRIX REPRESENTATION

which de�nes an interface for element access. The matrix classes of the algebra

class hierarchy will then have a representation class as a generic parameter and

the matrix will be stored in an attribute of the representation type. For a matrix

class allowing for Gaussian elimination this might look like the following:

class FIELD MATRIX[

F ! FIELD,

M ! MATRIX REPRESENTATION]. . .

feature content: M. . .

A drawback of this approach is that it introduces an additional indirection. This

does not only imply a (moderate) time and space overhead but also additional

conceptual complexities that do not seem to be necessary a priori.

There are many similar cases where the problem with interactions of im-

plementations, representations and properties occurs. In addition the setting of

abstract algebra makes another problem particularly clear. In principle any set of

axioms which is derivable from a basic set of useful axioms may yield an algebraic

structure that is a potential superclass of the original class. Since it is di�cult to

add new superclasses to an existing hierarchy the designer has to anticipate all

useful general classes.

4 Design of Class Interfaces

The design of good class interfaces for object-oriented libraries is even more di�-

cult than for conventional libraries because it must facilitate the introduction of

new classes by the user. Additionally the �ne-grained pattern of reuse considered

here is particularly demanding. It would be hard to convince programmers to

use library functions with complicated interfaces or poor performance if only a

couple of lines of source code can be saved. Again, the algebra example is a good

vehicle for exemplifying problems that appear to be fairly common but are hard

to separate from problem-speci�c \noise" in the context of other applications.

6



class POLYNOMIAL[R!RING] . . .

one: like Current is

local anchor: R;

do

!!anchor; -- i l l e g a l

Result := zero.put coe�(anchor.one, 0);

end ; -- one

Figure 2: Instance creation on a parameter type

4.1 Instance Creation

There are at least two di�erent usage patterns for instance creation. One is the

initialization of data structures by application programs. For this purpose cre-

ation methods should have arguments that make it possible to create adequately

instantiated objects by one single call to a creation method. Consequently the

interfaces of creation methods may di�er between di�erent subclasses of an ab-

stract concept. In this context it is quite probable that several creation methods

4

may be useful for one class.

But instance creation is also necessary in generic implementations. For this

purpose it is more important to have one uniform interface for all subclasses of a

given class. The best choice for such a compatible creation method will often be

a version without any parameters.

Instance Creation on Generic Parameters

Instance creation in generic functions poses a severe problem in Ei�el

5

when

generic parameters are involved. For example consider the generic class POLY-

NOMIAL[R ! RING] and note that RING is deferred. Now let's assume the

multiplicative identity element one is to be implemented. Since the creation

method for POLYNOMIAL returns a zero-polynomial, all that is to be done is

to set the 0-th coe�cient to the one of R (�gure 2). But its impossible to simply

call R's one-function since no ring element is available. The next thought is to

create a ring element that could in turn answer the one message. But this is

not possible since RING is deferred. It is also impossible to simply access some

coe�cient of Current because a zero-polynomial has no coe�cients. This could

be changed by requiring a zero-polynomial to have the 0-th coe�cient zero but

this would only shift the problem into the creation method of POLYNOMIAL.

How could a creation method without parameters possibly get hold of an element

of R?

Meyer mentions problems of this type in [Meyer 92] and proposes a solution

which makes clients pay a \toll" for calling a problematic method (one in this

case) by requiring them to pass an instance of the generic parameter's class. But

this only works under the assumption that all possible clients know more about

the application than the supplier. In the given application this is nonsense because

POLYNOMIAL may even be a client of itself (e.g. for multivariate polynomials)!

Meyer also points out a straightforward implementation that would allow

creation of parameter-class instances. The actual type parameters are known at

run-time and can be stored along with the objects. This mechanism is not used

4

This is possible in Ei�el 3.0.

5

And probably most other strongly typed object-oriented languages o�ering generic

parameters.

7



in Ei�el because its simple minded adoption could lead to a considerable space

overhead.

But a sophisticated compiler should be able to eliminate most type-tags by

detecting which classes don't need this information and by trying to infer the

actual type parameters at compile-time. The techniques necessary for this analy-

sis appear to be similar to techniques for eliminating dynamic method-dispatch

(see [Chambers 91]). The price paid for these optimizations is giving up separate

compilation and a certain space overhead for generating several versions of some

methods customized for di�erent uses.

4.2 Dealing with Compatible Types

Whenever several implementations share a common interface, a variety of prob-

lems with (automatic) type conversion occur. The classical example are arith-

metic operations. For example, how to implement a \+" that accepts any com-

bination of reals, integers, rationals, etc.? This reappears in the algebra exam-

ple because abstract algebra may be viewed as a generalization of arithmetic.

LaLonde and Pugh [LaLonde 90] discuss some solutions for a dynamically typed

language like Smalltalk. But in the presence of strong typing a number of addi-

tional problems arise.

A good example is the \�"-relation. Its parameters in TOTAL ORDER are

declared via declaration by association. But for Z and its possible implementa-

tions this is no longer appropriate because all integers are supposed to be com-

patible regardless of their implementation (long integers, short integers, etc.).

Therefore methods that are declared in the superclass must be redeclared (e.g.

\<", \�", \>"). This is cumbersome and a possible source o� errors. It will

even lead to the loss of generic implementations for redeclared features whose

code is still applicable. Weber [Weber 91] proposes a way to solve this prob-

lem by replacing declaration by association with a mechanism similar to generic

classes. He also points out that this problem may even lead to a violation of class

correctness.

Some conventions of algebra can't be grasped by traditional class relationships

at all: Simpler sets are often identi�ed with a subset of a more complex set. For

example real numbers are interpreted as complex numbers with zero imaginary

part or a ring R is identi�ed with the constant polynomials over R. In order to

express this by a class relationship, RING would have to be made a subclass of

POLYNOMIAL[R ! RING] which is certainly not possible because POLYNO-

MIAL is already a subclass of RING (see �gure 1). The actual instance of R

could be viewed as a subclass of POLYNOMIAL[R ! RING]. But this can't be

expressed in Ei�el.

Another solution would be overloading as in Ada or C++. An even more

powerful mechanism for type conversions has been implemented for the computer

algebra system ScratchPad. But besides making the compiler very complicated

these mechanisms often produce unexpected sequences of type conversions that

make debugging di�cult. Therefore it might be viewed as an open question how

far automatic type conversion should go.

5 Formal Design Methods

5.1 Class Correctness

A fundamental rule of object-oriented design is that a (re)implementation of a

methodmust meet its speci�cation in a superclass. This implies that the method's

8



preconditions must never be stronger than their ancestor's preconditions. The

rule proved to be a critical test for the straightforward design outlined in section 2.

This test led to some redesign in the class hierarchy, not only making it sounder

but also better suited for code and behavior inheritance. But there are some

remaining problems .

Dealing with Implementation Limitations

An implementation of an in�nite set will often impose constraints on the range of

its members (expressed as class invariants). These constraints will in turn result

in additional preconditions for some features. For example integers between -128

and 127 imply the precondition Current*Current � 127 for the square function.

6

But since square is in principle a total function its precondition in Z appears to

be true which is obviously not stronger than Current*Current � 127.

One way to remove this paradox is, to introduce a predicate in range that tests

if an integer can be represented in the current implementation. In Z it is deferred.

The resulting precondition for square in Z is in range(Current*Current) and there

is no additional precondition in the implementation. Instead the implementation

de�nes in range (as Current�-128^ Current�127).

The Domain of the Division Operation

FIELDs are RINGs that additionally inherit fromGROUP. But the multiplicative

group of a �eld happens to be not quite the same as the multiplicative monoid

of the underlying RING because the 0 is excluded (you can't divide by 0). Ex-

pressing this di�erence in the class hierarchy would make it impossible to reuse

any of the features from RING.

Instead, a predicate is unit was introduced in MONOID and used as a pre-

condition for \/" (require other.is unit). As opposed to the in range predicate

discussed above which can only be understood from an implementation point of

view, is unit is purely algebraic notion. The only unusual thing is that is unit

must not be de�ned to be true in GROUP , but it has to remain deferred in

order to make FIELD a multiplicative group.

A similar problem arises with EUCLIDEAN DOMAIN. The usual de�nition

found in algebra textbooks relies on a total division operation. On the other hand

the class POLYNOMIAL does not have a total division operation. (Division

works only for polynomials with an invertible leading coe�cient.) But since

POLYNOMIAL behaves in many ways like an Euclidean domain it should inherit

from EUCLIDEAN DOMAIN in one way or the other. Since it does not seem

to make sense to de�ne separate subhierarchies for invertible and noninvertible

polynomials it was decided to de�ne the division operation for Euclidean domains

as a partial function. This makes it possible to make POLYNOMIAL a subclass

of EUCLIDEAN DOMAIN.

Class Families

A QUOTIENT RING contains elements of an EUCLIDEAN DOMAIN that are

used modulo a base element of the same type (e.g., Z

n

, the integers modulo n).

In fact there is a new quotient ring for each base. The obvious implementation

in Ei�el stores remainder and base in instance variables of type EUCLIDEAN -

DOMAIN (see �gure 3). But this imposes the additional constraint for all binary

operations (e.g. \+") that the bases must be equal. Thus the precondition for

\+" is stronger in QUOTIENT RING than in its ancestors and this is illegal.

6

Note that this precondition cannot be checked at runtime. Section 5.2 discusses this kind

of problems.

9



class SEMIGROUP . . .

in�x "+"(other: like Current) :like Current

is

require compatible(other) . . .

class QUOTIENT RING

[R ! EUCLIDEAN DOMAIN]. . .

inherit RING . . .

de�ne compatible, in�x "+". . .

feature

remainder, base: R; . . .

compatible(other: like Current) :BOOLEAN

is

do Result := base.eq(other.base)

end ;

in�x "+"(other: like Current) : like Current

is

do

!!Result.make(

(remainder + other.remainder)

mod base,

base)

end ; -- in�x "+" . . .

invariant

normalized: remainder.degree < base.degree

end -- QUOTIENT RING

Figure 3: Speci�cation of \+" in QUOTIENT RING

This problem can be solved by introducing a binary predicate compatible that

checks whether a binary operation is de�ned for a pair of operands (see �gure 3

for the \+"-operation). Although this solution works, it is a little bit dirty. The

class QUOTIENT RING is not really an Euclidean domain but an entire family

of Euclidean domains. One class for each base.

A more satisfactory solution would be possible if the compiler would allow

objects (and not only types) as generic parameters. QUOTIENT RING could

then be declared as

class QUOTIENT RING

[R ! EUCLIDEAN DOMAIN, base : R] . . .

feature remainder: R; . . .

This would implicitly make base available as a constant method. The arithmetic

operations could be de�ned as before and no additional assertions would be nec-

essary.

An implementation of this concept is probably not trivial.

7

The compiler

should do compile-time type checking wherever possible but in some cases run-

time type checking would be necessary. Possibly large numbers of new classes

would be generated at run-time. The minimum requirement for making this

e�cient will be to allow members of a class family to share method-lookup tables.

7

A limited version of this concept is available in the C++ template mechanism [Ellis 91].

10



deferred class MONOID . . .

feature in�x "*" . . .

-- invariant 8x; y; z 2MONOID :

-- ((x � y) � z):eq(x � (y � z)). . .

deferred class RING

inherit

MONOID; -- for multiplicative operations

GROUP

rename in�x "*" as in�x "+",

in�x "/" as in�x "-",

is unit as is unit group,

inverse as pre�x "-",

one as zero,

in�x """ as mult z . . .

Figure 4: Multiple inheritance in RING

5.2 Assertions

Preconditions, postconditions and class invariants are useful for concisely de�ning

and documenting the expected behavior of code. Since assertions are inherited,

formal speci�cation also pro�ts from the object-oriented programming paradigm.

Formal speci�cation appears to be relatively easy for abstract algebra because

many assertions can be taken from algebra textbooks and because the library has

mainly value semantics, i.e. few methods change the state of an object.

Quanti�cation

Assertions using quanti�ed expressions are not available in Ei�el. Currently

quanti�ed assertions must be put in comments. Although these comments can't

be used by the runtime component, the source-code tools (flat, short) are

able to propagate them to inheriting classes. Nevertheless it might be useful to

explicitly include quanti�cation in the syntax of Ei�el because more sophisticated

tools might want to process assertions nontextually. One case where this would

be useful is exempli�ed in �gure 4. Since the MONOID operations \�" and one

yield two sets of operations in RING (\�", one and \+", zero) the system should

automatically produce new invariants for \+" and zero. For example invariant

inheritance should yield two associativity laws for RING:

8x; y; z 2 RING : ((x � y) � z):eq(x � (y � z))

8x; y; z 2 RING : ((x+ y) + z):eq(x+ (y + z))

If there shall be a chance

8

for the source-code tools to generate these two sets

of assertions, quanti�cation must be expressible. Even more important is the

possible use of quanti�ed assertions as input for formal software development

and veri�cation tools.

Run-time Assertion Checking

In general, run-time assertions-checking is useful for debugging because prob-

lems are reported early. But there are assertions that are useful for speci�cation

purposes only. They cannot be checked at run-time because this would lead to

8

Current versions of flat and short do not even duplicate assertions that are expressible.

11



gcd(other: like Current) : like Current is

-- greatest common divisor,

-- one if relatively prime

local a0, a1, t: like Current

do

from a0 := Current; a1 := other;

invariant a0.gcd(a1).eq(gcd(other))

variant a1.degree.as integer

loop

t := a1;

a1 := a0 mod a1;

a0 := t;

end ;

Result := a0;

ensure . . .

end -- gcd

Figure 5: Greatest common divisor

an in�nite recursion. A typical example is the loop invariant of the method for

computing the greatest common divisor of two instances of an EUCLIDEAN -

DOMAIN (Figure 5). There is nothing wrong with this assertion. It is used in

algebra textbooks to prove the correctness of the gcd function. The problem is

that the gcd in the loop invariant does not mean the method gcd but a value that

ful�lls the de�nition of a greatest common divisor. This distinction cannot be

made in Ei�el and therefore assertion checking will run into in�nite recursions if

the problematic assertions are not commented out.

A possible remedy would be to introduce syntactic means for marking these

inert functions such that the compiler will not generate code for trouble making

parts of assertions. But this would further complicate Ei�el's syntax. Another

approach works by switching o� assertion checking inside recursive calls made

by assertions. Although this might fail to evaluate all assertions that can be

evaluated it seems to be a satisfactory solution. This approach can be further

simpli�ed by entirely switching o� assertion checking inside assertions. In this

case the compiler does not need to be able to detect recursive assertions.

6 Conclusions

The preceding sections have explored the consequences of trying to implement

a hierarchy of algebraic data types. Abstract algebra proved to yield a lot of

interesting test cases that involve a minimum of code. One of the reasons for this

success seems to be that there is a close relationship between the axiomatization

of a mathematical structure and a class.

An interesting experience is that formal speci�cation of object-oriented soft-

ware using Ei�el has a number of pitfalls and that it might even be useful to

make some changes to the language based on these problems.

A more general experience is that the design of a class hierarchy is far from

being trivial even if there seems to be a naturally given structure as in the case

of the well established relations between algebraic structures. Important criteria

that can help to design a suitable structure are class correctness and the number

of required classes.

12



7 Acknowledgements

I would like to thank E.F. Gehringer without whom this paper would still be

an unreadable project report. I am also grateful to F. Weber who pointed out

solutions to many of the encountered design problems. Many ideas are also due

to fruitful discussion with S. Egner, Dr. Singer and F. Ulmer.

References

[Chambers 91] C. Chambers, D. Ungar, Making Pure Object-Oriented Languages

Practical, OOPSLA 91, pp. 1{15.

[Ellis 91] M. A. Ellis, B. Stroustrup, The Annotated C++ Reference Manual,

Addison Wesley, 1991.

[LaLonde 90] W.R. LaLonde, J.R. Pugh, Inside Smalltalk, Vol. 1, Prentice Hall,

1990.

[Lipson 81] John D. Lipson, Elements of Algebra and Algebraic Computing, Ad-

dison Wesley, 1981.

[Herstein 86] I.N. Herstein, Abstract Algebra, Macmillan Publishing Company,

1986.

[Klir 88] G.C. Klir, T.A. Folger, Fuzzy Sets, Uncertainty and Information, Pren-

tice Hall, 1988.

[Meyer 89] Bertrand Meyer, Object-Oriented Software Construction, Prentice

Hall, 1988.

[Meyer 91] Bertrand Meyer, Ei�el the Language, 1991.

[Meyer 92] Bertrand Meyer, Ei�el the Language, Prentice Hall, 1992.

[Uhl 90] J. Uhl. A Systematic Catalogue of Reusable Abstract Data Types,

Springer, 1990.

[Weber 91] F. Weber, Getting Class Correctness and System Correctness Equiva-

lent | How to get Covariance Right, TOOLS 8, R. Ege, M. Singh, B. Meyer

editors, Prentice Hall, 1992.

13


