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Abstract

Allocation of data to parallel disk using redundant storage and random placement of blocks can

be exploited to achieve low access delays. New algorithms are proposed which improve the previ-

ously known shortest queue algorithm by systematically exploiting that scheduling decisions can be

deferred until a block access is actually started on a disk. These algorithms are also generalized for

coding schemes with low redundancy. Using extensive simulations, practically important quantities

are measured which have so far eluded an analytical treatment: The delay distribution when a stream

of requests approaches the limit of the sytem capacity, the system efficiency for parallel disk appli-

cations with bounded prefetching buffers, and the combination of both for mixed traffic. A further

step towards practice is taken by outlining the system design for α: automatically load-balanced

parallel hard-disk array. Additional algorithmic measures are proposed for α that allow variable

sized blocks, seek time reduction, fault tolerance, inhomogeneous systems, and flexible priorization

schemes.

Index Terms:Parallel disks, lazy scheduling, asynchronous, random redundant storage, duplicate allo-

cation, soft real time, bipartite matching, queuing theory

1 Introduction

Ever larger data sets arise in important applications like data mining, electronic libraries, web servers,

virtual reality, geographic information systems, or scientific computing. Often, no size limits are in
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sight. To process these massive data sets with high performance, many disk drives have to be operated

in parallel. Consequently, disk arrays have become a multi-billion-dollar business. For cost efficiency

and data sharing, a parallel disk server or storage area network has to support requests for data blocks

stemming from different applications concurrently. In this situation it is a challenging task to get both

high throughput and low access latencies for interactive or time critical applications. New applications

like video-on-demand or interactive computer graphics even require soft real time guarantees for the

latencies of disk accesses.

Current parallel disk systems use mirroring, i.e., replication of the data or parity blocks to achieve

fault tolerance. This paper studies how this redundancy which is needed anyway can be exploited to

reduce access latencies caused by several requests directed to the same disk. The main issue here is to

schedule the request to the disks in such a way that access latencies get small. The achievable improve-

ment is so dramatic compared to traditional techniques like mirroring that a very simple programming

model becomes feasible: A parallel disk server with D independent disks is viewed as one big disk

with D-fold bandwidth and D-fold capacity that can access D arbitrary blocks concurrently. This par-

allel random access model is easier to use than the lower level view of D independent disks where the

additional issue of appropriate placement of data to disks has to be taken care of. Even if the predom-

inant access patterns are known, this can be a cumbersome task. In difficult cases with unpredictable,

dynamically changing access patterns, no good load balance is possible if we do not exploit both re-

dundancy and random placement of data. The model considered here is the asynchronous pendant to

the synchronous multi-head parallel disk model of Aggarwal and Vitter [1] which turned out to be very

convenient for devising external memory algorithms [2].

1.1 Basic Model

We now introduce a simple form of our system model that suffices to understand most of this paper.

Generalizations to this model are introduced later when appropriate. The overview in Section 1.2 gives

a few pointers.

Consider a system with D identical disks serving an asynchronous stream of requests for accessing

logical disk blocks. Logical blocks are stored using random duplicate allocation (RDA), i.e., there are

two physical copies that are allocated to random different disks using hash functions or a RAM resident

directory.
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Writing for RDA is a relatively easy problem. Previous results for a synchronous model transfer

[2].1 Read requests to the same logical block can be merged into a single request. Read requests to

cached blocks or blocks in the write buffer are easier to serve. Therefore, the present study concentrates

on read requests to different, uncached logical blocks.

The time rel(e) when a request becomes known to the system is called the release time of e. Under

these assumption our knowledge about the system at a point of time t extends to all the requests e with

rel(e)� t. We also know which requests have already been served and wich are currently being served

by a disk. A disk needs time te for accessing one of the copies of block e. When not otherwise stated,

we assume unit access time te = 1 for all requests. Since access times are assumed to be known, we can

also predict the time tidle(d) when a busy disk will fall idle again.

A schedule has to map every request e to a disk de that has a copy of the requested block and to a

time interval [tstart(e); tstart(e)+ te) such that tstart(e)� rel(e) and such that no two intervals overlap on

the same disk. The delay of a request e is tstart(e)+ te� rel(e). We use the term maximal delay for the

maximal predicted delay of a request currently in the system.

We are most interested in request streams that nearly saturate the system. Often we use periodic

arrivals of unit size requests such that request i arrives at time rel(i) = (1+ ε)i=D. In this case, we

are particularly interested in the distribution of delays for small ε where the system is nearly saturated.

An even simpler case are batched arrivals where R request all arrive at time rel(e) = 0. In this case,

the maximal delay coincides with the well known measure of make span often used for measuring the

quality of batched schedules.

1.2 Overview

The structure of this papers is governed by two main topics. The first topic is to explore the design

space of algorithms for asynchronous parallel disk access using random placement and redundancy.

The second topic is evaluation of these algorithms. This evaluation is complex because there is an

abundance of open theoretical questions and since simulations have to explore a huge parameter space.

Hence, we restrict the evaluation to duplicate allocation and the simple machine model from Section 1.1.

However, within this simple model we aim at a comprehensive set of tests.

1The writing algorithms considered there can also be viewed as asynchronous algorithms. To transfer the analytic

bounds, we could convert an asynchronous request stream into synchronized batches using an additional buffer of D blocks.
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Section 2 discusses simple heuristics for improving previously known algorithms which have the

advantage to be very fast and parallelizable. A more systematic approach to scheduling is pursued in

Section 3. Algorithms based on bipartite matching are introduced that minimize the maximal delay.

To evaluate these new algorithms, we proceed in two steps. First, Section 4 proves that fluctuations

in the arrival rates of requests have very little influence on latencies assuming a “queuing theory style”

load model. Therefore, the experimental evaluation in Section 5 can get surprisingly general results

by simply simulating periodic request arrivals. But Section 5 also explores the limits of queuing type

systems in particular in applications that completely saturate the system. It turns out that closely related

variants of our algorithms work well even if request from time critical applications have to coexist with

applications saturating the system.

Sections 6 and 7 generalize the algorithmic results in two directions that are important for practical

usefulness. Section 6 looks at more flexible storage schemes where logical blocks are encoded in w

pieces in such a way that retrieving any r of these pieces suffices to reconstruct the information stored.

In particular, the case w = r+1 allows a flexible tradeoff between storage overhead and performance.

Additional issues like variable block sizes, multi-zone disks, reducing seek times, fault tolerance,

communication delays, inhomogeneous systems, and system tuning are concentrated in Section 7 to

keep the rest of the paper simple. All these things combined, we get a starting point for the design of

a general purpose parallel disks server based on the scheduling algorithms presented here. Section 8

summarizes the results and mentions some open questions.

1.3 Related Work

An automatic load balancing approach widely used in practice is striping [3, 4]. In our terminology

that means a logical block size D times larger than the physical block size, where each logical block is

dispersed over all disks. This works for scanning large amounts of consecutive data but is of little help

for smaller access granularity. Without redundancy, worst case access patterns can direct all request to

a single disk resulting in arbitrarily large delays for very small arrival rates of just above one request

per time unit. Even redundancy is of limited help as long as the allocation strategy is deterministic. A

lower bound by Armen [5] shows that it can take time Ω
�

T
log(N=D)

loglog(N=D)

�

to complete a computation on

N blocks and performing TD block accesses.

Load balancing by random placement of data is a well known technique (e.g., [6]). In this situation,
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delays for read requests can be investigated analytically using generating function techniques similar

to those used in [2] for write buffering. Average delays behave like Θ(1=ε) for periodic arrivals every

(1+ ε)=D time units, i.e., they can become rather large as the arrival interval approaches the limit of

1=D. Nonredundant random placement has been proposed for the parallel file system RAMA [6].

Combining random placement and redundancy has first been considered in parallel computing for

PRAM emulation [7] and online load balancing [8]. For scheduling disk accesses, these techniques

have been used for multimedia applications [9, 10, 11, 12, 13, 14]. These papers use shortest queue, do

not specify the scheduling algorithm, or schedule large batches in a synchronous fashion.

Some RAID arrays use load balancing techniques to spread read requests over primary and mirror

disks equally. This approximately halves the observed delays. In Section 5.1 we will see that one can

do much better.

Even the simplest scheduling heuristics for RDA are quite difficult to treat analytically for asyn-

chronous request arrivals and small ε. Vvedenskaya et al. [15] and Mitzenmacher [16] analyze the

shortest queue heuristics as D ! ∞ for Poisson arrivals with fixed arrival rate λ = D=(1+ ε) and ex-

ponentially distributed service times. There are theoretical results on system models which keep the

number of requests in the system fixed (e.g., [17]). But so far none of these models seems to be able

to approximate the behavior of disk servers. Also, many of the techniques for analyzing RDA seem to

be inaccurate by significant constant factors when the number of requests in the system is much larger

then D. (A recent analysis of shortest queue for the case of high loads only applies to a batched model

[18].) Adler et al. [19] consider an algorithm similar to the lazy queue algorithm based on synchro-

nized rounds of allocation and job consumption. For small arrival rates2 (1+ε � 6e > 16) the expected

maximal delay is shown to be bounded by O(log logD). This synchronous formulation has the problem

that some requests are executed on both disks. All these theoretical difficulties led us to adopt a mostly

simulation based approach in this paper.

Several scheduling algorithms are known which reduce the maximal delay for scheduling a batch

of jRj requests to O(jRj=D) with high probability [7], i.e., independent of D. Korst [11] explained how

an optimal schedule for batches of requests can be computed using maximum flow computations and

in [2] it is shown that the maximal delay is bounded by djRj=De+ 1 for optimal schedules with high

probability. Further generalizations for batched scheduling including variable block sizes, disk failures,

2This restriction is improved in [20] for D! ∞.
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and communication overheads can be obtained using similar techniques [21]. Batched scheduling al-

gorithms can be converted into asynchronous scheduling algorithms by pipelining batched schedules.

While one batch is executed on the disks, the newly arriving requests are retained until the previous

batch finishes. Then the retained requests are scheduled in a batch and assigned to the disks next. This

strategy, applying the bounds from [2], yields an algorithm with maximal delay independent of D. How-

ever, the average delay is quite high (e.g. [22]). For practically interesting D, even the maximal delay

is higher than for the asynchronous shortest queue heuristics. Originally, we thought that this problem

could be solved using essentially the same max-flow based algorithm from [2] modified to update the

schedule whenever a new request arrives.3 However, the overall performance was disappointing be-

cause the algorithm cannot distinguish between new and old requests. Old request should be preferred

to limit the frequency of large delays. This observation was the motivation for developing algorithms

which explicitly handle delays.

Berenbrink et al. [23] also propose a scheduling algorithm for RDA based on bipartite match-

ing. They analyze the competitiveness of several online scheduling algorithms compared to an optimal

offline schedule. However, they use a quite different model (synchronous arrivals, deterministic place-

ment, and quality is fraction of requests served within a deadline), so that the competitiveness of the

model considered here remains an interesting open question. The contribution of Section 3 is the ob-

servation that time slots need not be synchronized in the online algorithm and the development of an

efficient, asynchronous implementation.

2 Simple Algorithms

For the simple scheduling algorithm to be discussed here it is convenient to adopt the well known

terminology of graph theory as follows:

At any point in time the known part of the scheduling problem can be can be viewed as an undirected

allocation graph Ga = (f1; : : : ;Dg ;E) where nodes represent disks. A request for a logical block that

has copies on disks i and j is represented by an undirected edge fi; jg 2 E. The adjacency lists of

the disks are ordered by the release time of the requests, i.e., a newly arriving request fi; jg is simple

appended to the adjacency lists of disks i and j. Figure 1 gives a simple example for an allocation graph

3Similar considerations could be made for algorithms which approximate the algorithm from [2], e.g. [22].
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Figure 1: Example for the performance of shortest queue, lazy sharing, and matching respectively,

assuming all request arrive at time 0. For shortest queue ties are broken by picking the leftmost available

copy. For lazy sharing it is assumed that the first requests are committed from left to right.

with added information on possible schedules.

Our algorithms focus on the question which copy of a block is actually accessed without explicitly

specifying when the block is to be accessed. This information is sufficient to derive a complete schedule

that is at least as good with respect to maximal and average delays as any other legal schedule that

retrieves the blocks from the same disks. The following FIFO rule derives such a schedule: For each

disk d, process the blocks scheduled to d in arrival order and as early as possible. We omit the trivial

proof that is based on the observation that removing unnecessary waiting times can only decrease delays

and that blocks accessed out of order can be swapped without increasing maximal or average delays.

FIFO-schedules can be compactly represented by a directed schedule-graph Gs where a directed

edge e = (u;v) indicates that request e is served on disk u. Now, several scheduling algorithms can be

described quite compactly. They all have in common that a newly arriving request fu;vg is immediately

started if u or v are idle (one disk is chosen in some unbiased way if both are idle). In this case, the

request is not inserted into the schedule graph or allocation graph.

2.1 Eager Algorithms

We first consider scheduling algorithms which maintain a schedule at all times. The algorithms pre-

sented in Section 3 also have this property but we start with the well known algorithm shortest queue:

A new request arriving at time t and schedulable on disks u and v is appended to the adjacency

lists of u and v and directed from the disk with smaller out-degree Γ+. Ties are broken according to
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tidle(u) and tidle(v). An obvious generalization to arbitrary service times chooses the disk with smallest

estimated load (= time needed to serve the requests already assigned).

2.2 Lazy Algorithms

Lazy scheduling algorithms delay decisions to the latest possible moment to have more information

available. We start with a very simple implementation of this idea.

Lazy Queue On a request arrival the edge fu;vg is simply appended to the adjacency lists of u and

v (as in [19]). When a disk finishes a request, it atomically removes the next request from the local

queue and deletes this request from its other queue. In a distributed memory implementation this can

be implemented using a single message exchange. 4

As long as service times are predictable, the lazy queue algorithm behaves identical to the shortest

queue algorithm. But when service times are unpredictable, lazy queue behaves like an “omniscient”

shortest queue algorithm that knows all the service times. We omit the straightforward proof based

on induction over the requests arrivals. This flexibility of lazy algorithms is an important practical

advantage since in many cases only inaccurate information about service times is available. Simulations

in Section 5.6 validate this reasoning.

Lazy Sharing The lazy queue heuristics has the disadvantage that some requests may be executed

on a highly loaded disk although they could be executed on a disk with lower load. For example,

a disk should not grab its first available request (d;d0

) if disk d0 has no other requests that it could

work on. More generally, we use the following heuristic modification: When disk d falls idle, let

ei = (d;vi) denote the i-th member of its adjacency list. Disk d then executes the first request ei for

which Γ(d)� i < Γ(vi) where Γ(v) denotes the degree of a node v in Ga. Requests 1, 2, 3, 5, 6, 7, 9,

and 10 in Figure 1 are scheduled using this rule. A refined lazy sharing algorithm avoids large latencies

by terminating the search for a request to be executed when the additional delay suffered by ei becomes

“too large”.

4This waiting time can be overlapped with useful work by having more than one request committed to a disk.
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In Section 5 we use the following variant: The search is terminated if request ei

is not the first request on disk vi. Requests 3, 4, and 8 in in Figure 1 are scheduled

using this rule. Furthermore, let e0i and e0d denote the request following ei on disks

d and i respectively. The search is also terminated if the maximal delay among

ei, e0i, and e0d is minimized by executing ei on disk d. The delays are computed

based on the assumptions that the requests preceding ei will not be executed on d,

that e0 will be executed on d, and that e00 will be executed on vi. Figure 2 gives an

example where this rule would apply.

2.3 Hybrid Algorithms

A problem of the lazy algorithms presented above is that it is difficult to extract

meaningful information from the allocation graph alone. Therefore, hybrid algo-

rithms make sense that combine any eager algorithm with a heuristics which uses

the information provided by the schedule graph to further improve the schedule

when a disk falls idle. Again, we start with a very simple rule:

Stealing When a disk d falls idle, and its out-degree in the schedule graph is zero but its in-degree is

nonzero, it “steals” the first adjacent request and executes it on d.

Local Optimization When a disk d falls idle, it scans its adjacency list (both incoming and outgoing

edges) and reverses edges if this “improves” the schedule. For example, we have implemented a variant

which commits a request if executing it on the other possible disk would lead to a large delay or larger

average load.

3 Scheduling Using Bipartite Matchings

We now explain how bipartite matchings can be used to find schedules which are optimal in the sense

at any point in time the maximal delay of the requests known to the system is minimized. Hence,

schedules are globally optimal over all disks although they are still only locally optimal with respect to

the time scale.
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Figure 3: Representation of a schedule by an R-perfect matching in a bipartite graph.

Scheduling options are now represented by a bipartite graph G2 = (R
:

[ S;C). In the example of

Figure 3, the set of known requests R forms the upper side of the graph. The lower side S represents

time slots of disks, i.e., Slot (d; i) represents the time interval [tidle(d)+ i� 1; tidle(d)+ i) on disk d.

Edges of G2 represent possible assignments of requests to time slots. A request fu;vg 2 R is connected

to all slots of the form (u; i) and (v; i) for i 2 N . We associate a weight w with an edge (r;(d; i)) that

corresponds to the delay suffered by r when scheduled to time slot (d; i), i.e., w = tidle(d)+ i� rel(r).

Note that although there is a potentially infinite number of slots, only a finite number is needed to find

an R-perfect matching.

Any legal schedule that does not keep a disk superfluously idle can be described by a matching M in

G2 that matches all request in R to exactly one time slot in S. In graph theory such a matching is called

R-perfect matching. The matching in Figure 3 corresponds to the optimal schedule shown in Figure 1.

This matching representation can now be used to optimize schedules in several respects starting with

well known algorithms for computing matchings [24].

3.1 Minimizing the Maximal Delay

If there is a schedule with maximal delay L̂, it can be found by constraining the bipartite graph G2

to those edges with weight at most L̂. As a side effect, this also limits the potentially infinite set of

slots to a set of size at most DL̂. Since there can be at most D jRj different delays in a FIFO schedule,

the minimal maximal delay L̂� can be found by binary search using O(log(D � jRj)) computations of

maximum cardinality bipartite matchings.

Although the algorithm presented so far runs in polynomial time, actually computing a schedule in
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real time for each new request might appear like a formidable task. However, there are many optimiza-

tions which make it quite practical. We maintain the invariant that G2 contains one unmatched slot per

disk, i.e., at any point in time, only jRj+D slots need to be explicitly represented. We compute the

matching incrementally. When a new request e = fu;vg arrives, it is provisionally mapped to a free slot

of disk u or v using the shortest queue heuristics. If the delay suffered by this decision is small, say

below the estimate jRj=D for the average delay, nothing needs to be done. Otherwise, we know from

matching theory, that it suffices to consider augmenting paths from e to a free slot s which alternate

between unmatched and matched edges. For any such path P, we get a new R-perfect matching by

converting all matched edges on P to unmatched edges and all unmatched edges to matched edges. Call

the maximum weight of an unmatched edge on P the weight of P. We get a matching with optimal Lmax

by picking an augmenting path with minimum weight. This minimum weight path can be found using

a variant of Dijkstra’s algorithm.

So far, we have an O((jRj+D) log(jRjD)+ jRj
2
=D) time algorithm for scheduling a single request

assuming Fibonacci heaps for the priority queue used in Dijkstra’s algorithm and an estimate of jRj2 =D

for the number of edges in the bipartite graph. First simulations with this algorithm indicated that for

large D it is still too slow by an order of magnitude. Therefore, several additional optimizations were

exploited. First, the Ω(R)
2
=D edges of the bipartite graph need not be stored explicitly. The current

implementation only stores a list of time slots for each disk. Since a request is always matched to some

time slot, it is stored in the same object as that time slot. These measures not only decrease the number

of pointer dereferences during the search but also make the algorithm more cache efficient by increasing

locality and by making it more likely that the entire data set (of size O(jRj+D)) fits into cache.

Furthermore, we use a faster priority queue data structure which is not comparison-based and a

relaxation which allows non-optimal paths with small maximum weight. The last optimization requires

more explanation. Consider a bipartite graph with large jRj so that large delays are to be expected.

Then most requests are connected to many occupied slots which promise an unattainably small delay.

These connections form many long paths which have small weight but do not lead to a free slot. A

strict implementation of Dijkstra’s algorithm would have to explore all these paths to verify that none

of them leads to a free slot. This problem can be largely avoided by exploring low weight edges in

a breadth first fashion. This way the search will usually find a fairly low weight path with few edges

without exploring a large part of the graph. To implement these optimizations, we replace the priority
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queue by an array of buckets. Each bucket Bi stores a FIFO queue of nodes reachable using paths of

weight in the interval (xi�1;xi]. We set x0 =�∞, and xi = α+ iβ for appropriate parameters α and β.

We find a path of approximately minimum weight (at most a bucket width away from the true

minimum) by approximating the weight of a path by the index of the bucket containing its interval.

In the simulations from Section 5 we have α = jRj=D�β and β = 0:1, i.e., paths with weight below

average are all in bucket 0 so that time consuming search for augmenting paths with weight below

average is avoided. Measurements discussed in Section 5.1 indicate that this implementation approach

is fast enough to serve hundreds of disks by a centralized processor.

3.2 Minimizing the Total Delay

The sum of all delays of requests in the system can be minimized by computing a minimum weight

maximum cardinality matching in G2. Similar to the maximal delay case explained above, this can be

done using a shortest path calculation for each new request. However, augmentation is more expensive

now since it not only involves a shortest paths but the shortest path tree of all nodes reached during a

shortest path search (refer to [25, Section 7.8] for details).

Finally, we can find a schedule with minimal total delay among all schedules which minimize

the maximal delay by first optimizing the maximal delay, then constraining the edges to those which

conform to this delay and then finding a schedule with minimum total delay in this pruned bipartite

graph.

4 Nonperiodic Request Arrivals

In a real system, requests will usually not arrive with a fixed interarrival time. We argue that this has

little influence on the performance of the server if these fluctuations are not very large.

From the point of view of queuing theory, the most natural model would be a Poisson stream of

requests with arrival rate λ = D=(1+ ε). The following theorem shows that the fluctuations in this

system have only marginal influence on the average delay if D is large.

Theorem 1 Assume a scheduling algorithm which can serve a periodic stream of requests with interar-

rival time (1+ε)=D such that the average delay is bounded by f (1=ε) for some differentiable concave5

5This assumption could be lifted at the price of a more complicated formulation of the theorem. However, theoretical
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function f . Then there is a scheduling algorithm which can service a Poisson stream of requests with

arrival rate D=(1+ ε) with average delay at most

L̄ � f

�

1

ε

�

+O

 

r

f 0(1=ε)
ε2D

!

:

Note that we do not need to know f since the main value of the theorem is to tell us that knowledge

about periodic arrivals (e.g., via simulations) transfers to system with fluctuations in arrival rates.

Proof: We can convert6 the Poisson stream into a periodic stream with interarrival time (1+ ε0)=D

by putting a “leaky bucket” [26, Section 5.3.3] between the request stream and the server. The bucket

forwards a request every (1+ ε0)=D time units. We are free to choose the parameter ε0. The leaky

bucket behaves as an M=D=1 queuing system. Its average delay is

L̄1 =
1+ ε0

D

�

ρ+

ρ2

2(1�ρ)

�

where ρ = (1+ε0)=(1+ε) [27, Equation 7.39]. If the bucket is empty, dummy requests can be injected.

Exploiting the concavity of f , the average delay in the server is at most

L̄2 � f

�

1

ε0

�

� f

�

1

ε

�

+

�

1

ε0
�

1

ε

�

f 0
�

1

ε

�

:

We set

ε0 = ε� ε

s

1+ ε
2 f 0(1=ε)D

and estimate the total delay L̄ = L̄1 + L̄2.

Using ε0 � ε and ρ � 1, the average delay in the leaky bucket is

L̄1 =
1+ ε0

D

�

ρ+

ρ2

2(1�ρ)

�

�

1+ ε
D

�

1+
1

2(1�ρ)

�

=

1+ ε
ε

r

f 0(1=ε)(1+ ε)
2D

+

1+ ε
D

For the average delay after the leaky bucket we exploit

1

ε0
�

1

ε
=

ε� ε0

ε2
+O

�

(ε� ε0)2

ε3

�

considerations and all our measurements suggest that f is indeed concave.
6In practice, we will directly inject the requests into the system. At least for the shortest queue algorithm it is easy to

show that this can only decrease delays.
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and get

L̄2 � f

�

1

ε

�

+

1

ε

r

f 0(1=ε)(1+ ε)
2D

+O

�

1

εD

�

:

Summing the bounds for L̄1 and L̄2 yields

L̄ � f

�

1

ε

�

+

2+ ε
ε

r

f 0(1=ε)(1+ ε)
2D

+O

�

1

εD

�

:

which simplifies to the claimed bound.

We could now generalize the above results to arbitrary distributions with finite variance using queu-

ing theory. However, we choose the simpler and more powerful model of adversarial queuing theory

[28, 29]. This model makes no hard to justify assumptions like independence and is very simple:

Any sequence of event arrivals is allowed, as long as within any time window of extent W , at most

bWD=(1+ ε)c requests arrive.7 In other words, the request stream is macroscopically smooth but al-

lows arbitrary fluctuations within a time window. The scheduling algorithm works online, i.e., it has no

information about request arrivals in the future.

Theorem 2 A server with D disks can service a stream of requests controlled by an adversary with rate

D=(1+ ε) and window extent W with average delay at most L̄+W � (1+ ε) if L̄ is the average delay

achieved by a system with periodic requests arrivals with interarrival time (1+ ε)=D.

Proof: We use the same basic approach as in the proof of Theorem 1. Consider a leaky bucket queue

with service time (1+ ε)=D. This queue can never get longer than DW and hence the additional delay

is it most DW �(1+ε)=D =W �(1+ε).

5 Simulations

This section studies the performance of a number of scheduling algorithms and allocation strategies

(RDA if not otherwise stated). The starting point are periodic arrival times and constant service times.

This simple model has the advantage that only two parameters – the number of disks D and the inter-

arrival time (1+ε)=D – need to be considered to analyze performance. In such a situation, simulations

can partially replace analytical results. The expected performance can be found quickly and accurately

7We need the additional technical assumption that the random locations chosen for block allocations are independent of

the request sequence, i.e., we assume an oblivious adversary.
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if the random number generator works. Even the tails of the distribution can be well approximated

since the system is so simple that many events can be simulated. Section 5.1 studies different interar-

rival times for fixed D = 64 and also discusses the running time of the matching heuristics. Section 5.2

argues that D has little influence on the behavior of the system. In Section 5.3 it is demonstrated that a

failed disk has little influence on performance. Sections 5.4 and 5.5 generalize the load model to traffic

patterns that cannot be modeled by open queuing systems and are typical for applications that saturate

the system until some resource is exhausted. Section 5.6 considers the case of varying, unpredictable

service times. For this case, additional algorithms make sense and the performance differences change.

The following algorithms are in the main focus:

Nonredundant: Accesses to random nonredundantly stored blocks. In our simple system there is

nothing to schedule here.

Mirror: A block stored on disk i is also stored on disk D� i�1. Scheduling is done using the shortest

queue heuristics. Other Algorithms cannot do better in this case.

Shortest queue: Scheduling using the shortest queue heuristics from Section 2.1.

Lazy Sharing: The refined lazy algorithm described in Section 2.2 which tries to reduce average and

maximal delays.

Matching: The fast implementation of the algorithm based on bipartite matching from Section 3.1;

using approximate shortest path search with bucket width 0:1 for paths with weight exceeding

jRj=D where jRj is the number of requests currently in the system. We additionally reorder the

slots by FIFO order and use the stealing heuristics.

Not shown here or only discussed in places where something interesting can be noted are the fol-

lowing further algorithms and allocation strategies that we now quickly survey roughly in order of

increasing merit:

Nonrandom worst case: All requests are directed to the same disk. In the worst case all copies are on

the same disk hence the system will be extremely inefficient regardless of the scheduling strategy.

Even if two copies go to different disks, all the work might have to be done by two disks.

Ring allocation: A block stored on disk i is also stored on disk i+1 mod D where i is chosen randomly

[30, 31]. Aerts et al. [31] propose this scheme because they can give an efficient algorithm for
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finding optimal schedules for batches of requests. Although this scheme is better than plain

mirroring, it is significantly worse than general RDA even if we compare optimal scheduling for

ring allocation with the very fast and simple shortest queue algorithm for RDA.

Shortest queue with stealing: As shortest queue but using the stealing refinement from Section 2.3,

i.e., disks without scheduled request steal the first incident edge in FIFO order. This refinements

only makes a difference for unpredictable service times and hence is only discussed in Section 5.6.

Lazy Queue: The basic algorithm from Section 2.2 which always schedules the first incident edge in

FIFO order. Since this algorithm is equivalent to shortest queue for predictable service times, we

also only discuss it in Section 5.6.

Local Search Hybrid: A combination of the shortest queue heuristic with several local optimization

heuristics as described in Section 2.3. Some of these algorithms are able to achieve an improve-

ment over shortest queue but so far they are beaten by the simpler and more elegant lazy sharing

algorithm.

Flow: We have implemented an asynchronous adaptation of the maximum flow based algorithm from

[2] mentioned in Section 1.3. For not too small ε it achieves better performance than shortest

queue in particular with respect to average delays. However, considering that this algorithm is

complicated and computationally intensive, it is disappointing.

5.1 The Influence of Arrival Rates

Figure 4 shows the average delay and large delays for the shortest queue algorithm and those random-

ized algorithms which do not use RDA. Nonredundant allocation has average delay linear in 1=ε. This

can be proven using queuing theory. Mirroring halves the delays. The other algorithms show that once

redundancy is allowed we can do much better than mirroring. The improvement is particularly big for

arrival rates which use as much as 90% of the peak performance of the system. With respect to large

delays, the difference between nonredundant placement or mirroring and RDA is even more dramatic.

This phenomenon is theoretically well understood. We stress it here because nonredundant allocation

is still predominant in practice and a lot of application specific load balancing strategies might become

dispensable by using RDA.

The performance differences between nonredundant allocation and RDA are so large that we de-
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Figure 4: Comparison of the shortest queue heuristics with randomized algorithms which do not use

RDA. Average delay and large delays (occurring once in 10000 requests) for 64 disks and 107 requests

with interarrival time (1+ ε)=D as a function of 1=ε.

cided to compare the RDA algorithms separately in Figure 5 allowing a better resolution. Both in

terms of average and large delays there is a consistent ranking of achieved scheduling quality, matching

> lazy sharing > shortest queue. Lazy sharing almost reaches matching for average delays and lies

somewhere in the middle with respect to large delays.

The additional time needed for computing matchings was 7:3µs per request using an efficient but

not highly tuned implementation. The system used was GNU C++ on a 300MHz Ultra-SparcIIi pro-

cessor. For D = 256, scheduling time per request grows to about 9:6µs per request, i.e., apparently the

growth is sublinear in D. Even the fastest disks currently have access latencies around 5ms so that on

a 64 disk system the scheduling processor would only spend 10% of its capacity on scheduling. Fast

interconnection networks with low latency communication libraries achieve latencies small enough to

become no bottleneck. So currently a matching based centralized scheduler should be quite feasible

for system with hundreds of disks. When the gap between processing speed and disk latency widens

further, even larger systems become feasible.
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Figure 5: Comparison of new scheduling algorithms with the shortest queue heuristics.

5.2 Scaling D

The asymptotic analysis of the shortest queue algorithm [15, 16] already hints that D might have little

influence on the distribution of request latencies. Figure 6 shows the dependence of average and large

delays for fixed ε and varying D. Considering the large variation in D, the changes are small. The

D-dependence of average delays is much smaller than observed in the simulations of [16]. The main

difference8 in the setup is that we simulate request streams which are 100 times longer. One can

observe that for large D, short sequences with 100000 request are not long enough to approximate the

equilibrium state of the system so that by increasing D the average delay appears to decrease. This

effect disappears for longer request sequences.

The most interesting effect is that large delays slightly decrease with D for the matching algorithm

whereas they increase for the shortest queue heuristics. The best explanation for the decrease in the case

8To exclude the differences for the values of D and ε used we have also made simulations with the values from [16]

(D 2 f100;500g and ε= 0:01).
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Figure 7: Delay distribution for the matching algorithm, ε = 0:1, and D 2 f16;256g.

of the matching algorithm is the common phenomenon of sharp concentration in probabilistics that gets

more pronounced as the system size increases. This effect can be demonstrated in more detail in the

histograms shown in Figure 7. A small system with 16 disks has slightly longer tails in the distribution

of delays than a large system with 256 disks.

We can also see that the matching algorithm produces very short tails in both cases. This is important

for some real time time applications which require very low failure probabilities. Even in the 16 disk

system, the probability that the delay exceeds 3:25 is less than 10�6. Much lower probabilities for

slightly larger delays are likely but would require very long simulations. However, once delays due to

random placement are so unlikely, other bottlenecks like temporary failures of disks may become the

dominating factor anyway.
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5.3 Faults

When a disk fails, the peak system throughput decreases by a small factor of 1=D. In addition, requests

which have a copy on the faulty disks lose their scheduling flexibility. Since only few requests are

affected, load balancing still works well. Measurements not shown here demonstrate that the delays

increase only slightly. The advantage of the matching based algorithm over shortest queue is somewhat

increased.

5.4 Beyond Open System Traffic

The periodic request streams from the previous sections and the queuing model from Section 4 assume

a so called open system where request arrivals are independent of the behavior of the server. For many

applications, this assumption is not warranted and can lead to wrong predictions. When we analyze

the performance of disk systems, we are particularly interested in I/O limited applications that are most

of the time waiting for requests to be fulfilled. In this case, answering a request triggers new request.

Thus, request arrivals depend on service times and result in very bursty traffic if the system is flooded

with requests until some resource like buffer space is used up.

To explore how scheduling algorithms perform on resource limited traffic, we report simulations

based on a simple traffic pattern that produces all these effects and actually appears in applications

based on sorting or offline prefetching [32, 33]. Note that sorting is the most I/O intensive part of many

data base operations like index construction or certain joins.

Consider m block buffers and a sequence of requests S to be consumed by the application in that
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Figure 8: Inefficiency for buffer-bounded traffic simulated over T = 100000 time units.
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order. The application posts the next request from S whenever a buffer is available, i.e., initially the

buffers are flooded with a burst of m requests. When a block is made available to the application, it is

not immediately consumed but buffered until all the blocks preceding it in S have been consumed.

In such a situation, we are not so much interested in delays of individual blocks but in the overall

efficiency of the system, i.e., the ratio between the data volume jSj actually accessed and the volume

D �T that could be transferred in a total execution time T . Similar to our use of ε to describe arrival rates

close to the system limit, we now also use the term inefficiency= 1�efficiency that should be small to

be close to a perfect system.

Figure 8 shows that RDA and in particular the matching algorithm are useful in this situation. Even

with a small buffer pool of size 3D, the matching algorithm achieves an efficiency of more than 99 %.

5.5 Mixed Traffic

We have seen that RDA achieves both low delays for continuous request arrivals and high efficiency for

traffic with bounded prefetching buffer. But delays can get rather large in the latter case. Therefore, we

seemingly face a dilemma if both kinds of traffic are mixed. The dense traffic produced by buffer limited

applications delays continuous (e.g. periodic) request arrivals that may stem from a delay sensitive

application. Figure 9 shows that we get much larger latencies than in a system without buffer limited
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Figure 9: Large delays (occurring once in 10000 request) suffered by periodic requests if they have

to compete with buffer limited traffic. If all requests are treated equal (plain), delays are quite big.

With priorization, delays are comparable to a system with pure real time traffic. All curves show the

performance for the matching algorithm.
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traffic (compare Figure 5). Not shown here are the average delays which are affected similarly. The

observed delays are well approximated by m
D(1�x)

where x is the fraction of the system resources used up

by periodic requests (i.e. interarrival time is D=x). Intuitively, this can be explained by observing that

the bounded buffer traffic keeps about m requests in the system. Periodic traffic contributes a number

of requests that is proportional to its share in system load. Hence, there are usually about m=(1� x)

requests in the system. Hence, it is not astonishing that delays are of this magnitude divided by D.

This dilemma can be solved by giving priority to delay sensitive requests. The implementation used

in our simulations achieves this by a quite simple measure. All our scheduling algorithms base their

decisions on delays that have so far been computed as anticipated delivery time minus release time.

Now we simply replace release time by an anticipated finishing time. For continuous request arrivals

we set this time to one plus release time whereas for buffer limited traffic with buffer size m we set it to

release time plus m=D. The bottom curves in Figure 9 show that with this measure delays of periodic

requests are small and almost independent of the buffer size of the bursty traffic.

Further measurements not shown here indicate that the price we have to pay for priorizing periodic

traffic over buffer limited traffic in terms of efficiency is rather low except for very small buffer sizes.

5.6 Unpredictable Service Times

In contrast to fluctuations in event arrival, unpredictable service times can have a significant impact

on performance. Therefore, we decided to perform a number of simulations. Also refer to Section 7

for several refinements of the model. To keep the number of parameters of the model small, random

service times are used that have an identical distribution for all requests. From the point of view of

queuing theory, an exponential distribution would be the easiest choice. However, this would give an

artificial advantage to algorithms which ignore the information when a request started to execute on

a disk (the exponential distribution is memoryless, i.e., the expected remaining service time is always

the same). Santos and Muntz [14] find that a quite narrow normal distribution works well in certain

situations. Since this might be too optimistic when rotational delays have a bimodal distribution due to

“near misses”, we conservatively choose a rather wide uniform distribution with mean one.

Figure 10 shows the results using the same parameters as in Figure 5 except that the service times

are now uniformly distributed between 0:7 and 1:3 and are unknown to the scheduler. Now the lazy

queue algorithm and the shortest queue algorithm with stealing become different from the plain shortest

22



1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

av
er

ag
e 

de
la

y

1/ε

shortest queue
lazy queue
s. q. with stealing
lazy sharing
matching

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

la
rg

e 
de

la
y 

(1
 fr

om
 1

00
00

)

1/ε

shortest queue
s. q. with stealing
lazy queue
lazy sharing
matching

Figure 10: Comparison of five scheduling algorithms for uniformly distributed service times between

0:7 and 1:3. Average delay and large delays delay (occurring once in 10000 request) for 64 disks and

107 requests with interarrival time (1+ ε)=D as a function of 1=ε.

queue algorithm. As expected, both perform better than shortest queue. Interestingly, there is no clear

winner between these two algorithms. Stealing has smaller average delays and the lazy algorithm is

better with respect to large delays. Although the matching algorithm is based on an oversimplification

of the system model, it still performs best. However, the lazy sharing algorithm comes even closer to

the performance of the matching algorithm now.

6 Beyond Replication Coding

Instead of simply replicating logical blocks, we can more generally encode a logical block which has r

times the size of a physical block into w subblocks of unit physical size such that reading any r out of the

w subblocks suffices to reconstruct the logical subblock. Perhaps the most important case is w = r+1.
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Using parity-encoding, r of the subblocks are simply pieces of the logical block and the last subblock

is the exclusive-or of the other subblocks. A missing subblock can then be reconstructed by taking the

exclusive-or of the subblocks read. Parity encoding is the easiest way to reduce redundancy compared

to RDA while maintaining some flexibility in scheduling. Its main drawback is that the physical blocks

being read are a factor r smaller than the logical blocks so that high bandwidth can only be expected

if the logical blocks are fairly large. As long as r � D, even a disk failure will not severely inhibit

performance since only a fraction of (r+1)=D of the requests will come without scheduling flexibility.

Choosing w > r+ 1 can be useful if more than one disk failure is to be tolerated, if a single disk

failure should inhibit performance even less or if insufficient battery buffered RAM for buffered writing

is available. In the latter case, one writes less than w subblocks and uses the additional flexibility for

explicitly scheduling write accesses using the same methods as described here for reading. A disad-

vantage of codes with w > r+1 is that they are computationally more expensive than parity-encoding

[34, 35, 36, 37, 38, 13].

It makes sense to use different values for r and w concurrently on the same system for different

purposes. Data which is rarely read and can be reconstructed otherwise, e.g., checkpointing data for

scientific computing, could be stored nonredundantly. Frequently accessed data, in particular if read

with small block sizes should be replicated, perhaps even more than twice (i.e., r = 1, w > 2). High

volume data which is read in larger chunks could use parity encoding with rather large r, etc. All the

scheduling algorithms described here can work with such a mixed workload.

6.1 Simple Algorithms

The simple scheduling algorithms from Section 2 are straightforward to adapt. The allocation graph

GA now becomes a hypergraph. Hyperedges connect w nodes and are marked with the number r of

edges to be read. For the schedule graph GS we can use a generalized notion of directed hyperedge

which points to w� r of the connected nodes. For parity encoding, where w� r = 1, even the notion

of a directed path of nodes makes sense. It still suffices to consider FIFO schedules and the lazy queue

algorithm is still equivalent to an omniscient shortest queue algorithm.

Theoretical results for the case r > 1 are quite sparse and so far limited to synchronous algorithms

(e.g., the optimal batched scheduling algorithm from [2] works for w = r+1). The delay tree technique

originally developed to analyze collision protocols used in PRAM emulation works for general r and
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w. So it might be possible to apply delay trees to asynchronous algorithms.

We have applied the asymptotic approach from [15, 16] for modeling the behavior of the shortest

queue algorithm to general r and w. This yields a recurrence relation for the queue length distribution.

However, this relation seems to have no closed form solution for r > 1 so that it is mostly useful for

numeric evaluation so far.

6.2 A Constrained Bipartite Matching Formulation

We now generalize the matching algorithm. A schedule can be represented as an R-perfect matching in

a bipartite graph G2 = (R
:

[ S;C) where S represents time slots as before and where (e; i)2 R represents

the i-th subrequest (i 2 f1; : : : ;rg) of request e. All subrequests of a request are connected to the same

set of slots on w disks. Unfortunately, only those matchings represent legal schedules which match

all subrequests of a request to slots of different disks. Therefore, the shortest path search described in

Section 3.1 is modified to consider only augmenting paths which maintain this property. We constrain

the search for augmenting paths to legal edges connecting R and S where f(e; j);(d; i)g is legal with

respect to the current matching M if :9i0; j0 : f(e; j0);(d; i0)g 2 M. The following Theorem shows that

this algorithm yields schedules that minimize maximal delays.

Theorem 3 Incremental construction of matchings using only legal augmenting paths leads to legal

R-perfect matchings whenever legal R-perfect matchings exist.

Proof: Consider a legal matching M which is not R-perfect and an unmatched node v = (e; j) 2 R.

If a legal R-perfect matching M� exists, we construct a legal augmenting path which leads from v to a

free node in S.

Since M� is R-perfect there is exactly one edge in M� incident to any node in R. Consider the edge

e = fv;(d; i)g 2 M�. If e is legal we start the path with e. If e is illegal, by definition of illegal edges,

there is an edge f(e; j0);(d; i0)g 2 M with i0 6= i. Now consider the edge f(e; j0);(d2; i2)g 2 M�. Since

all subrequests of e are adjacent to the same set of slots, there must be an edge fv;(d2; i2)g. If this

edge is legal, we start our augmenting path with it. Otherwise, we go on following edges in M and M�

until a slot (d00

; i00) is found such that fv;(d00

; i00)g is legal. This must eventually happen: Since M� is a

legal R-perfect matching, all subrequests e are matched by M� to slots on different disks. But since v is

unmatched in M, not all these slots can be illegal for a connection with v. Figure 11 gives an example.
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Figure 11: Example how to find legal edges for an augmenting path.

When an augmenting path under construction has reached a node w 2 S (e.g., after the first step,

w = (d00

; i00)) and w is free, the augmenting path is complete. Otherwise, the path is extended using the

edge fw;v00 = (e00; j00)g 2 M. Then, a legal edge fv00;w0

g is found using the same techniques as before.

Now the reason why such an edge must exist is that the subrequest to which w is matched in M� is not

a subrequest of e00. Therefore, 9s 2 S;k : fs;(e00;k)g 2 M�

^8k0 : fs;(e00;k0)g 62 M.

This construction is continued until a free node is reached. This must eventually happen since we

can never get back to v which is unmatched in M.

7 α: Automatically Load-Balanced Parallel Hard-Disk Arrays

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 12345678

logical block

mirrored copyprimary copy

Figure 12: RDA using a mirrored copy can be used to read a large block from both copies in an adaptive

way.

We believe that the load balancing algorithms introduced so far could be an ingredient to build easy

to use α-system which can be used as if a single very high performance disk were available. However,

to get a practical general purpose system, some refinements are necessary and the new algorithms need

to be reconciled with some established technologies. In the following we sketch how this could be

done. Section 7.1 discusses how irregularity in the request size and the service time of the disks can
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Figure 13: Encoding of a logical block of size 12 into 4 physical blocks and one parity block of size 3

such that aligned logical requests of size 4s, s 2 f1;2;3g can be fulfilled by retrieving any 4 out of 5

physical subblocks of size s.

be accommodated. Interactions between the global scheduling of parallel disks used so far and well

studied scheduling algorithms for minimizing seek times are added in Section 7.2. In Section 7.3 we

outline how redundancy can be exploited to get fault tolerance at high efficiency. Section 7.4 explains

how to cope with different disks in the system. Finally, Section 7.5 investigates priorization and fairness

issues. Complementary to these informal discussion for asynchronous systems there is a paper [21] that

discusses similar issues for the less practicable but analytically more tractable case of synchronous

batched accesses.

7.1 Variable Request Sizes and Multizone Disks

In a general purpose system not all requests are to logical blocks of the same size. In addition, even for

applications where this is the case, the actual access times will depend on the track where the physical

data is stored — more data sectors fit on the outer zones of a hard disk so that at constant angular

velocity the bandwidth changes.

The simple scheduling algorithms from Section 2 can be adapted to such a scenario relatively easily,

the lazy queue algorithm does not even need an accurate model of the disks to make good decisions.

Finding substantially better or even optimal schedules is a difficult problem however. For example,

even for D = 2, random allocation, and identical release times for all requests, finding a currently

optimal schedule without allowing preemption is NP-hard. This problem is equivalent to the partition

problem [39].

Since many hard disks do not allow to preempt a request once started we seem to be stuck. However,

a good compromise is to split all requests into subrequests of estimated equal access time. Then we can

use algorithms based on bipartite matchings again. The overhead involved is not as large as one might
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expect. Since modern disks use caching and read ahead, accessing a large block in k pieces costs about

as much as accessing the whole block plus k times the overhead for initiating a transmission between

the on-disk-cache and the server. This overhead is small compared to the mechanical delays of the disk.

If we use FIFO schedules, scheduling a request of size s located on disks u and v results in accessing

k subblocks on u and s� k subblocks on v without interruption by other accesses. We can always

reschedule the subblocks in such a way that the subblocks on u and v are consecutive without affecting

the delay of other requests. This approach works particularly well if we take the term “mirroring”

literally, i.e., we store the second copy of a block in the reverse physical order. This way, both disks

start accessing the data from both logical ends and we stop when all the data is present. Figure 12

gives an example. Summing up, we pay an additional seek delay and some overhead for blocking and

get improved load balancing, and the opportunity to use highly optimized scheduling algorithms. For

large requests, this looks like a promising option. If we deviate from FIFO scheduling it is additionally

possible to guarantee short latencies for small accesses which would be impossible if small requests

would always have to wait for large requests with earlier release time. Section 7.5 gives more details.

We also have to discuss how data should be allocated to the disks to allow both fine grained and

coarse grained access to the same file. A good compromise is to use large physical blocks, e.g., currently

around 1MB [40] to allow high bandwidth access with large requests. Later we are free to read smaller

blocks. For general r out of w encoding this requires some further explanations. The obvious way —

chopping a large physical block into r contiguous subblocks — does not work. Instead, we chop it into

small pieces, e.g., 512 byte sectors or even machine words, and code groups of r pieces into w pieces.

Figure 13 gives an example. Now small requests can be serviced with the same scheduling flexibility

as large requests.

7.2 Scan Scheduling

To achieve high throughput in the case of high system load one should deviate from the strict FIFO

discipline to reduce the overall seek time (e.g., [41]). Sorting the requests by track number is a good

approach for a single disk if we do not care about large delays for some requests. Good compromises

between low delays and high performance are an active area of research even for single disk.

Now we have the additional complication of parallel disks. For example, service times now get

dependent on the presence of other requests. So far, we only have partial answers to this problem. First,
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the shortest queue algorithm reduces the overall scheduling problem to single disk scan scheduling. We

keep a current schedule and an estimate of its cost for each disk and use this estimate to commit a newly

arriving request.

The other simple algorithms from Section 2 need only slightly more general information. We must

be able to decide how the schedule changes if the disk retrieving one particular request is changed.

The matching algorithm from Section 3 can be adapted similarly. For extending an augmenting

path we only need to know how the schedule of a particular disk changes if one request is replaced by

another. Although we loose optimality guarantees by these changes, the simulations from Section 5.6

indicate that even if the the load model is inaccurate, the matching based scheduler is good at reducing

large delays.

The above considerations give some evidence that the ranking of the scheduling algorithms deter-

mined for the simple model used in this paper could remain the same for a more realistic model if the

algorithms are augmented with an appropriate scan scheduling heuristics.

7.3 Fault Tolerance

An α-system can be implemented without a single point of failure. We use a system with at least

w independent processors. Data allocation is done in such a way that the subblocks of a request are

allocated on disks attached to different processors. A write request may be confirmed as soon as all

subblocks have been stored in the write buffers. The power supply has a battery backup providing

enough energy to flush all write buffers. The processors need to be connected by a fast redundant

network.9 The centralized scheduler needed for the matching based algorithms is no problem if all PEs

are regularly informed about their local schedule. When the processor responsible for scheduling fails,

a new processor takes over this task and reconstructs the current schedule using the local schedules of

the non-faulty processors.

Using virtual spares [21], even with r out of r+1 coding, we can tolerate multiple disk failures as

long as between disk failures there is enough time to remap the data of the failed disk. Appropriate

hash functions for this purpose are described in [13]. Except for the bandwidth of the missing disks,

the system performance is uninhibited once the reconfiguration is complete. This way there is no need

9If cost is more important than performance in the case of a fault, an asymmetric configuration with one fast network

and a cheap slow network may be used.
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to exchange failed disks immediately so that expensive 24h service contracts may become cheaper or

avoidable. For many applications one will not need hot swapable disks any more since failed disks only

need to be replaced in the regular service intervals if a sufficient number of disks is still intact.

7.4 Inhomogeneous Systems

Within the lifespan of a parallel disk server, hard disk technology usually changes so much that the

disks originally bought are likely to be outdated after some time. It may be very difficult or expensive

to buy the same type of disks when faulty disks are to be replaced or when the system is upgraded.

Therefore, it is better to upgrade the server with the disks which are currently most economical. In a

traditional system without automatic load balancing, it would become quite complicated to avoid the

slowest disks to become a bottleneck. With load balancing, speed imbalances are equalized as much as

possible automatically. The lazy queue algorithm does not even need to know the speed of the disks.

The other algorithms need information about capacity and speed for the different zones of the new disk.

This data can be found automatically by running a small benchmark when a new disk is configured into

the system.

Things get more complicated when the new disks also have larger capacity. As long as the speed

improvement of a new disk is halfway proportionate to the capacity improvement, we can modify the

hash function to map more data to this disk. It is less advisable to use disks where capacity grows much

faster than bandwidth (this easily happens if one insists on always buying the largest disks available).

In this case, it would be easiest to use some of the space for storing files which are rarely accessed.

7.5 Priorities and Different Application Types

Section 5.5 already gave an example how the needs of different applications and application types can

be coordinated by some form of priorization. For a practical system is is important to come up with

schemes that do not need much hand tuning or knowledge of many system and application parameters.

For example, it is probably feasible to assume that real time requests are recognizable and that an ad-

mission control policy outside the server makes sure that real time requests alone can never overload the

system. But it would be quite complicated to mark requests with such application specific parameters

as the buffer size defined in Section 5.4. We expect that this is not necessary either. For example, the
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system could monitor the load stemming from different sources of requests and compute the “modified

delays” needed in Section 5.5 based on these statistics.

8 Conclusion

The techniques developed in this paper form an algorithmic toolbox for running parallel disk systems

that achieve high performance and are easy to use. The combination of random placement via hashing

and redundant storage provides us with a general data placement strategy that works well for arbitrary

access patterns. Random duplicate allocation (RDA) greatly outperforms nonredundant placement and

even mirroring that has the same storage cost. The new scheduling algorithms lazy sharing and match-

ing improve on the previously known shortest queue algorithm for RDA. Lazy sharing is relatively

simple and easy to implement in a parallel system. The matching algorithm gives a further reduction of

large delays because it minimizes maximal delays in some precise sense. Although matching needs a

centralized scheduler, hundreds of disks can by served by our matching algorithm that uses an implicit

graph representation and fast incremental computation of augmenting paths.

Although Sections 4–7 discuss rather different topics they serve the common purpose to substan-

tiate the usefulness of the general approach (random redundant placement and clever asynchronous

scheduling algorithms). Section 4 proves that request streams with fluctuating arrival rates are not

much different from streams with periodic arrivals. Hence, the the space of parameters in our model

is further reduced. Only the two scalar parameters system size and arrival rate have to be varied. This

reduction in parameter space makes it possible to cover this space fairly well by the simulations given

in Section 5. Section 5.4 further generalizes the set of system inputs to a natural class of applications

that cannot be modeled by any open system. Section 5.5 closes a gap between the above two models by

explaining how both types of traffic can coexist efficiently.

The following Sections 6 and 7 generalize the model to cover a wider range of practical situations.

The limitation to duplicate storage is lifted in Section 6 by explaining how the scheduling algorithms

can be generalized to allow lower redundancy, more fault tolerance, or both. The generalized matching

algorithm might be of independent theoretical interest since it solves a problem in polynomial time that

is more general than matching. The generalized matching algorithm is even useful for the special case

of batched arrivals since the batched scheduling algorithm from [2] does not work for w � r+2.
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Sections 7 introduces further generalizations of the algorithms and allocation strategies to cope with

variable access times, seek times, inhomogeneous systems and different application types. Sections 6

and 7 stay on the algorithmic level since the larger space of possible parameters makes it much more

difficult to cover this space by simulations. Perhaps future work should directly make the step to

implementing the algorithms on an existing system (real or simulated) and measure the performance

for existing application benchmarks like SPEC SFS10 or the TPC benchmarks 11.
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