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ABSTRACT

We develop an algorithm for parallel disk sorting, whose
I/O cost approaches the lower bound and that guarantees
almost perfect overlap between I/O and computation. Pre-
vious algorithms have either suboptimal I/O volume or can-
not guarantee that I/O and computations can always be
overlapped. We give an efficient implementation that can
(at least) compete with the best practical implementations
but gives additional performance guarantees. For the exper-
iments we have configured a state of the art machine that
can sustain full bandwidth I/O with eight disks and is very
cost effective.

Categories and Subject Descriptors

D.4.2 [Storage Management]: secondary storage; E.5
[Files]: sorting/searching; F.2.2 [Nonnumerical Algo-
rithms and Problems]: sorting and searching

General Terms

algorithms, performance, theory

Keywords

algorithm engineering, algorithm library, external memory
sorting, large data sets, overlapping I/O and computation,
parallel disks, prefetching, randomized algorithm, secondary
memory

1. INTRODUCTION
Sorting is one of the most important operations performed

on computers. In particular, sorting is a crucial tool when
it comes to processing large volumes of data in secondary
memory. Since a single disk is much cheaper than a high
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performance computer, a high performance external sorting
algorithm needs to be able to exploit many disks. Interest-
ingly, parallel disk sorting is a nontrivial problem. Asymp-
totically I/O optimal deterministic algorithms [17, 18] are
complicated and have rather large constant factors. There
are relatively simple randomized algorithms that approach
the lower bound of 2N/DB logM/B N/B I/Os for sorting N
elements using D disks, fast memory of size M , and blocks
of size B [12]. These algorithms are so close to algorithms
used in practice that theory and practice seem to be in har-
mony here. However, at least two issues remain before we
can claim that the best randomized theoretical algorithms
are also good in practice: We need a high performance im-
plementation and we have to reconsider the model of com-
putation when talking about constant factors. Perhaps the
main issue for sorting is that I/O and internal work are
completely separate issues in the I/O model of Vitter and
Shriver [29]. In this paper we therefore refine an algorithm
from [12] so that I/O and computation are overlapped and
give an efficient implementation.

Perhaps the most widely used external sorting algorithm
is k-way merge sort: During run formation, chunks of Θ(M)
elements are read, sorted internally, and written back to the
disk as sorted runs. The runs are then merged into larger
runs until only a single run is left. k = O(M/B) runs can
be sorted in a single pass by keeping up to B of the smallest
elements of each run in internal memory. Using randomiza-
tion, prediction of the order in which blocks are accessed, a
prefetch buffer of O(D) blocks, and an optimal prefetching
strategy, it is possible to implement k-way merging using
D disks in a load balanced way [12]. However, the rate at
which new blocks are requested is more difficult to predict
so that this algorithm does not guarantee overlapping of I/O
and computation. Section 2 shows that these fluctuations in
the block request rate can be compensated by a FIFO buffer
of k + Θ(D) blocks.

Whereas Section 2 uses synchronized parallel disk I/O
steps to obtain a simple cost model, Section 3 explains how
to implement the algorithm portably and efficiently in a
fully asynchronous manner. The implementation is part of
<stxxl>, a C++ library for external memory algorithms
that we are currently developing. <stxxl> implements al-
gorithms and data structures from the standard template
library STL for massive data sets. The I/O layer — the
lowest layer of <stxxl> — supports efficient asynchronous
I/O that is currently implemented using multi-threading and
unbuffered blocking file system I/O.

In Section 4 we describe how to achieve 375 MByte/s mea-



sured I/O bandwidth for about 3000 ¤ using a dual-Xeon
server board with multiple PCI busses, cheap IDE disk con-
trollers, and eight 80 GByte disks. This is about one third
of the measured main memory bandwidth of this system so
that one can conclude that on machines configured for high
bandwidth I/O, the I/O bandwidth is hardly a limiting fac-
tor even if cost is an issue. Although the particular hard-
ware configuration is a very dated result, we believe that
a detailed description exemplifies an approach to configure
hardware that will be valid for some time to come.

Section 5 summarizes the results of more than 1000 hours
of experiments. <stxxl> is up to three times faster than
previous libraries sustaining an I/O bandwidth of up to 315
MByte/s overlapped with sorting. The best results are ob-
tained when the available input buffers are split between a
prefetch buffer that minimizes I/O time using the schedul-
ing strategy from [12] and a FIFO buffer for overlapping
I/O and computation. Using only one of these strategies is
inferior. The block sizes needed for good performance are
several MBytes so that for large inputs, we enter the area
where supposedly theoretical algorithms outperform plain
striping that increases the block size requirement by another
factor D. Perhaps the best way to characterize the bottom
line performance of our system bought in July 2002 is to
note that it sorts more cost effectively than the system that
won the April 2002 Penny1 Sort Benchmark but it does that
about 6.5 times2 faster than this low end system with two
disks.

Related Work

The design of the <stxxl> library owes a lot to the previous
external memory libraries TPIE [27, 4], LEDA-SM[10], and
JavaXXL [25, 26]. <stxxl> adds emphasis on high perfor-
mance, i.e., parallel disks, overlapping of I/O and computa-
tion, large inputs, and low internal overhead. None of the
above libraries explicitly handles parallel disks and overlap-
ping I/O and computation relies largely on the operating
system. We view this as problematic3 for leading edge per-
formance because prefetching and caching of the operating
system knows less about the application, leaves less memory
for sorting itself, and often requires additional copies of the
data. LEDA-SM, TPIE, and [9, 8] allow only 2GByte input
size.

Barve and Vitter [6] implement a parallel disk algorithm
[5] that can be viewed as the immediate ancestor of our
algorithm. Innovations with respect to this work are: A dif-
ferent allocation strategy that enables better theoretical I/O
bounds [13, 12]; a prefetching algorithm that optimizes I/O
steps and never evicts data previously fetched; overlapping
of I/O and computation; a completely asynchronous imple-

1The cost of the hardware is spread over three years. Then
it is measured how much data can be sorted in an inter-
val of time that costs one US-cent. See http://research.
microsoft.com/barc/sortbenchmark/.
2We sort the same amount of 125 million 100 byte elements
but use 8 byte keys rather than 10 byte keys. We believe
that for a tuned implementation and random keys this makes
little difference.
3We observed an extreme example on an earlier Solaris
based experimental platform: The system discarded cached
blocks more slowly than they came in from parallel disks.
The result was that all the application memory was swapped
out in favor of cached disk blocks that were not needed at
all . . .

mentation that reacts flexibly to fluctuations in disk speeds;
and an implementation that sorts many GBytes and does
not have to artificially limit internal memory size to obtain
a nontrivial number of runs.

Chaudhry and Cormen [9, 8] give a sophisticated dis-
tributed memory, parallel disk implementation of column
sort. The algorithm also has the theoretical advantage of
being deterministic. This theoretical advantage translates
into the practical benefit that disk access patterns are very
regular and easy to overlap with computation. A drawback
of column sort is that even in its most sophisticated form, it
needs about 50 % larger I/O volume than multi-way merge
sort (three versus two passes over the data). Another draw-
back is that column sort seems to need rather fine grained
I/O because the maximum possible block size for about half

of the I/Os is about N1/3. For example, for 2GByte of 128
byte records this would be blocks of 32KByte which is far
from the optimal block sizes that are nowadays measured
in MBytes (see Figure 13). A theoretical disadvantage is
that the maximal input size for which the three-pass algo-
rithm works is O(M3/2). For comparison, multi-way merge
sort allows O(M2/B) elements for a two-pass algorithm and
O(M3/B2) for a three-pass algorithm. Column sort can be
generalized for larger inputs at the cost of more I/Os. Using
recursion, aribrarily large inputs can be handled. But this
does not lead to asymptotically optimal performance.

Rajasekaran [22] gives another asymptotically suboptimal
deterministic parallel disk sorting algorithm that runs in
three passes for not too large inputs.

Prefetch buffers for disk load balancing and overlapping
of I/O and computation has been intensively studied [21, 7,
3, 14, 13, 12]. But we have not seen results that guarantee
overlapping of I/O and computation during parallel disks
merging of arbitrary runs.

There are many good practical implementations of sorting
(e.g. [19, 1, 30, 20]) that address parallel disks, overlapping
of I/O and computation, and low internal overhead. How-
ever, we are not aware of fast implementations that give the-
oretical performance guarantees on achieving asymptotically
optimal I/O. Most practical implementations use a form
of striping that requires O(N/DB logΘ(M/DB) N/B) I/Os
rather than the optimal O(N/DB logΘ(M/B) N/B). This dif-
ference is usually considered insignificant for practical pur-
poses. But on our system we already have to go somewhat
below the block sizes that give best performance in Figure 13
if the input size is 128 GBytes. Another reduction of the
block size by a factor of eight could increase the run time
significantly. We are also not aware of high performance
implementations that guarantee overlap of I/O and compu-
tation during merging for inputs such as the one described
in the beginning of Section 2.3.

On the other hand, many of the practical merits of our
implementation are at least comparable with the best actual
implementations: We are close to the peak performance of
our system and its price performance ratio is better than
anything we have seen. Our library should also be easy to
use since it is based on the well known interface of the STL.

2. MULTIWAY MERGE SORT

WITH OVERLAPPED I/OS
This section derives an parallel disk sorting algorithm that

almost perfectly overlaps I/O and computation. More for-



.

.

..

read buffers

.

.

..

k+O(D)
overlap buffers

merging

−ping disk scheduling

1

k

m
erg

e

2
D

 w
rite b

u
ffers

D blocks

m
erg

e     b
u
ffers

overlap−

elements

O
(D

) p
refetch

 b
u
ffers

Figure 1: Data flow through the different kinds of
buffers for overlapped parallel disk multi-way merg-
ing. Data is moved in units of blocks except between
the merger and the write buffer.

mally, the following theorem is shown.

Theorem 1. Let L denote the time needed for accessing
one block of size B on each of D disks. Let Tsort(n) denote
the time needed to sort n elements internally and ℓ(k) the
time needed to produce one element of output in internal k-
way merging. If I/O and computation can be overlapped, N
elements can be sorted in time

Tformruns +
⌈

logΘ(M/B) k′

⌉

· Tm

where Tformruns = max
(

k′Tsort

(

N
k′

)

, 2LN
DB

)

+ O
(

LM
DB

)

is the time needed for run formation,

Tm = max
(

2LN
(1−ǫ)DB

, ℓ(k)N
)

+ O
(

L min
(

M
DB

, 1
ǫ
log D

ǫ

))

is the time needed for merging groups of k runs, k′ = O(N/M)
is the total number of runs, k = Θ(M/B) is the merging de-
gree used, and ǫ = Θ(DB/M).

To help reading this complicated formula, one can note that
in all practical cases, k = k′, i.e., all runs can be merged in

a single pass. We get
⌈

logΘ(M/B) k′

⌉

= 1. ǫ is some small

constant. The deviation from the lower bound is the factor
1/(1 − ǫ) and a term logarithmic in D that is independent
of the input size. Section 2.1 establishes that any internal
sorting algorithm can be perfectly overlapped with I/O ex-
cept for O(M/DB) I/Os at the beginning and at the end.
Since the result on merging is more difficult to establish, it is
obtained in three steps. Section 2.2 describes merging from
the point of view of a merging thread that reads blocks in
an order predicted during run formation and writes individ-
ual elements. Each block has to be read exactly once using
one merge buffer block for each run. Section 2.3 explains
how an I/O thread interfaces this view with a I/O model
that allows parallel access to D arbitrary blocks in an I/O
step [2]. The I/O thread is responsible for overlapping I/O
with computation. Using an overlap buffer the algorithm
achieves perfect overlapping of I/O and computation up to
a small overhead for filling and emptying the merge buffers.

Section 2.4 explains how a prefetch buffer can be used to
implement this parallel access model on D parallel disks.
This emulation costs a constant factor close to one in I/O

overhead plus a logarithmic additive term. Figure 1 illus-
trates the data flow between these components of parallel
disk multi-way merging.

2.1 Run Formation
There are many ways to overlap I/O and run formation.

We start with a very simple method that treats internal
sorting as a black box and hence can use the fastest available
internal sorters.4 Two threads cooperate to build k runs of
size M/2:

post a read request for runs 1 and 2

thread A: | thread B:

for r:=1 to k do | for r:=1 to k-2 do

wait until | wait until

run r is read | run r is written

sort run r | post a read for run r+2

post a write for run r |

Figure 2 illustrates how I/O and computation is overlapped
by this algorithm. We omit the proof of the following theo-
rem that would essentially be a simple formalization of Fig-
ure 2.

Corollary 2. An input of size N can be transformed
into sorted runs of size M/2 −O(DB) in time

max(2Tsort(
M

2
)
N

M
,
2LN

DB
) + O(

LM

DB
)

where Tsort(n) denotes the time for sorting n elements in-
ternally and where L is the time needed for an I/O step.

A natural question arising from this discussion is how long
the runs can be if we want to overlap I/O and computa-
tion. Knuth [15, Section 5.4.1] describes an algorithm that
achieves average run length 2M . A recent implementation
that even works for variable length records has been de-
scribed by Larson and Graefe [16]. However, this algorithm
is not cache efficient and requires an additional pointer for
each element in the input. We therefore outline a relatively
simple reformulation that is space efficient even for small
records, cache efficient, and provably allows overlapping of
I/O and computation.

A more abstract formulation is a good starting point: The
algorithm maintains two priority queues Q and Q′. Initially,
M elements are inserted into Q. The following operations
are repeated until Q is empty:

q := deleteMinimum(Q)
read a new element q′ from the input
if q′ < q then Q′.insert(q′) else Q.insert(q′)
write(q)

Then one run is finished, and a new run is started based
on the now M elements in Q′. Although there are cache
efficient priority queues [23], these have a too large worst
case access time and we have to explain how to make the
queues space efficient. The following representation solves
both problems: Let ǫ denote some small constant. We rep-
resent the priority queues by collections of sorted sequences
of size up to ǫM . Q additionally has a buffer priority queue
Q0 of size up to ǫM . Q′ also has an insertion buffer Q′

0 that
is an unsorted bag of up to ǫM elements. Insertions into

4If this method has not been published yet, we would still
guess that it is folklore.
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Figure 2: Overlapping I/O and computation during run formation.

Q or Q′ go into these buffers. When they are filled, they
are sorted and added to the collection of sorted sequences
for the queues. This takes time Tsort(ǫM). Since the size
of a run increases by ǫM whenever a new sorted sequence
is added, the average number of sequences in a run is 2/ǫ.
Using a binary heap for Q0 and multi-way merging for Q, a
deleteMinimum can be implemented in time O(log M). The
average case insertion time into the buffers is O(1) even if
binary heaps are used. Using O(max(DB, ǫM)) additional
space for buffering input and output, perfect overlapping
between I/O and computation is possible. The sorted se-
quences can be made space efficient by representing them as
a linked list of small blocks of elements. As soon as the last
element of a block is removed, the block is put into a free
list that supplies empty blocks when building new sorted
sequences.

2.2 Multiway Merging
We want to merge k sorted sequences comprising N ′ ele-

ments stored in N ′/B blocks (In practical situations, where
a single merging phase suffices, we will have N ′ = N). In
each iteration the merging thread chooses the smallest re-
maining element from the k sequences and hands it over to
the I/O thread. Prediction of read operations is based on
the observation that the merging thread need not access a
block until its smallest element becomes the smallest unread
element. We therefore record the smallest keys of each block
during run formation. By merging the resulting k sequences
of smallest elements, we can produce a sequence σ of block
identifiers that indicates the exact order in which blocks are
logically read by the merging thread. The overhead for pro-
ducing and storing the prediction data structure is negligible
because its size is a factor at least B smaller than the input.

The prediction sequence σ is used as follows. The merging
thread maintains the invariant that it always buffers the
k first blocks in σ that contain unselected elements, i.e.,
initially, the first k blocks from σ are read into these merge
buffers. When the last element of a merge buffer block is
selected, the now empty buffer frame is returned to the I/O
thread and the next block in σ is read.

The keys of the smallest elements in each buffer block are
kept in a tournament tree data structure [15] so that the
currently smallest element can be selected in time O(log k).
Hence, the total internal work for merging is O(N ′ log k). To
establish that this strategy correctly merges the sequences,
we have to show that the smallest element not selected yet
resides in a block that is buffered.

Lemma 3. At any point during multi-way merging, the
smallest element among the elements in the k merge buffer
blocks is minimal among all elements not yet selected by the
merging thread.

Proof. Suppose there is an unselected element e that is
smaller than all unselected elements in the merge buffer
blocks. Element e must be the smallest element of some
block b in some sequence j such that none of the blocks of
sequence j are in a merge buffer block. Since there are only
k input sequences, there must be another sequence j′ for
which at least two blocks b′ and b′′ are buffered. Call the
first element of the second block e′′. Since b′′ was read be-
fore b we must have e′′ ≤ e. Furthermore, there must be
an unselected element e′ in b′ and we have e′ ≤ e′′ ≤ e.
This contradicts the assumption that e is smaller than any
buffered unselected element.

We have now defined multi-way merging from the point of
view of the sorting algorithm. Note that the merging thread
need not know anything about the k input runs and how
they are allocated. Its only input is the prediction sequence
σ. In a sense, we are merging blocks and the order in σ
makes sure that the overall effect is that the input runs are
merged.

2.3 Overlapping I/O and Merging
Although we can predict the order in which blocks are

read, we cannot easily predict how much internal work is
done between two reads. For example, consider k identical

runs storing the sequence 1B−12 3B−14 5B−16 · · · . After
initializing the merge buffers, the merging thread will con-
sume k(B − 1) values ‘1’ before it posts another read. Then
it will post one read after selecting each of the next k values
‘2’. Then there will be a pause of another k(B − 1) steps
and another k reads quickly following each other, etc. We
explain how to overlap I/O and computation despite of this
irregularity using the I/O model of Aggarwal and Vitter [2]
that allows access to D arbitrary blocks within one I/O step.
To model overlapping of I/O and computation, we assume
that an I/O step takes time L and can be done in parallel
with internal computations. We maintain an overlap buffer
that stores up to k + 3D blocks in a FIFO manner. When-
ever the overlap buffer is nonempty, a read can be served
from it without blocking. Writing is implemented using a
write buffer FIFO with 2DB elements capacity. An I/O
thread inputs or outputs D blocks in time L using the fol-
lowing strategy: Whenever no I/O is active and at least DB
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elements are present in the write buffer, an output step is
started. When no I/O is active, less than D output blocks
are available, and at least D overlap buffers are unused, then
the next D blocks from σ are fetched into the overlap buffer.

The following theorem states that this simple strategy al-
lows almost perfect overlapping of I/O and computation.

Theorem 4. Merging k sorted sequences with a total of
N ′ elements can be implemented to run in time

max

(

2LN ′

DB
, ℓN ′

)

+ O

(

L

⌈

k

D

⌉)

where ℓ is the time needed by the merging thread to produce
one element of output and L is the time needed to input or
output D arbitrary blocks.

The most basic tool for the proof of Theorem 4, is the
following sufficient condition for the availability of input for
the merging thread.

Lemma 5. Whenever the overlap buffer and merge buffer
together contain at least kB elements, then at least one ele-
ment can be merged without fetching additional blocks.

Proof. Suppose to the contrary that a new block needs to
be fetched. This can only be the case if the overlap buffer
is empty. But this implies that all k merge buffers are full.
This contradicts the assumption that no elements can be
merged.

The key to the proof of Theorem 4 are the following two
lemmas that represent the I/O bound respectively the com-
pute bound case.

Lemma 6. If 2L ≥ DBℓ then the I/O thread never blocks
until all input blocks are fetched.

Proof. We describe the state of the system by the pair
(w, r) where w is the number of elements in the write buffer
and r is the total number of elements in the overlap buffer
and the merge buffers. Let y = ⌊L/ℓ⌋ denote the number
of elements that can be merged during one I/O step. Since
2L ≥ DBℓ, we have y ≥ DB/2. If y ≥ DB, Lemma 5
implies that r can never exceed kB+DB so that the overlap
buffer always has enough space to fetch D additional blocks.
The interesting case is DB/2 ≤ y < DB.

We want to show that the system never enters a state
where the I/O thread can block. This can only happen if

r
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Figure 4: Proof of Lemma 7.

w < DB and r > kB + 2DB because otherwise we can
either output or fetch D blocks. The dark shaded area in
Figure 3 defines this area. If r > kB + y there are two sub-
cases: If w < DB, a fetch step is executed leading to the
state transition (w, r) ❀ (w+y, r+DB−y). If w ≥ DB, an
output step leads to the state transition (w, r) ❀ (w−DB+
y, r−y). With the help of Figure 3 it is now easy to see that
only the light shaded regions can lead to a transition into the
blocking region. But there are no transitions into the light
shaded regions. This remains true for r ≤ kB + y because
from there we cannot get to a state with r > kB + DB.

Lemma 7. If 2L < DBℓ then after k/D+1 I/O steps, the
merging thread never blocks until all elements are merged.

Proof. Define w, r, and y as in the proof of Lemma 6.
Since 2L < DBℓ, we have y < DB/2. We want to show that
the system never enters a state where the merging thread
can block. This can only happen if w > 2DB − y or r <
kB+y. Otherwise, we can distinguish three cases illustrated
in Figure 4. If the I/O thread is active, we have the same
state transitions as in Lemma 6, (w, r) ❀ (w+y, r+DB−y)
if w < DB and r < kB + 2DB and (w, r) ❀ (w − DB +
y, r − y) if w ≥ DB. Otherwise, the I/O thread blocks
and the merging thread moves elements to the write buffer
until there is room for fetching or writing another D blocks.
These transitions imply that the only region in the state
space that can lead to a state where the merging thread is
blocked, is w ≥ DB and r ∈ [kB + y, kB + 2y). But this
region cannot be reached from a state where the merging
thread is active.

Now it is easy to establish Theorem 4.
Proof. If 2L ≥ DBℓ, Lemma 6 implies that after time

LN ′/DB, all blocks have been fetched. It remains to merge
O((k + D)B) elements from the merge and overlap buffer
and to output them. This takes time
O(ℓ(k + D)B + L ⌈k/D⌉) = O

(

L
⌈

k
D

⌉)

.
If 2L < DBℓ, Lemma 7 implies that after k/D + 1 I/O

steps (in time O(L ⌈k/D⌉), the merging thread will merge



all elements in time ℓN ′. Then at most two further I/O steps
suffice to flush the write buffer. The overall time needed is
ℓN ′ +LO(⌈k/D⌉).

2.4 Disk Scheduling
The I/Os for run formation and for the output of merg-

ing are perfectly balanced over all disks if all sequences are
striped over the disks, i.e., sequences are stored in blocks of
B elements each and the blocks numbered i, . . . ,i+D−1 in
a sequence are stored on different disks for all i. In partic-
ular, the original input and the final output of sorting can
use any kind of striping.

The situation is more complicated during merging. Al-
though each run is striped over the disks, the order σ pre-
scribed by the smallest elements in the runs can lead to
highly irregular access patterns. Vitter and Hutchinson [28]
have shown that Randomized Cyclic Allocation (RC) makes
the accesses in σ at least as well balanced as independent
accesses to random disks. In RC allocation, the i-th block of
a run is stored on disk π(i mod D) where π is a random per-
mutation that is chosen independently for each run. In [12]
it is then shown that an optimal prefetch order σ′ that uses
a prefetch buffer of size m = Θ(D) blocks can be computed
from σ by simulating a simple optimal writing algorithm for
the reverse sequence σR. It is also shown that after a startup

phase of min(k + N′

DB
, m

D
log m) input steps, (1 − O

(

D
m

)

)D
blocks from σ can be fetched per input step on the average
(k is the number of runs).

This is not quite sufficient for our purposes because over-
lapping I/O and computation requires “uniform” progress
during each I/O step. But going back to the probabilistic
core of the above analysis in [24] we see that the result can be
strengthened: In almost every input step, (1 − O(D/m))D
blocks from σ can be fetched. The failure probability is
exponentially small in D.

The bottom line is that a prefetch buffer of m blocks al-
lows us to emulate the model assumed in Section 2.3 except
for a short startup phase, a reduction of the effective num-
ber of disks by D/m, and possibly occasional “hiccups” that
affect a negligible fraction of the I/O steps. We obtain the
following refined version of Theorem 4

Corollary 8. For any ǫ > 0 and D = Ω(1/ǫ),5 there is
a prefetch buffer of size m = Θ(D/ǫ) such that merging k
sorted sequences with a total of N ′ elements can be imple-
mented to run in time

max

(

2LN ′

(1 − ǫ)DB
, ℓN ′

)

+O

(

L

(

k

D
+ min

(

k,
1

ǫ
log

D

ǫ

)))

where ℓ is the time needed by the merging thread to pro-
duce one element of output, L is the time needed to input or
output D arbitrary blocks, and m is the size of the prefetch
buffer.

A further remark is necessary for the (unrealistic) case of
very large inputs where several merging phases are needed.
In that case, a prefetching sequence σ′ for all merging op-
erations in a phase should be computed. The additive term
O

(

L( k
D

+ min(k, 1
ǫ
log D

ǫ
))

)

then only occurs once per phase.

5We believe that the last restriction is an artifact of the
analysis in [24, 12] but a formal proof that lifts it might be
much more complicated without yielding much additional
insight.

3. IMPLEMENTATION
Our implementation of sorting is part of a new C++ li-

brary <stxxl> for external computing that is designed for
maximum compatibility with the standard template library
(STL). Another goal of the library is very high performance
with support for parallel disks and overlapping of I/O and
computation. We started with an implementation of sort-
ing because it already tests many of these properties and
since an efficient sorter is a key ingredient for many external
algorithms.

The I/O layer of <stxxl> implements asynchronous paral-
lel block I/O. This level supports the minimum functionality
needed to abstract from details of the file system and the op-
erating system. Our current implementation runs on Linux
using unbuffered synchronous file system I/O and POSIX
threads for supporting asynchrony: There is one thread for
each disk which maintains a read queue and a write queue.
It arbitrates between these queues using a strategy chosen
by the higher levels of the library. In our sorting algo-
rithm, writing is prioritized, i.e., when the thread returns
from an I/O operation, it first checks the write queue and
posts the next request if it is nonempty. Only if the write
queue is empty it tries the read queue. Later implementa-
tions might use completely different mechanism like the high
performance asynchronous I/O supported by DAFS6.

Run Formation. We build runs of size close to M/2 but
there are some differences to the simple algorithm from Sec-
tion 2.1. Overlapping of I/O and computation is achieved
using a call-back mechanism supported by the I/O layer of
<stxxl> rather than by multi-threading. Thus, the sorter
remains portable over different operating systems with dif-
ferent interfaces to threading.

To limit the memory bandwidth requirements for large
elements with small key fields, we implement key sorting,
i.e., after reading elements using DMA, we extract pairs
(key, pointerToElement), sort these pairs, and then move
elements in sorted order to write buffers from where they
are output using DMA.

Furthermore, we exploit random keys. We use two passes
of MSD (most significant digit) radix sort of the key-pointer
pairs. The first pass uses the m most significant bits where
m is a tuning parameter depending on the size of the pro-
cessor caches and of the TLB (translation look-aside buffer).
This pass consists of a counting phase that determines bucket
sizes and a distribution phase that moves pairs. The count-
ing phase is fused into a single loop with pair extraction.
The second pass of radix sort uses a number of bits that
brings us closest to an expected bucket size of two. This
two-pass algorithm is much more cache efficient than a one-
pass radix sort.7 The remaining buckets are sorted using
a comparison based algorithm: Optimal straight line code
for n ≤ 4, insertion sort for n ∈ {5..16}, and quicksort for
n > 16.

Multi-way Merging. We have adapted the tuned multi-
way merger from [23].

Overlapping I/O and Computation. We integrate the

6http://www.dafscollaborative.org/
7On our system we get a factor 3.8 speedup over one pass
radix sort and a factor 1.6 over STL’s sort which in turn
is faster than a hand tuned quicksort (for sorting 221 pairs
storing a random four byte key and a pointer).



prefetch buffer and the overlap buffer to a read buffer. We
distribute the buffer space between the two purposes of min-
imizing disk idle time and overlapping I/O and computation
indirectly by computing an optimal prefetch sequence for a
smaller buffer space.

Asynchronous I/O. I/O is performed without any syn-
chronization between the disks. The prefetcher described
in Section 2.4 computes a sequence σ′ of blocks indicating
the order in which blocks should be fetched. As soon as a
buffer block becomes available for prefetching, it is used to
generate an asynchronous read request for the next block
in σ′. All I/O is implemented without superfluous copy-
ing. Blocks are moved by DMA (direct memory access)
directly to user memory. A fetched block then travels to the
prefetch/overlap buffer and from there to a merge buffer
simply by passing a pointer. Similarly, when an element is
merged, it is directly moved from the merge buffer to the
write buffer and a block of the write buffer is passed to the
output queue of a disk simply by passing a pointer to the
the I/O layer of <stxxl> that then uses write to output the
data using DMA.

4. HARDWARE
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Figure 5: Simplified scheme of our experimental
I/O-platform.

Our starting point was the belief that the gap between the-
ory and practice in external memory parallel disk sorting can
only be closed by demonstrating close to peak performance
on state of the art hardware. For us and probably other
groups this was a nontrivial problem. When we started, we
had several year old parallel disk hardware with a factor of
ten lower bandwidth than the state of the art. More recent
alternatives were PCs with a 32bit 33MHz PCI bus that
are hopelessly limited in I/O bandwidth; a file server that
could not be used for experiments because it serves hundreds
of researchers; and a high end compute server for which a
matching equipments with disks would have cost a six digit
amount of money.

We therefore decided to configure a hardware platform for
testing external memory algorithms from scratch. The ma-
chine was bought in July 2002. The design objectives were
high bandwidth at low cost, and the use of standard com-

ponents. The first challenge was to find an affordable main-
board that breaks out of the limitations of a 32bit 33MHz
PCI bus. We decided on a Supermicro SUPER P4DPE dual
processor board with two 2GHz Intel Xeon processors (512
KByte cache and 2 threads per processor) at a cost around
675 + 2 × 415¤. The board supports several independent
64bit PCI busses. Although we have not explicitly paral-
lelized the sorter yet, the second processor is probably useful
because it makes overlapping of I/O and computation more
effective. We bought 1GByte of RAM.

The next important design decision was to use IDE disks
rather than SCSI disks because they have higher capacity
and similar I/O bandwidth than SCSI disks but are much
cheaper. We decided on IBM 120GXP disks that have 80
GByte capacity at 120 ¤ each.There were two difficulties to
overcome however. It turned out that 64bit controllers are
very expensive. Fortunately it turned out that dual channel
Promise 100 TX2 controllers are cheap (around 40 ¤ each).
They work with 32 bits and 66MHz. Four of them on two
66MHz PCI busses are sufficient to support eight disks at
full bandwidth.8

The second problem was to find a casing that allows to
connect eight IDE disks given the limited cable length of
the ATA standard. We choose a casing that has the shape
of a double-bigtower. It is cheaper than a comparable rack-
mount casing and works with shorter disk cables because the
motherboard in the middle. We also use round disk cables
that are less bulky than the usual flat ones.

We installed Debian Linux with kernel version 2.4.20 on
this machine. Then we began with basic performance tests.
Originally we thought that disk access via raw devices would
give maximal bandwidth. Interestingly, this was only true
up to four disks. Beyond that, the system started thrashing.
We traced this problem down to the fact that there is some
software intervention for each chunk of 512 bytes. Appar-
ently, this overwhelms the operating system for too many
disks. Good performance is obtained using unbuffered I/O
in the ext2 file system where files are opened with the option
O DIRECT and where addresses and block sizes are multiples
of the virtual memory page size. Only then is it possible on
PC hardware to move data directly from disk to user mem-
ory using DMA. We also decreased the number of inodes
(blocks with meta-data) to reduce file system overhead.

With these measures we obtain an input bandwidth of up
to 375 MByte/s on eight disks using the outermost (fastest)
zones9 of the disks. This is 97 % of the peak bandwidth
specified by IBM. It was possible to attach a ninth disk
obtaining 418 MByte/s. Bandwidth scaling stopped with
the tenth disk. Figure 5 outlines the configuration of our
hardware.

The bottom line is that for a system that costs three to
four times as much as a standard PC with a single disk, we
obtain eight times the I/O bandwidth. We believe that such
a system is a more likely candidate for running applications
with massive data sets than an ordinary PC and should

8In reality, incompatibilities between Linux and the con-
trollers forced us to use five controllers in the following
configuration: three controllers with one disk each on PCI-
bus 1, two controllers with two disks each on PCI-busses 2
and 3, and one disk on the on-board controller.
9Modern disks store data at a roughly constant density so
that the higher absolute speed of the outer parts of the disk
allow around twice as high bandwidth as the inner parts.



therefore be preferred for performance studies of external
memory algorithms.

An interesting observation is, that measuring the main
memory bandwidth with the stream benchmark10 we see
1200 MBytes/s. This implies that any external memory
algorithm that accesses four bytes of main memory for each
byte of I/O may already be compute bound.

5. EXPERIMENTS
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If not otherwise mentioned, we use random 32 bit integer
keys to keep internal work limited. Runs of size 256 MByte11

are build using key sorting with an initial iteration of 10
bit MSD radix sort. We choose block sizes in such a way
that a single merging phase using 512 MBytes for all buffers

10http://www.cs.virginia.edu/stream/
11This leaves space for two runs build in an overlapped way,
buffers, operating system, code, and, for large inputs, the
fact that the current implementation of the ext2 file system
needs 1 byte of internal memory for each KByte of disk space
accessed via O DIRECT.

suffices. Input sizes are powers of two between 2 GByte
and 128 GByte with a default of 16 GByte12. When not
otherwise stated, we use eight disks, 2 MByte blocks, and
the input is stored on the fastest zones. All programs are
compiled with g++ version 3.2 and optimization level -O6.

To compare our code with previous implementations, we
have to run them on the same machine because technologi-
cal development in recent years has been very fast. Unfortu-
nately, the implementations we could obtain, LEDA-SM [10]
and TPIE [26], are limited to inputs of size 2 GByte which
for our machine is a rather small input. Figure 6 compares
the single disk performance of the three libraries. Using the
best block size for each library. The flat curves for TPIE and
<stxxl> indicate that both codes are I/O bound even for
small element sizes. This is even true for the fully compari-
son based version of <stxxl>. Still, <stxxl> is significantly
faster than TPIE. This could be due to better overlapping of
I/O and computation or due to higher bandwidth of the file
system calls we use. <stxxl> sustains an I/O bandwidth
of 45.4 MByte/s which is 95 % of the 48 MByte/s peak
bandwidth of the disk at their outermost zone. LEDA-SM
is compute bound for small keys and has the same perfor-
mance as TPIE for large keys.

To get some kind of comparison for parallel disks, we
run the other codes using Linux Software-RAID 0.9 and
8 × 128KByte stripes (larger stripes did not improve per-
formance). Here <stxxl> is between two and three times
faster than TPIE and and sustains an I/O bandwidth of
315 MByte/s for large elements. Much of this advantage
is lost when <stxxl> also runs on the Software-RAID. Al-
though we view is as likely that the Software-RAID driver
can be improved, this performance difference might also be
an indication that treating disks as independent devices is
better than striping (as predicted by theory).

Figure 8 shows the dependence of performance on element
size in more detail. For element sizes ≥ 64, the merging
phase starts to wait for I/Os and hence is I/O bound. The
run formation phase only becomes I/O bound for element
sizes around 128. This indicates areas for further optimiza-
tion. For small elements, it should be better to replace key
sorting by sorters that always (or more often) move the en-
tire elements. For example, we have observed that the very
simple loop that moves elements to the write buffer when the
key-pointer pairs are already sorted can take up to 45 % of
the CPU time of run formation. For small keys it looks also
promising to use parallelism. Already our cheap machine
supports four parallel threads.

We now turn to a more detailed analysis of prefetching
and overlapping of I/O and computation. We first focus on
the read buffers and hence fix the write buffer size to 4D
blocks in Figures 9–11. Figure 9 compares the I/O time
of the naive algorithm that tries to fetch blocks in the or-
der specified by σ with optimal prefetching. It varies the
fraction of the read buffer devoted to prefetching. As one
would expect from the theoretical analysis in [12], the I/O
time decreases as this fraction grows. However, Figure 10
indicates that the overall time needed for merging is best if
most of the read buffer is dedicated to overlapping I/O and
computation. Only for very small read buffers there is a sig-
nificant difference between the naive algorithm and optimal

12We have a few measurements with 256 GBytes but the
problem with ext2 mentioned above starts to distort the
results for this input size.
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prefetching.
In Figure 11 we compare the overall merging time for the

naive algorithm and the following heuristics for choosing the
prefetch buffer size w as a function of the read buffer size r:
w = 2D + 3

10
(r − 2D). We have not shown the empirically

optimal choice because it is very close to this heuristics.
Based on this heuristics for the read buffer, Figure 12 ex-

plores the tradeoff between read buffer size and write buffer
size given a total buffer size of 188 blocks. Although we
see the asymmetry between read buffer size and write buffer
size predicted by the theoretical analysis, it turns out that
write buffers much larger than 2D blocks can be profitable.
A likely reason is that a write buffer of size w = aD blocks
leads to an effective output block size of (a−1)B thus reduc-
ing seek times and perhaps also rotational delays. Based on
this observation, we use the following heuristics for the write
buffer size in the subsequent figures: w = max(t/4, 2D)
when the total number of buffer blocks available for read
and write buffers is t. The total number of blocks available
in our measurements is t = (M − kB)/B where M = 512
MByte and k = ⌈2N/M⌉ is the number of runs.

Figure 13 shows the dependence of the execution time on
the block size. We see that block sizes of several MBytes
are needed for good performance. The main reason is the
well known observation that blocks should consist of several
disk tracks to amortize seeks and rotational delays over a
large consecutive data transfer. This figure is much larger
than the block sizes used in older studies because the data
density on hard disks has dramatically increased in the last
years. This effect is further amplified in comparison to the
SCSI disks used in most other studies because modern IDE
disks have even higher data densities but larger rotational
delays and less opportunities for seek time optimization.

Nevertheless, the largest possible block size is not optimal
because it leaves too little room for read and write buffers.
Hence, in most measurements we use the heuristics to choose
half the largest possible block size that is a power of two.

For very large inputs, Figure 13 shows that we already
have to go below the “really good” block sizes because of
lack of buffer space. Still, it is not a good idea to switch to
two merge passes because the overall time increases even if
we are able to stick to large block sizes with more passes.
The large optimal block sizes are an indicator that “asymp-
totically efficient” can also translate into “practically rele-
vant” because simpler suboptimal parallel disk algorithms
often use logical blocks striped over the disks. On our sys-
tem this leads to a further reduction of the possible block
size by a factor of about eight.

Finally, Figure 14 shows the overall performance for dif-
ferent input size using all the heuristics introduced above.
Although we can stick to two passes, the execution time
per element goes up because we need to employ slower and
slower zones, because the block sizes go down, and because
the seek times during merging go up.

6. DISCUSSION
We have engineered a sorting algorithm that combines

very high performance on state of the art hardware with
theoretical performance guarantees. This algorithm is com-
pute bound although we use small random keys and a tuned
linear time algorithm for run formation. Similar observa-
tions are likely to apply to all external memory algorithms
that exhibit good spatial locality, i.e. those dominated by
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scanning, sorting, and similar operations. This indicates
that bandwidth is no longer a limiting factor for external
memory algorithms if parallel disks are used. Furthermore,
the low price of our hardware platform indicates that when-
ever I/O bandwidth it an issue, the price performance ratio
can actually improve by adding disks.

On the other hand, the fact that it is challenging to sustain
peak bandwidth for eight disks on a dual processor system
implies that using even more disks requires more aggressive
use of parallel processing. Currently it is not clear however
how to achieve that in a cost efficient way. Cheap networks
with 100Mbit/s Ethernet support only about one fifth the
bandwidth of a cheap disk. Even Gigabit Ethernet is not an
answer.

Algorithmically, several promising improvements remain
even for small cheap machines: There are several ways to
speed up run formation for small elements. During merging,
it would be good to reduce seek times for large inputs, either
by some clever compromise between seek minimization and
prefetching, or by switching to distribution sort that can be
implemented to have inherently low seek overhead.

As <stxxl> will grow beyond the limits of the STL, it is
even more important to integrate sorting tightly into the li-
brary. As in database systems, good implementations of ex-
ternal memory algorithms move data in a pipelined fashion
between various scanning and sorting filters. This pipelining
has to be supported in a robust way. For example, we need
a memory management that works robustly even if several
sorts go on at the same time.
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