
A Bandwidth Latency Tradeo� for Broadcast

and Reduction

?

Peter Sanders and Jop F. Sibeyn

Max-Planck-Institut f�ur Informatik

Im Stadtwald, 66123 Saarbr�ucken, Germany.

{sanders,jopsi}@mpi-sb.mpg.de.

http://www.mpi-sb.mpg.de/{~sanders,~jopsi}

Abstract. The \fractional tree" algorithm for broadcasting and reduc-

tion is introduced. Its communication pattern interpolates between two

well known patterns | sequential pipeline and pipelined binary tree.

The speedup over the best of these simple methods can approach two

for large systems and messages of intermediate size. For networks which

are not very densely connected the new algorithm seems to be the best

known method for the important case that each processor has only a

single (possibly bidirectional) channel into the communication network.

1 Introduction

Consider P processing units, PUs, of a parallel machine. Broadcasting, the op-

eration in which one processor has to send a message M to all other PUs, is

a crucial building block for many parallel algorithms. Since it can be imple-

mented once and for all in communication libraries such as MPI [9], it makes

sense to invest into algorithms which are close to optimal for all P and all mes-

sage lengths k. Since broadcasting is sometimes a bottleneck operation, even

constant factors should be considered. In addition, by reversing the direction

of communication, broadcasting algorithms can usually be turned into reduc-

tion algorithms. Reduction is the task to compute a generalized sum

L

i<P

M

i

,

where initially message M

i

is stored on PU i and where \�" can be any as-

sociative operator. Broadcasting and reduction are among the most important

communication primitives. For example, some of the best algorithms for matrix

multiplication or dense matrix-vector multiplication have these two functions as

their sole communication routines [5].

We study broadcasting long

1

messages for a simple synchronous, symmet-

ric communication model which is intended as a least common denominator of

practical protocols able to support high bandwidth for long messages: It takes

?

Partially supported by the IST Programme of the EU under contract number IST-

1999-14186 (ALCOM-FT).

1

For very short messages, di�erent algorithms based on trees with large degree near

the root are better, also a synchronous communication model is less attractive.



time t + k to transfer a message of size k regardless which PUs are involved.

This is realistic on many modern machines where network latencies are small

compared to the start-up overhead t. Both sender and receiver have to cooperate

in transmitting a message. We are considering two variants. Our default is the

duplex model where a PU can concurrently send a message to one partner and

receive a message from a possibly di�erent partner. We use the name sendjrecv

to denote this parallel operation in pseudo-code. The more restrictive simplex

model permits only one communication direction per processor. The broadcast-

ing time for simplex is at most twice that for duplex communication for half as

many PUs.

2

We note the cases where we can do better.

We begin our description in Sec. 2 by reviewing simple results on pipelined

broadcasting algorithms. By arranging the PUs in a simple chain, execution time

T

�

1

= k

�

1 +O

�

p

tP=k

��

+O(tP ) (1)

can be achieved. Except for very long messages, a better approach is to arrange

the PUs into a binary tree. This approach achieves broadcasting time

3

T

�

1

= k

�

2 +O(

p

t log(P )=k)

�

+O(t logP ) (2)

(replace \2" by \3" for the simplex model). We also give lower bounds.

The main contribution of this paper is the fractional tree algorithm described

in Sec. 3. It is a generalization of the two above algorithms and achieves an

execution time of

T

�

�

= k

 

1 +O

 

�

t logP

k

�

1=3

!!

+O(t logP ); (3)

i.e., it combines the advantage of the chain algorithm to have a (1+ o(1)) factor

in the k dependent term with the advantage of the binary tree algorithm to

have a logarithmic dependence on P in the t dependent term of the execution

time. For large P and medium k the improvement over both simple algorithms

approaches a factor two (3=2 for the simplex model).

For some powerful network topologies, somewhat better algorithms are known.

For Hypercubes, there is an elegant and fast algorithm which runs in time

T

�

HC

= k(1 +

p

t log(P )=k)

2

= k(1 +O(

p

t log(P )=k)) +O(t logP )) [1, 4]. How-

ever, no similarly good algorithm was known for networks with low bisection

4

bandwidth, e.g., meshes. Even for fully connected networks the best known algo-

rithms for arbitrary P are quite complicated [2, 8]. The fractional tree algorithm

does not have this problem. In Sec. 4 we explain how it can be adapted to several

sparse topologies like hierarchical networks and meshes.

2

A couple of simplex PUs emulate each communication of a duplex PU in two sub-

steps. In the �rst substep one partner acts as a sender and the other as a receiver

for communicating with other couples. In the second substep the previously received

data is forwarded to the partner.

3

Throughout this paper log x stands for log

2

x.

4

The bisection width of a network is the smallest number of connections one needs to

cut in order to produce two disconnected components of size bP=2c and dP=2e.



2 Basic Results on Broadcasting Long Messages

Lower Bounds. All non-source PUs must receive the k data elements, and the

whole broadcasting takes at least logP steps. Thus in the duplex model there is

a lower bound of

T

lower

= k + t � logP : (4)

In the simplex model all non-source PUs must receive the k data elements.

Hence the communication volume is at least (P � 1) � k. Even if all PUs are

communicating all the time this implies a time bound of 2(1�1=P )k. In the full

paper we additionally exploit that that it takes time until PUs can start to send

useful data and show a bound of

T

lower, simplex

2 � (1� 1=P ) � k + t � (logP � 4): (5)

These lower bounds hold in full generality. For a large and natural class of

algorithms, we can prove a stronger bound though. Consider algorithms that

divide the total data set of size k in s packets of size k=s each. All PUs operate

synchronously, and in every step they send or receive at most one packet. So,

until step s�1, there is still at least one packet known only to the source. Thus,

for given s, at least s � 1 + logP steps are required in the duplex model. Each

step takes k=s + t time. For given k, t and P , the minimum is assumed for

s =

p

k � t= logP :

T

�

lower

= k

�

1 +

p

t log(P )=k

�

2

: (6)

Two Simple Pipelined Algorithms. For k � t, a central idea for fast

broadcasting is to chop the message into s packets of size k=s and to forward these

packets in a pipelined fashion. The simplest pipelined algorithm arranges all PUs

into a chain of length P � 1. The head of the chain feeds packets downward.

Interior PUs receive one packet in the �rst step and then in each step receive

the next packet and forward the previously received packet. Fig. 1-d gives an

example. It is easy to see that one gets an execution time of T

s

1

:= (P � 2 +

s) � (t+

k

s

). The optimal choice for s is

p

k(P � 2)=t. Substituting this into T

s

1

yields T

�

1

:= k

�

1 +

p

t � (P � 2)=k

�

2

= k

�

1 +O

�

p

tP=k

��

+O(tP ) :

For k � tP the performance of this algorithm is quite close to the lower

bound (4). However, since t is usually a large constant, on systems with large P

we only get good performance for messages which are extremely large. We can

reduce the dependence on P by arranging the PUs into a binary tree. Now every

interior node forwards every packet to both successors. This needs two steps per

packet. The execution time is T

s

1

:= (d + 2s) � (t +

k

s

) where d is the time step

just before the last leaf receives the �rst packet; d is de�ned by the recurrence

P

i

= 1 + P

i�1

+ P

i�2

, P

0

= 1, P

1

= 2. We have d = min fi : P

i

� Pg � 1 �

log

1:62

P . For our purposes it is su�cient to note that d = O(logP ). Fig. 1-a

shows the tree with P

5

= 18 PUs. Choosing s =

p

2k � d=t, one gets T

�

1

:=



k

�

p

2 +

p

d � t=k

�

2

= k

�

2 +O(

p

t log(P )=k)

�

+ O(t logP ) : (For the simplex

model replace the two by a three.) For small and medium k this is much better

than the chain algorithm, yet for large k it is almost two times slower.

3 Fractional Tree Broadcasting

The starting point for this paper was the question whether we could �nd a

communication pattern which allows a more 
exible tradeo� between the high

bandwidth of a chain (i.e., a tree with degree one) and the low latency of a

binary tree. We give a family of communication pattern we call fractional trees

which have this property. Here we describe the algorithm for the duplex model

in detail. As already outlined in the introduction, the duplex algorithm can be

translated into a simplex algorithm running in double time. In the full paper,

we explain a faster direct implementation which is able to forward a run of r

packets in 2r + 1 steps and hence is only a factor 2�

1

r+1

times slower than on

the duplex model. It turns out to be nontrivial to translate a parallel sendjrecv

into a sequences \send, recv" or \recv, send" such that no delays or deadlocks

occur.

The idea for fractional trees is to replace the node of a binary tree by a group

of r PUs forming a chain. The input is fed into the head of this chain. The data

is passed down the chain and on to a successor group as in the single chain

algorithm. In addition, the PUs of the group cooperate in feeding the data to

the head of a second successor group. Fig. 1 shows the structure of a group and

several examples.

..

r+1

r+2

2rr

r−1

2

1

0

r

2

1

.

...

.

.

.

r=step 0

step 1

step 2

step 3

step 4

step 5
a b c d e

r=1 r=2 r=3

Fig. 1. Examples for fractional trees with r 2 f1; 2; 3;1g where the last PU receives

its �rst packet after 5 steps. The case r = 1 corresponds to plain binary trees and

pipelines can be considered the case r =1. Part e) shows the communication pattern

in a group of r PUs which cooperate to supply two successor nodes with all the data

they have to receive. Edges are labeled with the �rst time step when they are active.



Procedure broadcastFT(r, s, 0 � i < r:Integer; var D[0::s � 1]:Packet)

recv(D[0]) {{ wait for �rst packet

pipeDown(r, 0, D) {{ First phase

for k := r to s� r step r do {{ Remaining phases

sendRightjRecv(D[k � r + i], D[k])

pipeDown(r, k, D)

sendRight(D[s� r + i])

(* send down packets D[k::k + r � 1] and receive packets D[k + 1::k + r � 1] *)

Procedure pipeDown(r, k:Integer; var D[::]:Packet)

for j := k to k + r � 2 do sendDownjRecv(D[j], D[j + 1])

sendDown(D[k + r � 1])

Fig. 2. Pseudocode executed on each PU for fractional tree broadcasting, where i is

the index of the PU within its group, s is a multiple of r, and the array D is the input

on the root and the output on the other PUs. For the root PU, receiving is a no-op.

For the top PU of a group receiving means receiving from any PU in the predecessor

group. For the other PUs it means receiving from the predecessor in the group. Sending

down means sending to the next PU in the group respectively sending to the top PU of

the successor group. Sending right means sending to the top PU of the right successor

group. If the successor de�ned by this convention does not exist, sending is a no-op.

All PUs execute the same code shown in Fig. 2. All timing considerations are

naturally handled by the synchronization implicit in synchronous point-to-point

communication. The input is conceptually subdivided into s=r runs of r packets

each. The only nontrivial point is that the i-th member of a group is responsible

for passing the i-th packet of every run of r packets to the right. The e�ect is

that every r+1 steps the head of the right successor gets a run of r packets in the

right order. The pause after this run is used to pass the last packet downward.

Packets are passed right while the next run arrives.

As in the special case of binary trees (r = 1), the right successors receive data

one step later than the downward successors. Therefore, optimal tree layouts

are somewhat skewed. The number of nodes reachable within d + 1 steps is

governed by the recurrence P

i

= r + P

i�r

+ P

i�r�1

(P

i

= i + 1 for i � r)

so that d = min fi : P

i

� Pg � 1. This implies d = O(r log(P=r)). Using this

recurrence each processor can �nd its place in the tree in time O(d) and without

any communication.

Performance Analysis. Having established a smooth timing of the algorithm

the analysis can proceed analogously to that of the simple algorithms from the

introduction. Every communication step takes time (t+k=s) and d+s � (1+1=r)

steps are needed until all s=r runs have reached the last leaf group. We get a

total time of

T

s

r

:=

�

d+ s

�

1 +

1

r

���

t+

k

s

�

: (7)



Using calculus one gets s =

p

kdr=(t(r + 1)) as an optimal choice for the number

of packets. Substituting this into Eq. (7) yields

T

�

r

:= k

�

1 +

1

r

�

�

1+

q

drt

k(r+1)

�

2

= k

�

1+

1

r

+O(

q

rt logP

k

)

�

+O(rt logP ): (8)

Since d depends on r in a complicated way, there seems to be no closed form

formula for an optimal r. But we get a close to optimal value for r by setting

d = d

0

�(r+1) and ignoring that d

0

depends on r.

5

We get r � (k(r+1)=(d �t))

1=3

.

After rounding, these values make sense for k(r + 1) � d � t. For smaller k one

should use r = 1 or even a non-pipelined algorithm. Substituting r and s into

T

s

r

we get a broadcasting algorithm with execution time

T

�

�

� k

 

1 +

�

d � t

k(r + 1)

�

1=3

!

3

= k

 

1 +O

 

�

t logP

k

�

1=3

!!

+O(t logP ) :

For k � t logP algorithm performs quite close to the lower bound (4).

Performance Examples. How does the algorithm compare to the two simple

algorithms? For example, for P = 1024 and k=t = 4096 we choose d

0

= d=(r +

1) � logP � 1 = 9 and get r � (k=(d

0

� t))

1=3

� 8. This yields d = 57 and we

get s =

p

4096 � 57 � 8=9 � 456. With these values T

s

r

� 1:389k. These choices

are quite robust. For example, a better approximation of the optimal r yields

r = 10 and s = 503 but the resulting T

s

r

� 1:387k is less than 0:2 % better.

Fig. 3 plots the achievable speedup for three di�erent machine sizes. Even

for a medium size parallel computer (P = 64) an improvement of up to a factor

1:29 can occur. For very large machines (P = 16384) the improvements reach

up to factor of 1:8 and a signi�cant improvement is observed over a large range

of message lengths.

Our conclusion is that fractional tree broadcasting yields a small improve-

ment for \everyday parallel computing" yet is a signi�cant contribution to the

di�cult task of exploiting high end machines such as the ones currently build

in the ASCI program. For example, Compaq plans to achieve 100TFlops with

16384 Alpha processors by the year 2004 [3].

4 Sparse Interconnection Networks

Hierarchies of Crossbars. Compaq's above mentioned 16384 PU system

is expected to consist of 256 SMP modules with 64 PUs each. We view it as

unlikely that it will get an interconnection network with enough bisection width

to e�ciently implement the hypercube algorithm. Rather, each module will only

have a limited number of channels to other modules. We call such a system

a 256� 64 hierarchical crossbar. Systems with similar properties are currently

build by several companies.

5

In the program one can e�ciently solve the equations numerically, e.g., using golden

section search [7].



1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

10 100 1000 10000 100000 1e+06

im
pr

ov
em

en
t m

in
(T

* 1,
T

* ∞
)/

T
* *

k/t

P=64
P=1024
P=16384

Fig. 3. Improvement of fractional tree broadcasting over the best of pipelined binary

tree and sequential pipeline algorithm as a function of k=t.

We now explain how a fractional tree with group size r can be embedded into

an a� b hierarchical crossbar if b � r and if each module supports at least two

incoming and outcoming channels to arbitrary other modules. A generalization

to more than two levels of hierarchy is also possible.

First, one group in each module is connected to form a global binary tree

with a nodes. Next, the b� r remaining PUs in each module are connected to a

form local fractional tree. What remains to be done is to connect the local trees

by the global tree. Groups in the global tree with degree one can directly link

with their local tree. Leaf groups in the global tree use one of their free links

to connect to their local tree. The remaining free links are used to connect to

the local trees of modules with a group in the global tree of degree two. There

will be one remaining unused link which can be used to further optimize the

structure.

By accepting an additional depth of (r + 1) log b, we can work with one less

connection per module: Use two global groups per module. The �rst one links

to the second one and one other module. The second one links to the local tree

and possibly to one other module.

Meshes. We only outline a simple case. Generalizations which are su�cient in

practice should be relatively easy. A completely general treatment might turn

out to be rather complicated. Assume we are given an a� b mesh and r = r

1

� r

2

such that a=r

1

= b=r

2

is a power of two. We partition the mesh into submeshes

of size r

1

�r

2

each forming a group of the fractional tree. Now we can embed the

binary tree of groups exploiting the substantial work on embedding binary trees

into meshes (e.g., [10, 6]). Inside the group, the PUs are arranged in a snakelike

fashion. In this way one gets an embedding with constant edge congestion. Often

it is even possible to achieve edge congestion one for bidirectional meshes. Fig. 4



gives an example where it is exploited that H-trees yield a complete binary tree

with one leaf in every 2� 2 submesh.

Fig. 4. Embedding of a fractional tree with r = 2 into an 8 � 16 mesh. Broadcasting

on it gives edge congestion one even with x-y-routing.

References

1. V. Bala, J. Bruck, R. Cypher, P. Elustondo, A. Ho, C. Ho, S. Kipnis, and M. Snir.

CCL: A portable and tunable collective communication library for scalable parallel

computers. IEEE Transactions on Parallel and Distributed Systems, 6(2):154{164,

1995.

2. A. Bar-Noy and S. Kipnis. Broadcasting multiple messages in simultaneous

send/receive systems. In 5th IEEE Symp. Parallel, Distributed Processing, pages

344{347, 1993.

3. Compaq. AlphaServer SC series product brochure, 1999. http://www.digital.

com/hpc/news/news_sc_launch.html.

4. S. L. Johnsson and C. T. Ho. Optimum broadcasting and personalized communi-

cation in hypercubes. IEEE Transactions on Computers, 38(9):1249{1268, 1989.

5. V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Com-

puting. Design and Analysis of Algorithms. Benjamin/Cummings, 1994.

6. J. Opatrny and D. Sotteau. Embeddings of complete binary trees into grids and ex-

tended grids with total vertex-congestion 1. Discrete Applied Mathematics, 98:237{

254, 2000.

7. W. H. Press, S. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes

in C. Cambridge University Press, 2. edition, 1992.

8. Santos. Optimal and near-optimal algorithms for k-item broadcast. JPDC: Journal

of Parallel and Distributed Computing, 57:121{139, 1999.

9. M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra. MPI {

the Complete Reference. MIT Press, 1996.

10. P. Zienicke. Embedding of treelike graphs into 2-dimensional meshes. In Graph

Theoretic Concepts in Computer Science, volume 484 of LNCS, pages 182{192.

Springer, 1990.


