
Space E�cient Hash Tables With

Worst Case Constant Access Time

?

Dimitris Fotakis

1

, Rasmus Pagh

2??

, Peter Sanders

1

, and Paul Spirakis

3? ? ?

1

Max-Planck-Institut f�ur Informatik, Stuhlsatzenhausweg 85, 66123 Saarbr�ucken, Germany.

{fotakis,sanders}@mpi-sb.mpg.de

2

IT University of Copenhagen, Denmark. pagh@itu.dk

3

Computer Technology Institute, Patras, Greece. spirakis@cti.gr

Abstract. We generalize Cuckoo Hashing [23] to d-ary Cuckoo Hashing and show how this yields a

simple hash table data structure that stores n elements in (1 + �)n memory cells, for any constant

� > 0. Assuming uniform hashing, accessing or deleting table entries takes at most d = O(ln

1

�

) probes

and the expected amortized insertion time is constant. This is the �rst dictionary that has worst case

constant access time and expected constant update time, works with (1 + �)n space, and supports

satellite information. Experiments indicate that d = 4 choices su�ce for � � 0:03. We also describe

variants of the data structure that allow the use of hash functions that can be evaluted in constant

time.

1 Introduction

The e�ciency of many programs crucially depends on hash table data structures, because

they support constant expected access time. We also know hash table data structures that

support worst case constant access time for quite some time [12, 9]. Such worst case guar-

antees are relevant for real time systems and parallel algorithms where delays of a single

processor could make all the others wait. A particularly fast and simple hash table with

worst case constant access time is Cuckoo Hashing [23]: Each element is mapped to two

tables t

1

and t

2

of size (1 + �)n using two hash functions h

1

and h

2

, for any � > 0. A factor

above two in space expansion is su�cient to ensure with high probability that each element e

can be stored either in t

1

[h

1

(e)] or t

2

[h

2

(e)]. The main trick is that insertion moves elements

to di�erent table entries to make room for the new element.

To our best knowledge, all previously known hash tables with worst case constant access

time and sublinear insertion time share the drawback of a factor at least two in memory

blowup. In contrast, hash tables with only expected constant access time that are based on

open addressing can work with memory consumption (1+ �)n. In the following, � stands for

an arbitrary positive constant.

The main contribution of this paper is a hash table data structure with worst case

constant access time and memory consumption only (1+�)n. The access time is O(ln

1

�

) which

?

A preliminary version of this work appeared in the Proceedings of the 20th Annual Symposium on Theoretical

Aspects of Computer Science (STACS 2003), Lecture Notes in Computer Science 2607. This work was partially

supported by DFG grant SA 933/1-1 and the Future and Emerging Technologies programme of the EU under

contract number IST-1999-14186 (ALCOM-FT).

??

The present work was initiated while this author was at BRICS, Aarhus University, Denmark.

? ? ?

Part of this work was done while the author was at MPII.

is in some sense optimal, and the expected insertion time is also constant. The proposed

algorithm is a rather straightforward generalization of Cuckoo Hashing to d-ary Cuckoo

Hashing : Each element is stored at the position dictated by one out of d hash functions. In

our analysis, insertion is performed by Breadth First Search (BFS) in the space of possible

ways to make room for a new element. In order to ensure that the amount of memory used for

bookkeeping in the BFS is negligible, we limit the number of nodes that can be searched to

o(n), and perform a rehash if this BFS does not �nd a way of accommodating the elements.

For practical implementation, a random walk can be used. Unfortunately, the analysis that

works for the original (binary) Cuckoo Hashing and logn-wise independent hash functions

[23] breaks down for d � 3. Therefore we develop new approaches and give an analysis of

the simple algorithm outlined above for the case that hash functions are truly random. As

observed by Dietzfelbinger [6], similar results can be obtained for the family of hash functions

described in [21] and [10], which can be evaluated in constant time.

We also provide experimental evidence which indicates that d-ary Cuckoo Hashing is

even better in practice. For example, at d = 4, we can achieve 97% space utilization and at

90% space utilization, insertion requires only about 20 memory probes on the average, i.e.,

only about a factor two more than for d =1.

We also present Filter Hashing, an alternative to d-ary Cuckoo Hashing that uses polyno-

mial hash functions of degree O(

p

d). It has the same performance as d-ary Cuckoo Hashing

except that it uses d = O(ln

2

1

�

) probes for an access in the worst case.

A novel feature of both d-ary Cuckoo Hashing (in the random-walk variant implemented

for the experiments) and Filter Hashing is that we use hash tables having size only a fraction

of the number of elements hashed to them. This means that high space utilization is ensured,

even though there is only one possible location for an element in each table. Traditional

hashing schemes use large hash tables where good space utilization is achieved by having

many possible locations for each element.

1.1 Related Work

Space e�cient dictionaries. A dictionary is a data structure that stores a set of elements,

and associates some piece of information with each element. Given an element, a dictionary

can look up whether it is in the set, and if so, return its associated information. Usually

elements come from some universe of bounded size. If the universe has sizem, the information

theoretical lower bound on the number of bits needed to represent a set of n elements (without

associated information) is B = n log(em=n) � �(n

2

=m) � O(logn). This is roughly n logn

bits less than, say, a sorted list of elements. If logm is large compared to logn, using n words

of logm bits is close to optimal.

A number of papers have given data structures for storing sets in near-optimal space,

while supporting e�cient lookups of elements, and other operations. Cleary [4] showed how

to implement a variant of linear probing in space (1+ �)B+O(n) bits, under the assumption

that a truly random permutation on the key space is available. The expected average time

for lookups and insertions is O(1=�

2

), as in ordinary linear probing. A space usage of B +

2

o(n) + O(log logm) bits was obtained in [22] for the static case. Both these data structures

support associated information using essentially optimal additional space.

Other works have focused on dictionaries without associated information. Brodnik and

Munro [3] achieve space O(B) in a dictionary that has worst case constant lookup time and

amortized expected constant time for insertions and deletions. The space usage was recently

improved to B+o(B) bits by Raman and Rao [24]. Since these data structures are not based

on hash tables, it is not clear that they extend to support associated information. In fact,

Raman and Rao mention this extension as a goal of future research.

Our generalization of Cuckoo Hashing uses a hash table with (1+�)n entries of logm bits.

As we use a hash table, it is trivial to store associated information along with elements. The

time analysis depends on the hash functions used being truly random. For many practical

hash functions, the space usage can be decreased to (1+�)B+O(n) bits using quotienting (as

in [4, 22]). Thus, our scheme can be seen as an improvement of the result of Cleary to worst

case lookup bounds (even having a better dependence on � than his average case bounds).

However, there remains a gap between our experimental results for insertion time and our

theoretical upper bound, which does not beat Cleary's.

Open addressing schemes. Cuckoo Hashing falls into the class of open addressing schemes,

as it places keys in a hash table according to a sequence of hash functions. The worst case

O(ln(1=�)) bound on lookup time matches the average case bound of classical open addressing

schemes like double hashing. Yao [29] showed that this bound is the best possible among

all open addressing schemes that do not move elements around in the table. A number of

hashing schemes move elements around in order to improve or remove the dependence on �

in the average lookup time [1, 13, 16, 17, 25].

In the classical open addressing schemes some elements can have a retrieval cost of

(

log n

log log n

). Bounding the worst case retrieval cost in open addressing schemes was inves-

tigated by Rivest [25], who gave a polynomial time algorithm for arranging keys so as to

minimize the worst case lookup time. However, no bound was shown on the expected worst

case lookup time achieved. Rivest also considered the dynamic case, but the proposed in-

sertion algorithm was only shown to be expected constant time for low load factors (in

particular, nothing was shown for � � 1).

Matchings in random graphs. Our analysis uses ideas from two seemingly unrelated areas

that are connected to Cuckoo Hashing by the fact that all three problems can be understood

as �nding matchings in some kind of random bipartite graphs.

The proof that space consumption is low is similar in structure to the result in [28, 27]

that two hash functions su�ce to map n elements (disk blocks) to D places (disks) such

that no disk gets more than dn=De+1 blocks. The proof details are quite di�erent however.

In particular, we derive an analytic expression for the relation between � and d. Similar

calculations may help to develop an analytical relation that explains for which values of n

and D the \+1" in dn=De+1 can be dropped. In [27] this relation was only tabulated for

small values of n=D.

3

The analysis of insertion time uses expansion properties of random bipartite graphs.

Motwani [20] uses expansion properties to show that the algorithm by Hopcroft and Karp [14]

�nds perfect matchings in random bipartite graphs with m > n lnn edges in expected time

O(m logn= log logn). He shows an O(m logn= log d) bound for the d-out model of random

bipartite graphs, where all nodes are constrained to have degree at least d � 4.

Our analysis of insertion can be understood as an analysis of a simple incremental algo-

rithm for �nding perfect matchings in a random bipartite graph where n nodes on the left

side are constrained to have constant degree d whereas there are (1+ �)n nodes on the right

side without a constraint on the degree. We feel that this is a more natural model for sparse

graphs than the d-out model because there seem to be many applications where there is an

asymmetry between the two node sets and it is unrealistic to assume a lower bound on the

degree of a right node (e.g., [28, 26, 27]).

Under these conditions we get linear run time even for very sparse graphs using a very

simple algorithm that has the additional advantage to allow incremental addition of nodes.

The main new ingredient in our analysis is that besides expansion properties, we also prove

shrinking properties of nodes not reached by a BFS. An aspect that makes our proof more

di�cult than the case in [20] is that our graphs have weaker expansion properties because

they are less dense (or less regular for the d-out model).

1.2 Overview

In Section 2, we introduce Cuckoo Hashing as a matching problem in a class of random

bipartite graphs. Section 3 constitutes the main part of the paper. In Section 3.1, we prove

that for d � 2(1 + �) ln(

e

�

) and truly random hash functions, d-ary Cuckoo Hashing results

in bipartite graphs which contain a matching covering all left vertices/elements with high

probability (henceforth \whp."

1

). In Section 3.2, we show that for somewhat larger values

of d, an incremental algorithm which augments along a shortest augmenting path takes

(1=�)

O(ln d)

expected time per element and visits at most o(n) vertices before it �nds an

augmenting path whp. Section 4 complements the theoretical analysis by experiments which

justify the practical e�ciency of d-ary Cuckoo Hashing. Filter Hashing is presented and

analyzed in Section 5. We show that for d = �(ln

2

1

�

) and polynomial hash functions of

degree O(ln

1

�

), Filter Hashing stores almost all elements (e.g., at least (1�

�

4

)n of them) in n

memory cells whp. Some directions for further research and a modi�cation of d-ary Cuckoo

Hashing for hash functions that can be evaluated in constant time are discussed in Section 6.

2 Preliminaries

A natural way to de�ne and analyze d-ary Cuckoo Hashing and Filter Hashing is through

matchings in random bipartite graphs. The elements can be thought of as the left vertices

and the memory cells as the right vertices of a bipartite graph B(L;R;E). The edges of B

are determined by the hash functions. An edge connecting a left vertex to a right vertex

1

In this paper \whp." will mean \with probability at least 1�O(1=n)".

4

indicates that the corresponding element can be stored in the corresponding memory cell.

Any one-to-one mapping of elements/left vertices to memory cells/right vertices forms a

matching in B. Since every element is stored in some cell, this matching is L-perfect, i.e., it

covers all the left vertices of B.

h1

h2

h3

Fig. 1. Ternary Cuckoo Hash-

ing (d = 3).

Having �xed an L-perfect matchingM , we can think of B as a

directed graph, where the edges in E nM are directed from left to

right and the edges in M are directed from right to left (Fig. 1).

Therefore, each right vertex has outdegree at most one. The set

of free vertices F � R simply consists of the right vertices with

no outgoing edges (i.e., zero outdegree). Then, any directed path

from an unmatched left vertex v to F is an augmenting path for

M , because if we reverse the edge directions along such a path,

we obtain a new matching which also covers v.

We always use X to denote a set of left vertices and Y to

denote a set of right vertices. For a set of left vertices X, letM(X)

denote the set ofX's mates according to the current matchingM .

For a set of vertices S � L[R, let � (S) denote the neighborhood

of S, i.e., � (S) = fv : fu; vg 2 E; u 2 Sg. We should emphasize

that whenever we use � (S) or refer to the neighborhood of a

vertex set, we consider the edges as undirected.

In the analysis of d-ary Cuckoo Hashing, we repeatedly use

the following upper bound on binomial coe�cients.

Proposition 1. Given an integer n, for any integer k, 1 � k � n,

�

n

k

�

�

�

n

n� k

�

n�k

�

n

k

�

k

:

Proof. For completeness, we give a simple proof communicated to us by M. Dietzfelbinger

[6]. Let � =

k

n

2 (0; 1]. We observe that

�

n

k

�

�

k

(1� �)

n�k

�

n

X

j=0

�

n

j

�

�

j

(1� �)

n�j

= (�+ (1� �))

n

= 1 ;

which implies the proposition. ut

3 d-ary Cuckoo Hashing

In d-ary Cuckoo Hashing, we consider n elements stored in (1 + �)n memory cells. Each

element is stored in one out of d cells chosen uniformly at random and independently

with replacement. Consequently, the resulting bipartite graph B(L;R;E) has jLj = n and

jRj = (1 + �)n. Each left vertex has exactly d neighbors selected uniformly at random and

independently (with replacement) from R.

5

3.1 Existence of an L-Perfect Matching

We start by proving that for su�ciently large values of d, such bipartite graphs contain an

L-perfect matching whp.

Lemma 1. Given a constant � 2 (0; 1), for any integer d � 2(1+�) ln(

e

�

), the bipartite graph

B(L;R;E) contains an L-perfect matching with probability at least 1� O(n

4�2d

).

Proof. We establish a bound of O(n

4�2d

) on the probability that there exists a set of left

vertices X having less than jXj neighbors. Then, the lemma follows from Hall's Theorem

(e.g., [5], Chapter 2), which states that a bipartite graph contains an L-perfect matching if

and only if any X � L has at least jXj neighbors.

For a �xed integer k, 2 � k � n, let P (k) be the probability that there exists a set of

k left vertices with at most k neighbors. The probability that the bipartite graph B does

not contain an L-perfect matching is bounded by the sum of the probabilities P (k) over all

integers 2 � k � n.

For an integer k, we �x a set of left vertices X and a set of right vertices Y both of size k.

The probability that Y includes all neighbors of X is (

k

(1+�)n

)

dk

. Multiplying by the number

of di�erent sets X and Y , we obtain that

P (k) �

�

n

k

��

(1 + �)n

k

��

k

(1 + �)n

�

dk

:

For k = 2, the probability that there exists a pair of left vertices with a single neighbor in

R is O(n

3�2d

). Let c be a su�ciently large constant. For k �

n

c

, using

�

n

k

�

� (

e n

k

)

k

, we get

the following upper bound on P (k).

P (k) �

e

2k

k

(d�2)k

n

(d�2)k

If c > e

d

d�2

, the right-hand side of the inequality above is a non-increasing function of k and

cannot exceed O(n

3�2d

), for any d � 3. Therefore, for any 3 � k �

n

c

, P (k) = O(n

3�2d

).

For

n

c

< k � n, let � =

k

n

2 (0; 1]. Using Proposition 1, we obtain the following bound

on the probability P (�n).

P (�n) �

"

�

1

1� �

�

1��

�

1

�

�

�

�

1 + �

1 + �� �

�

1+���

�

1 + �

�

�

�

�

�

1 + �

�

d�

#

n

The value of d should make the quantity in square brackets strictly smaller than 1. Solving

the resulting inequality, we obtain the following lower bound on d:

d > 1 +

� ln(

1

�

) + (1� �) ln(

1

1��

) + (1 + �� �) ln(

1+�

1+���

)

� ln(

1+�

�

)

(1)

To simplify Inequality (1), we observe that:

6

1. For all � 2 (0; 1) and � 2 (0; 1], � ln(

1

�

) < � ln(

1+�

�

).

2. For any �xed value of � 2 (0; 1),

(1+���) ln(

1+�

1+���

)

� ln(

1+�

�

)

is a non-decreasing function of � in the

interval (0; 1]. Hence, it is maximized for � = 1 achieving the value of

� ln(

1+�

�

)

ln(1+�)

.

We also need the following proposition. For completeness, we provide a simple proof of

Proposition 2 in the Appendix.

Proposition 2. For all � 2 (0; 1) and � 2 (0; 1],

(1��) ln(

1

1��

)

� ln(

1+�

�

)

�

� ln

(

1+�

�

)

ln(1+�)

.

Consequently, for any integer d � 2+

2� ln(

1+�

�

)

ln(1+�)

, the bipartite graph B contains an L-perfect

matching with probability at least 1�O(n

4�2d

). A brief calculation using ln(1+ �) > �� �

2

=2

shows that the above inequality is satis�ed whenever d � 2(1 + �) ln(

e

�

). ut

By directly applying Inequality (1) for speci�c values of �, we obtain that if � � 0:57 and

d = 3, if � � 0:19 and d = 4, and if � � 0:078 and d = 5, the bipartite graph B contains an

L-perfect matching whp. The experiments in Section 4 indicate that even smaller values of

� are possible.

We also show that the bound of Lemma 1 on d is essentially best possible.

Lemma 2. If d < (1 + �) ln(1=�) then B(L;R;E) does not contain a perfect matching whp.

Proof. We can think of the right vertices as bins and the edges as balls. Each ball is placed in

a bin selected uniformly at random and independently. We have exactly (1+�)n bins and dn

balls. The expected number of empty bins/isolated right vertices approaches (1 + �)n e

�

d

1+�

as n goes to in�nity (e.g., [19, Chapter 3]). Let � be a positive constant. For n being larger

than a suitable constant, if d is smaller than (1+�) ln(

1+�

(1+�)�

), the expected number of isolated

right vertices is greater than (1 +

�

2

)�n. Furthermore, since the events \the right vertex v is

isolated" are negatively associated (e.g., [11]), we can apply the Cherno� bound (e.g., [19,

Chapter 4]) and show that if d < (1 + �) ln(

1+�

(1+�)�

), the number of isolated right vertices is

greater than �n whp. Clearly, a bipartite graph B with more than �n isolated right vertices

cannot contain an L-perfect matching. The lemma is obtained by setting � = �. ut

3.2 The Insertion Algorithm

To de�ne and analyze the insertion algorithm for d-ary Cuckoo Hashing, we assume that

the left vertices of the bipartite graph B arrive (along with their d random choices/edges)

one-by-one in an arbitrary order and the algorithm incrementally maintains an L-perfect

matching in B.

Let M be an L-perfect matching �xed before a left vertex v arrives. We recall that the

edges in M are considered to be directed from right to left, while the edges not in M are

directed from left to right. All the edges of v are initially directed from left to right, because

v is not matched byM . We also recall that any directed path from v to the set of free vertices

F is an augmenting path for M .

7

The insertion algorithm we analyze always augments the current matching along a short-

est directed path from v to F . Such a path can be found by the equivalent of a Breadth

First Search (BFS) in the directed version of B, which is implicitly represented by the d

hash functions and the storage table. We ensure space e�ciency by restricting the number

of right vertices the BFS can visit to o(n).

To avoid any dependencies among the random choices of a newly arrived left vertex and

the current matching, we restrict our attention to the case where a left vertex that has been

deleted from the hash table cannot be re-inserted

2

. The remaining section is devoted to the

proof of the following theorem.

Theorem 1. For any positive � < 1=5 and integer d � 5 + 3 ln(1=�), the incremental al-

gorithm that augments along a shortest augmenting path takes (1=�)

O(ln d)

expected time per

left vertex/element to maintain an L-perfect matching in B. Moreover, the algorithm visits

at most o(n) right vertices before it �nds an augmenting path whp.

Remark. Using the same techniques, we can prove that Theorem 1 holds for any � 2 (0; 1).

For ease of exposition, we restrict our attention to the most interesting case of small �.

Augmentation Distance. In the proof of Theorem 1, we measure the distance from a vertex

v to the set of free vertices F by only accounting for the number of left to right edges (free

edges for short), or, equivalently, the number of left vertices appearing in a shortest path

(respecting the edge directions) from v to F . We refer to this distance as the augmentation

distance of v. We should emphasize that the augmentation distance of a vertex depends on

the current matching M .

The augmentation distance of a vertex v essentially measures the depth at which a BFS

starting from v reaches F for the �rst time. Therefore, if a new left vertex has a neighbor

at augmentation distance �, a shortest augmenting path can be found in O(d

�+1

) time and

space. To establish Theorem 1, we bound the number of right vertices at large augmentation

distance.

Outline. The proof of Theorem 1 is divided in three parts. We �rst prove that the number

of right vertices at augmentation distance at most � grows exponentially with �, whp., until

almost half of the right vertices have been reached. We call this the expansion property. We

next prove that for the remaining right vertices, the number of right vertices at augmentation

distance greater than � decreases exponentially with �, whp. We call this the shrinking

property. The proofs of both the expansion property and the shrinking property are based

on the fact that for an appropriate choice of d, d-ary Cuckoo Hashing results in bipartite

graphs which are good expanders, whp. Finally, we put the expansion property and the

shrinking property together to show that the number of right vertices encountered by a BFS

before an augmenting path is found is at most o(n) whp. and the expected insertion time

per element is constant.

2

This restriction on deletions is easily overcome by just marking deleted elements, and only removing them when

periodically rebuilding the hash table with new hash functions.

8

Notation. For an integer �, let Y

�

denote the set of right vertices at augmentation distance

at most �, and let X

�

denote the set of left vertices at augmentation distance at most �.

The sets X

�

and Y

�

can be computed inductively starting from the set of free vertices F .

For � = 0, Y

0

= F and X

0

= ;. For any integer � � 1, we have X

�+1

= � (Y

�

) and

Y

�+1

=M(X

�+1

) [F .

The Expansion Property. We �rst prove that if d is chosen appropriately large, any set of

right vertices Y of size in the interval [�n; 3n=8] expands by a factor no less than 4=3 whp.

(Lemma 3). This implies that the number of right vertices at augmentation distance at most

� is at least (1+(4=3)

�

)�n, as long as � is so small that this number does not exceed (1=2+�)n

(Lemma 5).

Lemma 3. Given a constant � 2 (0; 1=5), let d � 5 + 3 ln(1=�) be an integer. Then, any set

of right vertices Y , �n � jY j � 3n=8 has at least 4 jY j=3 neighbors with probability at least

1� 2

�
(n)

.

Proof. We �rst establish the following lemma whose proof is similar to the proof of Lemma 1.

Lemma 4. Given a constant � 2 (0; 1=5), let � be any positive constant not exceeding

4(1�4�)

1+4�

,

and let d be any integer such that

d � 3 + 2�+ 2�(1 + �) +

(2 + �)� ln

�

1+�

�

�

ln(1 + �)

:

Then, any set of left vertices X,

n

2

� jXj � (1 � (1 + �)�)n, has at least (1 + �)n �

n�jXj

1+�

neighbors with probability at least 1� 2

�
(n)

.

Proof. Let � be any number in the interval [�;

1

2(1+�)

] such that (1� (1+ �)�)n is an integer.

For simplicity of presentation and without loss of generality, we assume that (1 + �� �)n is

also an integer. Let P (�) be the probability that the bipartite graph B contains a set of left

vertices X of size (1� (1 + �)�)n with at most (1 + �� �)n neighbors in R. We bound the

probability that the graph B does not satisfy the conclusion of the lemma by the sum of the

probabilities P (�) over all the di�erent values of � for which (1� (1 + �)�)n is an integer.

For a �xed value of �, we �x a set of left vertices X of size (1� (1 + �)�)n and a set of

right vertices Y of size (1 + �� �)n. The probability that all neighbors of X are included in

Y is

�

1+���

1+�

�

d(1�(1+�)�)n

. Multiplying by the number of di�erent sets X and Y , we obtain the

following upper bound on P (�).

P (�) �

�

n

(1 + �)�n

��

(1 + �)n

�n

��

1 + �� �

1 + �

�

d(1��(1+�))n

Using Proposition 1 and working as in the proof of Lemma 1, we obtain the following

lower bound on d.

d >

(1� �(1 + �)) ln(

1

1�(1+�)�

) + (1 + �)� ln(

1

(1+�)�

) + (1 + �� �) ln(

1+�

1+���

) + � ln(

1+�

�

)

(1� �(1 + �)) ln(

1+�

1+���

)

9

For all � 2 (0; 1=5) and � 2 (0;

4(1�4�)

1+4�

], the right-hand side of the above inequality is maxi-

mized for � = � yielding the following lower bound on d.

d >

(1� �(1 + �)) ln(

1

1�(1+�)�

) + (1 + �)� ln(

1

(1+�)�

) + ln(1 + �) + � ln(

1+�

�

)

(1� �(1 + �)) ln(1 + �)

(2)

The right-hand side of Inequality (2) can be simpli�ed by observing that ln(

1

(1+�)�

) < ln(

1+�

�

).

In addition, for all � 2 (0;

4(1�4�)

1+4�

],

1

1�(1+�)�

� 1 + 2�(1 + �), and

ln(

1

1�(1+�)�

)

ln(1+�)

� 2(1 + �).

Since � � � and there are at most n di�erent values of � to consider, the probability that

the graph B does not have the claimed property is at least 1 � O(n�

n

), for some constant

� < 1 depending on the choice of d. ut

Then, we show that any bipartite graph B satisfying the conclusion of Lemma 4 also

satis�es the conclusion of Lemma 3. To reach a contradiction, we assume that for some

� 2 [�;

1

2(1+�)

], there is a set Y � R of size �n with less than (1+ �)�n neighbors in L. Let X

be the set of left vertices not included in the neighborhood of Y . Then, X consists of more

than (1� (1 + �)�)n vertices. By Lemma 4, X must have more than (1 + �� �)n neighbors

in R, which implies that some vertices of Y have neighbors in X, a contradiction to the

de�nition of X.

To conclude the proof of Lemma 3, we observe that for � < 1=5, we can take � = 1=3.

Using the fact that ln(1 + �) > �� �

2

=2, the requirement of Inequality (2) on d can be seen

to be satis�ed if d � 5 + 3 ln(1=�). ut

The following lemma concludes the proof of the expansion property.

Lemma 5. Let B(L;R;E) be a bipartite graph satisfying the conclusion of Lemma 3. Then,

for any integer �, 1 � � � log

4

3

(

1

2�

), the number of right vertices at augmentation distance

at most � is at least (1 + (4=3)

�

)�n.

Proof. We prove the lemma by induction on �. We recall that Y

�

denotes the set of right

vertices at augmentation distance at most �. Since the bipartite graph B satis�es the con-

clusion of Lemma 3, any set of right vertices Y , �n � jY j � 3n=8, expands by a factor no

less than 4=3. The lemma holds for � = 1, because jY

0

j = jF j � �n and hence, at least

(1 + 4=3)�n right vertices are included in Y

1

.

For some integer �, 1 � � � log

4

3

(

1

2�

)�1, let jY

�

j � (1+(4=3)

�

)�n. Then, the neighborhood

of Y

�

includes at least (4=3)

�+1

�n left vertices. Since both the mates of these left vertices and

the free vertices are at augmentation distance at most �+1, there are at least (1+(4=3)

�+1

)�n

right vertices at augmentation distance no greater than �+1, i.e., jY

�+1

j � (1+(4=3)

�+1

)�n.

This argument works as long as � � log

4

3

(

1

2�

), because the expansion argument works

until the size of Y

�

becomes larger than (1=2 + �)n for the �rst time. ut

The Shrinking Property. By the expansion property, nearly half of the right vertices are at

augmentation distance no greater than �

�

= dlog

4

3

(

1

2�

)e. The second thing we show is that

any set of left vertices X, jXj �

n

4

, has at least 2jXj neighbors in R whp. (Lemma 7). This

10

implies that the number of right vertices at augmentation distance greater than �

�

+ � is at

most 2

�(�+1)

n. (Lemma 8).

Lemma 6. Let d � 8 be an integer. Then, any set of right vertices Y , jY j � (1=2+ �)n, has

at least n�

(1+�)n�jY j

2

neighbors, with probability at least 1� O(n

4�d

).

Proof. We �rst show the following lemma whose proof is similar to the proof of Lemma 1.

Lemma 7. Let
 be any positive constant, and let d � (1 + log e)(2 +
) + log(1 +
) be an

integer. Then, any set of left vertices X, jXj �

n

2(1+
)

, has at least (1+
)jXj neighbors with

probability at least 1� O(n

3+
�d

) .

Proof. For a �xed integer k, 1 � k �

n

2(1+
)

, let P (k) be the probability that there exists a

set of left vertices of size k which does not expand by (1 +
). Then,

P (k) �

�

n

k

��

(1 + �)n

(1 +
)k

��

(1 +
)k

(1 + �)n

�

dk

:

Working similarly to the proof of Lemma 1, we bound P (k) by O(n

2+
�d

) for small values

of k, e.g., 1 � k �

n

c

, where c is a su�ciently large positive constant. For k >

n

c

, let

� =

k

n

2 (0;

1

2(1+
)

]. Using Proposition 1, we obtain the following lower bound on d.

d > 1 +
 +

� ln(

1

�

) + (1� �) ln(

1

1��

) + (1 + �� (1 +
)�) ln(

1+�

1+��(1+
)�

)

� ln(

1+�

(1+
)�

)

(3)

We observe that the right-hand side of Inequality (3) is maximized for � =

1

2(1+
)

and cannot

exceed (1 + log e)(2 +
) + log(1 +
). ut

We observe that for
 = 1, Inequality (3) is satis�ed whenever d � 8. To conclude the

proof of Lemma 6, we show that any graph B satisfying the conclusion of Lemma 7 also

satis�es the conclusion of Lemma 6. To reach a contradiction, we assume that for some

integer k, 0 � k �

n

4

, there is a set of right vertices Y of size (1 + �)n � 2k with less than

n�k neighbors. Let X be the set of left vertices not included in the neighborhood of Y . The

size of X must be greater than k. By Lemma 7, X has more than 2k neighbors in R, which

implies that some vertices of Y have neighbors in X, a contradiction. ut

We observe that for any � 2 (0; 1=5), 5 + 3 ln(1=�) � 8 and the hypothesis of Lemma 6 is

satis�ed by any choice of d satisfying the hypothesis of Theorem 1.

Lemma 8. Let B(L;R;E) be a bipartite graph satisfying the conclusions of Lemma 3 and

Lemma 6 and let �

�

= dlog

4

3

(

1

2�

)e. Then, for any integer � � 0, the number of right vertices

at augmentation distance greater than �+ �

�

is at most 2

�(�+1)

n.

Proof. We prove the lemma by induction on �. By Lemma 5, we know that jY

�

�

j � (1=2+�)n.

Therefore, for � = 0, the number of right vertices at augmentation distance greater than �

�

is at most n=2.

11

For some integer � � 0, let the number of right vertices at augmentation distance greater

than � + �

�

be at most 2

�(�+1)

n. Consequently, there are at least (1 + � � 2

�(�+1)

)n right

vertices at augmentation distance no greater than � + �

�

, i.e., jY

�+�

�

j � (1 + �� 2

�(�+1)

)n.

By Lemma 8, the neighborhood of Y

�+�

�

includes at least (1� 2

�(�+2)

)n left vertices. Both

the mates of these left vertices and the free vertices are at augmentation distance at most

(�+1)+�

�

. Hence, jY

(�+1)+�

�

j � (1+��2

�(�+2)

)n, and no more than 2

�(�+2)

n right vertices

are at augmentation distance greater than (�+ 1) + �

�

. ut

Bounding the Size of the BFS Tree. Let v be a newly arrived left vertex, and let T

v

be

the random variable denoting the number of right vertices encountered before a shortest

augmenting path starting at v is found (i.e., before the BFS reaches the �rst free vertex).

Clearly, the insertion algorithm can add v to the current matching in O(T

v

) time and space.

Then, we use the assumption that the current matching and the sets Y

�

do not depend on

the random choices of v, and we show that (i) T

v

does not exceed o(n) whp. and (ii) the

expectation of T

v

does not exceed 2 d

�

�

+2

.

We �rst assume that the bipartite graph B satis�es the conclusions of Lemma 3 and

Lemma 6 and contains an L-perfect matching which covers v. In addition, we assume that

no rehash is carried out if there are too many right vertices in the BFS tree.

If at least one of the d neighbors of v is at augmentation distance at most �, an augmenting

path is found after at most d

�+1

right vertices have been visited. Therefore, for any integer

� � 0, the probability that T

v

exceeds d

�+1

is at most (1�

jY

�

j

(1+�)n

)

d

.

By Lemma 8, there are at most 2

�(�+1)

n right vertices at augmentation distance greater

than �+ �

�

. Hence, 1�

jY

�

�

+�

j

(1+�)n

� 2

�(�+1)

. Let � > 0 be any constant in the interval (0; 1=2).

Then,

IPr[T

v

> d

�

�

+1

n

1��

] < 2

�(1��)d log

d

n

= n

�(1��)d= log d

:

Using � = 9=10 and d � 8, we conclude that the probability that more than d

�

�

+1

n

9=10

right

vertices are encountered before an augmenting path is found does not exceed n

�24=10

. In

addition, for d � 8, the bipartite graph B violates the conclusions of Lemma 3 or Lemma 6

with probability O(n

�4

), and B does not contain an L-perfect matching with probability

O(n

�12

).

As for the expectation of T

v

,

IE[T

v

] =

1

X

t=1

Pr[T

v

� t]

� d+

1

X

�=0

d

�+2

IPr[v has no neighbor in Y

�

]

� d+

1

X

�=0

d

�+2

�

1�

jY

�

j

(1 + �)n

�

d

� d

�

�

+2

+

d

�

�

+2

2

d

1

X

�=0

�

d

2

d

�

�

;

12

0

1

2

3

4

5

0 0.5 1

ε
*

#p
ro

be
s

space utilization

d=2
d=3
d=4
d=5

Fig. 2. Scaled average number of memory probes for insertion into a d-ary Cuckoo Hash table with 100 000 entries as

a function of the memory utilization n=10

5

(� = 1� n=10

5

). Starting from n = 1000 � k (k 2 f1; : : : ; 100g), a random

element is removed and a new random element is inserted. This is repeated 1000 times for each of 100 independent

runs. Hash functions are full lookup tables �lled with random elements generated using [18]. The curves stop when

any insertion fails after 1000 probes.

where the last inequality follows from Lemma 8. For any d � 8, d=2

d

� 1=32 and the above

sum can be bounded by

249

248

d

�

�

+2

.

We have also to consider the contribution of several low probability events to the ex-

pectation of T

v

. For d � 8, more than d

�

�

+1

n

9=10

right vertices are encountered before an

augmenting path is found with probability O(n

�24=10

), the bipartite graph B violates the

conclusions of Lemma 3 or Lemma 6 with probability O(n

�4

), and B does not contain an L-

perfect matching with probability O(n

�12

). Each of these events causes a rehash, whose cost

is bounded by O(n

2

). Therefore, these low probability events have a negligible contribution

to the expectation of T

v

, which can be bounded by 2 d

�

�

+2

.

We can choose d = �(ln

1

�

). Using �

�

= �(ln

1

�

), we conclude that the expectation of T

v

is (1=�)

O(ln d)

. ut

4 Experiments

Our theoretical analysis is not tight with respect to the constant factors and lower order

terms in the relation between the worst case number of probes d and the waste of space �n.

The analysis is even less accurate with respect to the insertion time. Since these quantities are

important to judge how practical d-ary Cuckoo Hashing might be, we designed an experiment

that can partially �ll this gap. We decided to focus on a variant that looks promising in

practice: We use d separate tables of size (1 + �)n=d because then it is not necessary to

reevaluate the hash function that led to the old position of an element to be moved. Insertion

uses a random walk, i.e., an element to be allocated randomly picks one of its d choices even

if the space is occupied. In the latter case, the displaced element randomly picks one of its

13

d � 1 remaining choices, etc., until a free table entry is found. The random walk insertion

saves us some bookkeeping that would be needed for insertion by BFS. Figure 2 shows the

average number of probes needed for insertion as a function of the space utilization 1=(1+ �)

for d 2 f2; 3; 4; 5g. Since 1=� is a lower bound, the y-axis is scaled by �. We see that all

schemes are close to the insertion time 1=� for small utilization and grow quickly as they

approach a capacity threshold that depends on d. Increasing d strictly decreases expected

insertion time so that we get clear trade-o� between worst case access time guarantees and

average insertion time.

The maximum space utilization approaches one quickly as d is incremented. The observed

thresholds were at 49% for d = 2, 91% at d = 3, 97% at d = 4, and 99% at d = 5.

5 Filter Hashing

In this section, we describe and analyze Filter Hashing, a simple hashing scheme with worst

case constant lookup time, that can be used in combination with essentially any other hashing

scheme to improve the space e�ciency of the latter. More precisely, Filter Hashing space

e�ciently stores almost all elements of a set. The remaining elements can then be stored

using a less space e�cient hashing scheme, e.g., [7].

To explain Filter Hashing, we again switch to the terminology of bipartite graphs. For a

parameter
, 0 <
 < 1 we split the right vertices into d = �(ln

2

(1=
)) parts, called layers,

of total size at most n. Each left vertex is associated with exactly one neighbor in each

of the d layers, using hash functions as described below. A newly arrived vertex is always

matched to an unmatched neighbor in the layer with the smallest possible number. The name

�lter hashing comes from the analogy of a particle (hash table element / left vertex) passing

through a cascade of d �lters (layers). If all the neighbors in the d layers have been matched,

the vertex is not stored, i.e., it is left to the hashing scheme handling such \over
owing"

vertices. We will show that this happens to at most
n elements whp.

If the hashing scheme used for the over
owing vertices uses linear space, a total space

usage of (1 + �)n cells can be achieved for
 =
(�). For example, if we use the dictionary

of [7] to handle over
owing vertices, the space used for over
owing vertices is O(
n), and

every insertion and lookup of an over
owing vertex takes constant time whp. Even though

this scheme exhibits relatively high constant factors in time and space, the e�ect on space

and average time of the combined hashing scheme is small if we choose the constant
 to be

small.

A hashing scheme similar to �lter hashing, using O(log logn) layers, was proposed in [2],

but only analyzed for load factor less than 1=2. Here, we use stronger tools and hash functions

to get an analysis for load factors arbitrarily close to 1.

What happens in the �ltering scheme can be seen as letting the left vertices decide their

mates using a multi-level balls and bins scenario, until the number of unmatched left vertices

becomes small enough. The scheme gives a trade-o� between the number of layers and the

fraction
 of over
owing vertices.

14

We proceed to describe precisely the bipartite graph B(L;R;E) used for the scheme,

where jLj = jRj = n. We partition R into d layers R

i

, i = 1 : : : d, where d =

�

ln

2

(4=
)

�

and jR

i

j =

�

n

ln(4=
)

�

1�

1

ln(4=
)

�

i�1

�

. Suppose that L � f1; : : : ; mg for some integer m, or,

equivalently, that we have some way of mapping each vertex to a unique integer in f1; : : : ; mg.

The edges connecting a vertex v 2 L to R

i

, for i = 1; : : : ; d, are given by function values on

v of the hash functions

h

i

(x) = (

t

X

j=0

a

ij

x

j

mod p) mod jR

i

j (4)

where t = 12 dln(4=
) + 1e, p > mn is a prime number and the a

ij

are randomly and

independently chosen from f0; : : : ; p� 1g.

For n larger than a suitable constant (depending on d), the total size

P

d

i=1

jR

i

j of the d

layers is in the range

�

P

d

i=1

n

ln(4=
)

�

1�

1

ln(4=
)

�

i�1

� d ;

P

1

i=1

n

ln(4=
)

�

1�

1

ln(4=
)

�

i�1

�

=

�

n

�

1�

�

1�

1

ln(4=
)

�

d

�

� d ; n

�

�

�

(1�

2

)n ; n

�

From the description of �lter hashing, it is straightforward that the worst case insertion

time and the worst case access time are at most d. In the following, we prove that at most
n

left vertices over
ow whp., and that the average time for a successful search is O(ln(1=
)).

Both these results are implied by the following lemma.

Lemma 9. For any constant
, 0 <
 < 1, for d =

�

ln

2

(4=
)

�

and n larger than a suitable

constant, the number of left vertices matched to vertices in R

i

is at least (1 �
=2)jR

i

j for

i = 1; : : : ; d with probability 1� O

�

�

1

�

O(log log(

1

))

1

n

�

.

Proof. We use tools from [8] to prove that each of the layers has at least a fraction (1 �

=2) of its vertices matched to left vertices with probability 1 � O((

1

)

O(log log(

1

))

1

n

). As

there are O(ln

2

(1=
)) layers, the probability that this happens for all layers is also 1 �

O((

1

)

O(log log(

1

))

1

n

).

The number of left vertices that are not matched to a vertex in layers R

1

; : : : ; R

i�1

is at

least n

i

= n�

P

i�1

j=1

jR

j

j. We have the inequalities (1�

1

ln(4=
)

)

i�1

n � n

i

� (1�

1

ln(4=
)

)

i�1

+ i.

Consider the random variable free(R

i+1

) denoting the number of empty bins in the balls and

bins scenario with n

i+1

balls and jR

i+1

j bins, where the positions of the balls are given by a

hash function of the form (4). This is a pessimistic estimate of the number of free vertices

in layer i+1 of the hashing scheme, since n

i+1

is a lower bound on the number vertices that

are not matched to R

1

; : : : ; R

i

. We use tools for analyzing such a scenario from [8] to show

that free(R

i+1

) �

2

jR

i+1

j with probability 1�O(

1

n

). Denote by b

j

the number of balls in bin

15

number j and let C

k

=

P

jR

i+1

j

j=1

�

b

j

k

�

be the number of \colliding k-sets of balls". Since t=2 is

even, we have the following inequality [8, Proposition 6]:

free(R

i+1

) �

t=2

X

k=0

(�1)

k

C

k

(5)

The \load factor" of the balls and bins scenario is � = n

i+1

=jR

i+1

j � ln(4=
). Since p > mn

we get from [8] that for k � t=2,

(1� O(

1

n

i+1

))n

i+1

�

k�1

=k! � IE[C

k

] � (1�O(

1

n

i+1

))n

i+1

�

k�1

=k! :

Thus we get the following upper bound:

IE[free(R

i+1

)] � (1 + O(

1

n

i+1

))n

i+1

t=2

X

k=0

(�1)

k

�

k�1

=k! �

3

2

n

i+1

e

��

=� �

3

8

jR

i+1

j (6)

where the second inequality uses t � 10� and that n (and thus n

i+1

) is su�ciently large.

It is shown in [8] that Var(C

k

) = O(�

2k

n) for k � t=2. Thus we can use Chebychev's

inequality to bound the probability that free(R

i+1

) exceeds

2

jR

i+1

j:

Pr[free(R

i+1

) >

2

jR

i+1

j] �

t=2

X

k=0

Pr[jC

k

� IE[C

k

]j >

8

jR

i+1

j=(t=2 + 1)]

�

t=2

X

k=0

Var(C

k

)=(

8

jR

i+1

j=(t=2 + 1))

2

= O

�

1

�

O(log log(

1

))

1

n

!

:

ut

Lemma 9 implies that there are at most

2

n of the n right side vertices that are not part

of R

1

; : : : ; R

d

, and with probability 1�O(

1

n

) there are at most

2

n vertices in the layers that

are not matched. Thus, with probability 1� O(

1

n

) no more than
n vertices over
ow.

The expected average time for a successful search can be bounded as follows. The number

of elements with search time i � d is at most jR

i

j, and the probability that a random left

vertex over
ows is at most
 + O(

1

n

), i.e., the expected total search time for all elements is

bounded by:

(
 +O(

1

n

))nd+

d

X

i=1

jR

i

ji� (
 +O(

1

n

))

l

ln

2

(

4

)

m

n+

n

ln(

4

)

1

X

i=0

1�

1

ln(

4

)

!

i

i

= O(n ln(

4

)) :

The expected time to perform a rehash in case too many elements over
ow is O(ln(1=
)n).

Since the probability that this happens for any particular insertion is O((

1

)

O(log log(

1

))

1

n

), the

expected cost of rehashing for each insertion is (

1

)

O(log log(

1

))

. Rehashes caused by the total

number of elements (including those marked deleted) exceeding n have a cost of O(ln(

1

)=
)

per insertion and deletion, which is negligible.

16

6 Conclusions and Open Problems

From a practical point of view, d-ary Cuckoo Hashing seems a very advantageous approach

to space e�cient hash tables with worst case constant access time. Both worst case access

time and average insertion time are very good. It also seems that one could make average

access time quite small. A wide spectrum of algorithms could be tried out from maintaining

an optimal placement of elements (via minimum weight bipartite matching) to simple and

fast heuristics.

Theoretically, there are two main open questions. The �rst concerns tight (high proba-

bility) bounds for the insertion time. The second question is whether the analysis of d-ary

Cuckoo Hashing also works for practical, constant time evaluable hash functions. Dietzfel-

binger has suggested [6] the following interesting solution: A very simple hash function based

on polynomials of constant degree is used to partition the elements into logn disjoint groups

of size at most

(1+�=2)n

log n

[15]. Now space linear in the size of one group (O(dn= logn)) is in-

vested to obtain an emulation of d uniform hash functions within one group. This can be

achieved using recent constructions by Pagh and

�

Ostlin [21], or Dietzfelbinger and W�olfel

[10]. Each group is stored in a table with

(1+�)n

log n

entries. The main trick is that the same d

hash functions can be used for all the groups so that the total space needed for the hash

functions remains sublinear.

Filter Hashing is inferior in practice to d-ary Cuckoo Hashing but it might have spe-

cialized applications. For example, it could be used as a lossy hash table with worst case

constant insertion time. This might make sense in real time applications where delays are

not acceptable whereas losing some entries might be tolerable, e.g., for gathering statistic in-

formation on the system. In this context, it would be theoretically and practically interesting

to give performance guarantees for simpler hash functions.

References

1. R. P. Brent. Reducing the retrieval time of scatter storage techniques. Communications of the ACM, 16(2):105{

109, 1973.

2. A. Z. Broder and A. R. Karlin. Multilevel adaptive hashing. In Proceedings of the 1st Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA '90), pages 43{53. ACM Press, 2000.

3. A. Brodnik and J. I. Munro. Membership in constant time and almost-minimum space. SIAM J. Comput.,

28(5):1627{1640, 1999.

4. J. G. Cleary. Compact hash tables using bidirectional linear probing. IEEE Transactions on Computers, C-

33(9):828{834, September 1984.

5. R. Diestel. Graph Theory. Springer-Verlag, New York, 2nd edition, 2002.

6. M. Dietzfelbinger. Personal communication, 2003.

7. M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger. Polynomial hash functions are reliable (extended

abstract). In Proceedings of the 19th International Colloquium on Automata, Languages and Programming

(ICALP '92), volume 623 of Lecture Notes in Computer Science, pages 235{246. Springer-Verlag, 1992.

8. M. Dietzfelbinger and T. Hagerup. Simple minimal perfect hashing in less space. In Proceedings of the 9th

European Symposium on Algorithms (ESA '01), volume 2161 of Lecture Notes in Computer Science, pages 109{

120. Springer-Verlag, 2001.

9. M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert, and R. E. Tarjan. Dynamic

perfect hashing: Upper and lower bounds. SIAM J. Comput., 23(4):738{761, 1994.

10. M. Dietzfelbinger and P. W�olfel. Almost random graphs with simple hash functions. In Proceedings of the 35th

Annual ACM Symposium on Theory of Computing (STOC '03), 2003.

17

11. D. P. Dubhashi and D. Ranjan. Balls and bins: A study in negative dependence. RSA: Random Structures &

Algorithms, 13:99{124, 1998.

12. M. L. Fredman, J. Koml�os, and E. Szemer�edi. Storing a sparse table with O(1) worst case access time. J. Assoc.

Comput. Mach., 31(3):538{544, 1984.

13. G. H. Gonnet and J. I. Munro. E�cient ordering of hash tables. SIAM J. Comput., 8(3):463{478, 1979.

14. J. E. Hopcroft and R. M. Karp. An O(n

5=2

) algorithm for maximum matchings in bipartite graphs. SIAM

Journal on Computing, 2:225{231, 1973.

15. C.P. Kruskal, L. Rudolph, and M. Snir. A complexity theory of e�cient parallel algorithms. Theoretical Computer

Science, 71(1):95{132, 1990.

16. J. A. T. Maddison. Fast lookup in hash tables with direct rehashing. The Computer Journal, 23(2):188{189,

May 1980.

17. E. G. Mallach. Scatter storage techniques: A uniform viewpoint and a method for reducing retrieval times. The

Computer Journal, 20(2):137{140, May 1977.

18. M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random

number generator. ACMTMCS: ACM Transactions on Modeling and Computer Simulation, 8:3{30, 1998. http:

//www.math.keio.ac.jp/~matumoto/emt.html.

19. J. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

20. R. Motwani. Average-case analysis of algorithms for matchings and related problems. Journal of the ACM,

41(6):1329{1356, November 1994.

21. A.

�

Olstin and R. Pagh. Uniform hashing in constant time and linear space. In Proceedings of the 35th Annual

ACM Symposium on Theory of Computing (STOC '03), 2003.

22. R. Pagh. Low redundancy in static dictionaries with constant query time. SIAM J. Comput., 31(2):353{363,

2001.

23. Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In Proceedings of the 9th European Symposium

on Algorithms (ESA '01), volume 2161 of Lecture Notes in Computer Science, pages 121{133. Springer-Verlag,

2001.

24. R. Raman and S. Srinivasa Rao. Dynamic dictionaries and trees in near-minimum space. Manuscript, 2002.

25. R. L. Rivest. Optimal arrangement of keys in a hash table. J. Assoc. Comput. Mach., 25(2):200{209, 1978.

26. P. Sanders. Asynchronous scheduling of redundant disk arrays. In 12th ACM Symposium on Parallel Algorithms

and Architectures, pages 89{98, 2000.

27. P. Sanders. Reconciling simplicity and realism in parallel disk models. In 12th ACM-SIAM Symposium on

Discrete Algorithms, pages 67{76, Washington DC, 2001.

28. P. Sanders, S. Egner, and J. Korst. Fast concurrent access to parallel disks. In 11th ACM-SIAM Symposium on

Discrete Algorithms, pages 849{858, 2000.

29. A. C.-C. Yao. Uniform hashing is optimal. J. Assoc. Comput. Mach., 32(3):687{693, 1985.

A Appendix

A.1 Proof of Proposition 2

There are several cases to consider. We �rst distinguish between � �

1

2

and � >

1

2

.

Case A. � 2 (0;

1

2

]. Then, for all � 2 (0; 1),

(1� �) ln(

1

1��

)

� ln(

1+�

�

)

�

(1� �) ln(

1

1��

)

� ln(

1

�

)

� 1 �

� ln

�

1+�

�

�

ln(1 + �)

:

Case B. � 2 (

1

2

; 1]. We distinguish between � �

1

e

and � <

1

e

.

Case B.1. � �

1

e

. We �rst observe that � ln(

1+�

�

) � ln(1+ �), for all � 2 (

1

2

; 1] and � 2 (0; 1).

Then, the claim follows from

(1� �) ln

�

1

1� �

�

�

1

e

<

ln(e+ 1)

e

� � ln

�

1 + �

�

�

:

18

Case B.2. � 2 (0;

1

e

). We consider the following cases:

Case B.2.i. � 2 (1� �; 1]. Then 1� � < � <

1

e

. Since the function x ln(

1

x

) is non-decreasing

in the interval [0;

1

e

), we conclude that (1 � �) ln(

1

1��

) � � ln(

1

�

). In addition, as in B.1.,

� ln(

1+�

�

) � ln(1 + �), and the claim follows.

Case B.2.ii. � 2 (

1

2

; 1� �]. Since the function

(1��) ln(

1

1��

)

� ln(

1

�

)

is non-decreasing, we obtain that

(1� �) ln(

1

1��

)

� ln(

1+�

�

)

�

(1� �) ln(

1

1��

)

� ln(

1

�

)

�

� ln(

1

�

)

(1� �) ln(

1

1��

)

�

� ln(

1+�

�

)

ln(1 + �)

;

where the last inequality holds for all � 2 (0; 1). ut

19

