
Emulating MIMD Behavior on SIMD Machines

Peter Sanders

Informatik f�ur Ingenieure und Naturwissenschaftler

Universit�at Karlsruhe

D-76128 Karlsruhe, Germany

Keywords: Average; Asynchronous control-ow; Markov chain; optimization;

parallel search.

1 INTRODUCTION

SIMD Computers have proved to be a useful and cost e�ective approach to

massively parallel computation. On the other hand, there are algorithms

which are very ine�cient when directly translated into a data parallel pro-

gram. This SIMD overhead can become particularly large if the number of

iterations through a loop varies from PE (processing element) to PE. A sim-

ple example are the number of iterations necessary to compute a point of the

Mandelbrot set [1]. In [2] nested loops typical for numerical applications are

discussed. A very general (but often ine�cient) solution is to write the pro-

gram in a RISC-like machine language which can be stored and interpreted

locally [3, 4].

Let s be a stack containing the root node

of a subtree to be processed on this processor

LOOP

IF isLeaf(top(s)) THEN

IF isSolution(top(s)) THEN printSolution(top(s))

WHILE noMoreSiblings(top(s)) DO

pop(s)

IF isEmpty(s) THEN stop

top(s) := nextSibling(top(s))

ELSE push(�rstSuccessor(top(s)))

Figure 1: Nonrecursive generic depth-�rst search.

Complex instances of inherently asynchronous problems can be observed

in nonnumeric applications. Throughout this paper depth-�rst tree search will

be used as an example; Figure 1 gives the kernel of a nonrecursive, parallel al-

gorithm searching for leaves which constitute a solution. A load balancer must

ensure that each PE gets a di�erent subtree of the search space represented by

the subtree's root. Interior nodes are expanded by pushing their �rst successor

on the stack. For leaf nodes, it is checked if they constitute a solution. Then

the program backtracks to the next node with unsearched siblings.

1

On the average, the while-loop which performs backtracking will perform

very few iterations; but on some PEs the number of iterations may be the full

depth of the tree. Additional complications may be introduced by heuristics,

or by loops inside the application dependent functions isLeaf, �rstSuccessor,

etc.

In Section 2, a simple and general approach for decomposing such an asyn-

chronous program into synchronous operations is presented. Sections 3 through

5 discuss how this can be done e�ciently. After Section 6 reports about the

performance of a test application, Section 7 sums up the results.

2 THE BASIC APPROACH

The general idea for \SIMD-izing" an algorithm is very simple. It turns out

that every MIMD program can be transformed into a SIMD program of the

general form given in Figure 2. The o

i

are elementary operations which do

initialization

LOOP

IF g

1

THEN o

1

IF g

2

THEN o

2

.

.

.

IF g

n

THEN o

n

Figure 2: Test loop executable by a SIMD machine.

not contain loops. (More precisely, loops with a globally known number of

iterations are no problem.) The statement if g

i

then o

i

is a test of operation

o

i

. More generally, for many applications it makes sense to decompose the

program (possibly dynamically) into a sequence of several test loops | each

with a di�erent set of tests | but, since the loops can be investigated one at

a time, we can restrict ourselves to one loop.

A simple proof that a single unnested loop is always su�cient, can be taken

from [3, 4] by observing that an interpreter for a machine instruction set has

this form. By using a locally stored \machine program" and program counter,

each PE can have its own ow of control. Due to its large interpretation

overhead, this approach has not raised very much interest yet. However, the

overhead can be dramatically reduced by tailoring the instruction set and even

the interpreter itself to the one speci�c algorithm to be executed.

Since this idea is nonconstructive i.e., it is not obvious how to �nd an

e�cient instruction set and interpreter, it is useful to start with a di�erent view.

If the control logic of an algorithm can be implemented by a �nite automaton

then the test loop can be constructed by introducing one elementary operation

for each state. For example, Algorithm 1 can be transformed into the test loop

depicted in Figure 3.

Again, every program can be cast into this shape: Eliminate recursion;

inline procedures which contain loops, and implement the loop control by

goto-statements. Then the control-ow graph can be partioned into cycle-

free parts which yield one state of the automaton each. A jump goto label

can then be replaced by the assignment state := label. This transformation

2

initialize as in algorithm 1

state := Search

LOOP

IF state = Search THEN

IF isLeaf(top(s)) THEN

IF isSolution(top(s)) THEN state := Solution

ELSE state := GetNextChoice

ELSE state := MakeChoicePoint

IF state = MakeChoicePoint THEN

push(�rstSuccessor(top(s))); state := Search

IF state = GetNextChoice THEN

IF noMoreSiblings(top(s)) THEN

pop(s)

IF isEmpty(s) THEN stop

state := GetNextChoice

ELSE top(s) := nextSibling(top(s)); state := Search

IF state = Solution THEN printSolution(top(s)); state := GetNextChoice

Figure 3: Depth-�rst search controlled by an automaton.

could, for example, be performed by a compiler. For manual use however, it

is better to step back and select states which have a meaningful interpretation

in the application domain. It turned out that for some complex heuristic

search algorithms this may even yield more readable algorithms than the usual

structured programming approach which tends to produce complicated nested

loops with contrived exit conditions.

3 LOOP UNROLLING

The main source of overhead in executing the test loops introduced in Section

2 on a SIMD machine is that all PEs for which g

i

is false are idle during an

execution of o

i

. One important idea for reducing this overhead is to test cheap

and frequently used operations more often than expensive and rarely used

operations. As pointed out in [3, 4] this idea can be useless if the execution

time is dominated by PEs where the distribution of needed operations deviates

from the average case. But this argumentation neglects that a dynamic load

balancer can relieve the load on these PEs.

For a simple example, the test loop for Algorithm 3 could be unrolled

once such that each operation is tested twice. Then, one of the tests for

the operation Solution could be removed if there are only very few solutions.

Since a call to printSolution might require an expensive host communication,

this simple measure could nearly double the performance of the algorithm.

A problem with this idea is that is seems to involve a lot of trial and error.

Therefore we want to model the situation mathematically.

Let c

i

be the cost (or time) for testing operation o

i

. (It can for example

be measured using a pro�ler.) Furthermore, let p

i

be the frequency of o

i

in

a typical dynamic trace of the program. (It can be measured by counting

how often an operation is actually executed.) Now we want to know at which

frequency f

i

operation o

i

should be tested for optimal throughput. This can

3

be modelled using the probabilistic test loop

LOOP choose i with probability f

i

; IF g

i

THEN o

i

ENDIF ENDLOOP

For this program, we can de�ne a cost function C(f

1

; : : : ; f

n

) which gives

the average cost for performing one productive step. Stated probabilistically,

this means the ratio between the expected time for doing a test

P

f

i

c

i

, and

the probability a that the next test will perform productive work (i.e. it is

currently needed in the asynchronous control-ow).

C(f

1

; : : : ; f

n

) :=

P

n

i=1

f

i

c

i

a(f

1

; : : : ; f

n

)

(1)

In order to determine a, the development of the state of execution of a PE

is modelled using a Markov chain with the states A for \active" and W

j

for

\waiting for a test of o

j

". Figure 4 shows the states and the transition prob-

abilities. If a PE is waiting for a test of o

j

, this operation is tested next with

a probability of f

j

and the Markov chain will make a transition to the active

state, else waiting will continue. If the Markov chain is in the active state and

the next operation in the asynchronous control-ow is o

j

but o

j

is not tested

next, there will be a transition to the waiting state W

j

. Summing probabili-

ties for the remaining cases yields a probability of

P

p

i

f

i

for a transition from

active to active.

A

W

j

-

�

�

	
�

�

-

p

j

(1� f

j

)

f

j

1� f

j

P

p

i

f

i

Figure 4: Markov model of the asynchronous control-ow.

Now, the a(f

1

; : : : ; f

n

) we are looking for, is the equilibrium probability to

�nd the Markov chain in the active state. This probability can be obtained by

solving the eigenvalue equation

0

B

B

B

B

@

P

p

i

f

i

f

1

� � � f

n

p

1

(1� f

1

) 1 � f

1

0

.

.

.

.

.

.

p

n

(1� f

n

) 0 1 � f

n

1

C

C

C

C

A

0

B

B

B

B

@

a

w

1

.

.

.

w

n

1

C

C

C

C

A

=

0

B

B

B

B

@

a

w

1

.

.

.

w

n

1

C

C

C

C

A

which corresponds to the following homogeneous linear equation system:

0

B

B

B

B

@

(

P

p

i

f

i

)� 1 f

1

� � � f

n

p

1

(1� f

1

) �f

1

0

.

.

.

.

.

.

p

n

(1� f

n

) 0 �f

n

1

C

C

C

C

A

0

B

B

B

B

@

a

w

1

.

.

.

w

n

1

C

C

C

C

A

= 0

Adding all rows eliminates the �rst row. After dividing row i by f

i

we have:

a

p

i

(1� f

i

)

f

i

= w

i

Adding these equations and using the additional condition a+

P

w

i

= 1 yields

a

X

p

i

(1� f

i

)

f

i

= 1 � a or a =

1

P

n

i=1

p

i

f

i

(2)

4

Substituting this result into equation 1 completes the cost function.

C(f

1

; : : : ; f

n

) =

n

X

i=1

p

i

f

i

!

n

X

i=1

f

i

c

i

!

(3)

This equation can be used to determine the optimal testing frequencies f

i

by

looking for roots of the partial derivatives:

@C

@f

k

= �

p

k

f

2

k

X

i

c

i

f

i

+

X

i

p

i

f

i

!

c

k

!

= 0

Moving the k dependent parts to the left yields:

c

k

f

2

k

p

k

=

P

c

i

f

i

P

p

i

f

i

Equating two instances of these equations removes the sums

c

k

f

2

k

p

k

=

c

j

f

2

j

p

j

or

f

k

f

j

=

q

p

k

c

k

q

p

j

c

j

and introducing the additional condition

P

f

k

= 1 gives the result:

f

j

=

q

p

j

c

j

P

n

i=1

q

p

i

c

i

(4)

Since this is the only candidate for an extremal point and since C approaches

in�nity if any of the f

i

approaches zero or one, this solution constitutes the

global optimum.

The potential speedup due to loop unrolling can be estimated by comparing

the resulting optimal cost with the straightforward case f

i

= 1=n:

S =

C

naive

C

opt

=

P

n

i=1

c

i

�

P

n

i=1

p

p

i

c

i

�

2

(5)

The value for C

naive

also indicates that it is not a good idea to use a probabilis-

tic test loop for the actual implementation since an equally naive deterministic

test loop would only involve a cost around 1=2

P

n

i=1

c

i

. Nevertheless, we can

expect that the frequencies computed for the probabilistic case are also useful

for a deterministic implementation.

4 OPERATION ORDERING

Another important issue is, how the tests should be ordered in order to make it

as likely as possible that the next operation needed in the asynchronous control-

ow is tested soon. For example, if the trees to be traversed by Algorithm 3

have a large branching factor, the asynchronous control-ow will be dominated

by subsequences of the form Search; GetNextChoice; Search; GetNextChoice; . . .

and it is a good idea to match this structure in the unrolled loop.

The asynchronous control-ow can be described (at least approximately)

using a Markov model where every operation corresponds to a state of the

5

Markov chain and p

ij

gives the transition probability i.e. the probability that

the operation o

i

follows o

j

in a typical dynamic trace.

Using this model, it is possible to predict the performance of a candi-

date test loop; e.g. using a kind of symbolic execution: Given the transition

probabilities and a vector containing the probabilities that the asynchronous

control-ow is currently in a given state, it is possible to compute the impact

of a test on this vector. By iterating a few times through the test loop, it is

possible to approximate a cost function analogous to Section 3. (This turns

out to be equivalent to modelling asynchronous control-ow and test loop by

a Markov chain.)

However, this approach does not directly answer the question which arrange-

ment of the test loop is optimal. Trying all possibilities leads to a combinatoric

explosion. Nevertheless, it is probably possible to arrive at good solutions using

hill climbing or other heuristics. In [3] a similar approach works reasonably

well but no loop unrolling is considered which makes the problem simpler,

and it also seems to severely limit the achievable improvement for nontrivial

problems.

5 OPERATION SELECTION

In addition to dissolving loops as described in Section 2 there are a number of

other important transformations on operations.

Splitting: A branch of a conditional statement which is rarely taken or very

expensive can be made an operation of its own. For example this is the rea-

son, why Solution is an independent operation in Algorithm 3. Sometimes

the inverse operation of incorporating an operation into another is also useful

in order to decrease control overhead. The formulae from Section 3 give a

quantitative tool for assessing the impact of splitting on performance.

Simpli�cation: In asynchronous programming languages most code need not

be �ne-tuned since only the inner loop is critical. In our approach however, the

entire test loop is the inner loop. So, tuning rarely used operations can have

an unexpected impact on performance. This e�ect is only mitigated using the

optimizations from Section 3. On the other hand, asynchronous code often

pro�ts from optimized treatment of a number of special cases. In a SIMD

program however, this approach may back�re since the code for the optimiza-

tions incurs additional SIMD overhead. Therefore, removing optimizations is

sometimes the better optimization.

Merging: If two operations are almost identical like

o

1

:�; state := o

0

1

o

2

:�; state := o

0

2

they can be merged into the single operation

o

12

: �; state = follow

if the calling operations assign the proper value to follow. This transforma-

tion reduces the number of operations and therefore decreases SIMD overhead.

Often, splitting and simpli�cation of operations can be used to produce can-

didates for merging. Essentially, merging is a primitive kind of procedure call

and the idea can be expanded to nested calls and recursion by introducing a

return stack.

6

6 PERFORMANCE RESULTS

The techniques described in the preceding sections have been applied to a

heuristic search problem raised by an open question in cellular automata the-

ory [5]. The implementation uses a 16384-processor MasPar MP-1 and the

data-parallel ANSI-C extension MPL. Starting point for parallelization is a

nonrecursive, sequential C-implementation which can be naturally decomposed

into seven elementary operations.

Since these operations are quite coarse-grained and since state can be held

in a register, control overhead is negligible. If it had been tried to interpret

a program as in [3], control overhead would have been overwhelming since

operations would be more �ne-grained and each instruction fetch would require

an indirect memory access which is very expensive on the MasPar.

Tuning a rarely used operation and removing a heuristic for a special case

yield a 6 % and 17 % improvement respectively. Splitting is used twice and in-

verse splitting once. Together with a subsequent opportunity for merging, this

results in a 50 % improvement. Clever instruction ordering or loop unrolling

alone give limited speedup (less than 10 %) but applied together they yield

a 63 % improvement as compared to testing each operation once in random

order. Instruction ordering was done manually. All in all, the optimizations

for decreasing SIMD overhead make the program three times faster than the

basic approach.

Together with an e�ective dynamic load balancing scheme for distributing

subtrees (see [5, 6]) which achieves a processor utilization of more than 80 %

and incurs a communication overhead of less than 15 %, the program achieves

about 38 times the performance of a sequential implementation on a SPARC II

workstation. Tables 1 and 2 show performance data for the �nal operation set

and load balancing strategy. It would be interesting to have �gures about the

Table 1: Probability, cost and optimal (proba-

bilistic) testing frequency for operations of test

application.

Operation p

i

[%] c

i

[ticks] f

i

[%]

advanceCol 28.8 343 20.7

recomputeEntry 37.4 215 29.7

makeChoicePoint 3.5 256 8.3

backtrack 3.7 700 5.2

getNextChoice 2.3 352 5.8

cleanTos 8.0 399 10.1

simulateError 16.1 241 18.5

advanceSize 0.2 372 1.7

Table 2: Execution

times versus number of

PEs used, for test ap-

plication

PEs T [s]

16384 12.7

8192 22.1

4096 40.7

2048 76.8

1024 148.4

remaining SIMD overhead but this is di�cult since implicit globalor-operations

and overhead due to indirect addressing complicate the picture.

7

7 DISCUSSION AND CONCLUSIONS

There is no clear-cut border between SIMD algorithms and MIMD algorithms.

A program with asynchronous control-ow can be decomposed into a number

of elementary operations which can emulate asynchronous behavior on a SIMD

machine. For many applications, a small number of coarse-grained operations

is su�cient such that the emulation overhead is acceptable. However, more

complicated programs may require a large number of operations or the decom-

position into very �ne-grained operations which resemble a machine instruction

set. In this case, emulation overhead may become prohibitive.

Using the techniques developed here, it is possible to transform an asyn-

chronous program into a SIMD program with the same semantics. The trans-

formations can be feasibly applied manually and they are also su�ciently well

de�ned in order to be performed by a compiler (at least partially). Using a

mixture of quantitative and qualitative tools, the emulation can be consider-

ably optimized.

From a theoretical point of view it is interesting that a simple but nontriv-

ial rule for unrolling could be derived: The testing frequency of an elementary

operation should be proportional to the square root of the ratio between its

importance and its cost. As opposed to the testing frequency which can be

modelled using a continuous model, optimizing the order of tests is a combi-

natorial optimization problem which appears to be harder to solve optimally.

References

[1] S. Tomboulian, M. Pappas. Indirect addressing and load balancing for faster

solution to Mandelbrot set on SIMD architectures. 3rd Symposium on the Fron-

tiers of Massively Parallel Computation, 1990.

[2] R. Hanxleden, K. Kennedy. Relaxing SIMD control ow constraints using loop

transformations. SIGPLAN Notices, 188{199, 1992.

[3] M. Nilsson, H. Tanaka. MIMD execution by SIMD computers. Journal of Infor-

mation Processing 13-1, 58{61, 1990.

[4] D.Y. Hollinden et al. Experiences implementing the Mintabs system on a Mas-

Par MP-1. 3rd Symposium on Distributed and Multiprocessor Systems, 43{58,

1992.

[5] P. Sanders.Massively parallel search for transition-tables of polyautomata. PAR-

CELLA 94, Akademie Verlag Berlin, 1994 (to appear).

[6] C. Powley, C. Ferguson, R. Korf. Depth-�rst heuristic search on a SIMD ma-

chine. Arti�cial Intelligence 60, 199{242, 1993.

8

