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Abstract

Nearest neighbor load balancing algorithms like load di�usion are pop-

ular due to their simplicity, 
exibility and robustness. In this paper we

show that they are also asymptotically very e�cient when a random rather

than a worst case initial load distribution is considered. For processor loads

described by independent random variables we show that di�usion needs

�

�

(logn)

2=d

�

time to achieve good load balance on a d-dimensional mesh

or torus network with n

d

processors. We also argue that some but not all of

the nearest neighbor algorithms known to perform better than di�usion in

the worst case also perform better for random loads. In addition, we use the

maximum norm for de�ning the quality of load balancing which has more

direct implications for the execution time of the underlying application than

previous de�nitions. Previouly known results for worst case instances are

adapted to the new quality criterion.

1 Introduction

Load balancing is one of the key aspects of parallel computing. One interesting

problem class in this context which is amenable to rigorous analysis is the following:

A processor's (PE's) load can be accurately determined and arbitrarily subdivided

into multiple pieces which can be independently solved on di�erent PEs. Any

portion of load can be communicated to a neighboring PE in unit time. A related

and often more realistic model assumes the load to consist of discrete equally sized

load units and transmission costs which are proportional to the number of units

transferred.

There is a number of simple load balancing algorithms for distributed memory

computers based on this model which only require local communication. Every

PE cycles through identical iterations during which it determines its own load and

that of its neighbors. Based on this local information the PE decides how much of

its load is transmitted to each neighbor. The PEs are usually assumed to proceed

synchronously (but refer to [16] for an asynchronous algorithm). Note that this

is no real restriction because algorithms which only use local communication can

always replace synchronous execution by local synchronzation [13]. Algorithms

with local control are particularly attractive for dynamic load balancing applica-

tions, i.e., in settings where a load balancing process should run concurrently with

an application which can generate or consume load at any time. Load balancing

algorithms with global control have di�culties in this context because collecting
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global information can take so long that it is outdated before the collection is

�nished. In [14] some results for a simple class of dynamic loads are derived but

most papers use the easier to de�ne static load balancing problem where a load

balancer is judged by looking at the time required to balance an initial load dis-

tribution. However, this does not necessarily mean, that the intended application

requires only static load balancing. It can be expected that a local load balancing

algorithm which performs well in the static setting is also useful as a dynamic load

balancer.

Perhaps the conceptually simplest local algorithm is di�usive load balancing. A

constant fraction of the load di�erence between all neighboring PEs is exchanged

at every step. By exploiting the fact that this algorithm can be modeled by a

simple partial di�erence equation (The di�usion equation or Poisson equation)

analytical results about the convergence rate in the worst case can be obtained for

meshes, tori, hypercubes and (less accurately) for arbitrary networks [2, 1, 17, 19].

It turns out that di�usion can be rather slow in the worst case. For example on an

n-PE linear array 
 (n

2

) iterations are required in order to achieve approximate

load balancing. The discrete analog to di�usion is to exchange a single load unit

whenever there is a load di�erence [8]. Unfortunately this scheme often gets stuck

in arbitrarily unbalanced con�gurations.

Interestingly, it can be considerably more e�cient to exchange load with one

neighbor after the other rather than with all neighbors at once. The corresponding

dimension exchange algorithms are analyzed in [2, 7, 19]. The discrete version of

dimension exchange is shown in [15] to quickly converge up to a maximal (global)

load di�erence of d load units on a d-dimensional mesh and a simple extension even

ensures the best possible convergence. Similar algorithms for expander graphs are

considered in [4].

All in all, there are signi�cant results about the worst case performance of

nearest neighbor load balancing algorithms. But little progress has been made in

understanding the gap between the worst case and the actual load patterns of real

applications. Therefore, random loads are often used as a possibly more realistic

model (e.g. [19]). There is empirical evidence that random loads are considerably

simpler to load balance than the worst case bounds predict. Whether worst case

loads or random loads are a better model certainly depends on the application

one has in mind. But there is one important argument which favors the random

load model: For worst case instances there are simple and e�cient load balancing

algorithms which use global control (often based on pre�x-sum computations)

and local algorithms may have di�culties competing with these algorithms. (For

example, why bother with a di�usion load balancing algorithm which requires time


 (n

2

) on a mesh of n

d

PEs, if a pre�x sum followed by a routing operation can do

it more accurately in time � (n).) But for situations which are simpler to balance,

even the time needed to collect global information may exceed the time needed by

a good local algorithm to balance the load.

Finally, we are at the point where the objective of this paper can be explained.

The goal is to �nd closed form expressions for the performance of local load bal-

ancing algorithm for random initial loads. This may help to understand previous

simulation results and to guide future studies. Furthermore, this gives a rigorous

justi�cation, why local load balancing can be more e�cient than algorithms with

global control.

The remainder of this paper is structured as follows. In Section 2 we give a

more detailed description of the machine and load model. In particular, we de�ne
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a criterion for the quality of load balancing which is more directly related to the

execution time of the overall application than previous criteria. Section 3 intro-

duces the di�usion algorithm and adapts previous results in order to derive worst

case lower bounds on the balancing time. The core part of this paper is Section 4

which analyzes the performance of di�usion for random problem instances and

derives upper bounds for worst case instances. Because it turns out that all the

main points can already be made for the linear array, we �rst restrict the proofs to

this notationally simpler case. Section 5 then explains which modi�cations have

to be made in order to extend the results to higher dimensional mesh and torus

networks. The scope is further expanded in Section 6 where we discuss how the

results might be transferred to algorithms which are superior to di�usion for worst

case instances. Section 7 summarizes and discusses the results and identi�es some

possible future directions of research.

2 The model

The considered machine is a d-dimensional mesh consisting of n

d

processors (PEs)

which work synchronously. We will sometimes note how the results can be trans-

ferred for torus networks. Generalizations for meshes with unequal side length are

also possible but are not considered here since we do not expect any new insights

from that. Previous results indicate that the performance of load balancing is

usually governed by the maximal side length [17, 19]. The PEs are numbered by

an index set I := f0; : : : ; n� 1g

d

.

The load at time t is described by the jIj-dimensional load vector l(t). The load

of a PE l

i

(t) is measured by the sequential execution time required to consume it.

Whenever the intended time is clear form the context, the t is omitted. Let l

avg

:=

1

jIj

P

i2I

l

i

denote the average load. As explained in the introduction we analyze a

static load balancing scenario where the initially given load l(0) is to be balanced

while the sum of all PE loads (and therefore also l

avg

) remains constant. The fully

balanced situation can therefore be de�ned by the vector l

avg

:= (l

avg

; : : : ; l

avg

)

T

.

Let e := l � l

avg

denote the deviation from the balanced state or error vector.

Previous works have judged the quality of the achieved load balancing in terms of

the Euclidean norm kek

2

=

p

P

i2I

e

2

i

of e. It is the \default" in mathematics and

it is easier to handle than other measures. But we do not know of any immediate

connection between kek

2

and the performance of the underlying application. We

therefore use a di�erent model:

De�nition 1. The load is considered to be balanced when

kek

1

= max

i2I

je

i

j � " for some positive constant ".

In particular, in a balanced situation the remaining parallel execution time

required for consuming the load is at most (1 + ")l

avg

and for the next (1� ")l

avg

time units all PEs can work productively without additional communication. The

balancing time T

bal

can then be de�ned as the smallest t for which l(t) is balanced.

Algorithmswith discrete loads have the additional constraint that l

i

(t) must always

be an integer and that only one load unit per time step can be transmitted.

Random loads are modeled by considering the l

i

(0) to be independent, iden-

tically distributed, bounded random variables with expectation El

i

(0) =

�

l and

l

i

(0) �

^

l such that

^

l=

�

l is a constant. For example, the uniform distribution used

in [8, 19] has

^

l = 2

�

l.
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We use the following widely used de�nition of asymptotic behavior with high

probability for our results (e.g. [10]):

De�nition 2. X 2

~

O (f(n)) i�

8� 2 R

+

: 9c 2 R

+

: 9n

0

: 8n � n

0

: P [X � cf(n)] � 1� n

��

:

For example, the execution time of a load balancing algorithm is considerered

to be of the order T (n) with high probability if cT (n) iterations su�ce for all but

a polynomially small fraction of all random instances.

We have El

avg

=

�

l. For su�ciently large n, l

avg

will be so close to

�

l that the two

quantities can be used almost interchangeably. In particular, the following Lemma

allows us to analyze the load balancing time in terms of the deviation from the

expected load rather than in terms of the deviation from the actual average load:

(We omit the proof which is quite simple and rather uninteresting.)

Lemma 3. For all " > 0 there is a � > 0 such that if the time required to achieve







l�

�

l







1

< �

�

l (with

�

l := (

�

l; : : : ;

�

l)

T

) is in

~

O (T (n)) then the same time su�ces to

achieve kek

1

� "l

avg

with high probability.

3 Di�usive load balancing

Synchronous di�usive load balancing can be de�ned by the simple rule:

l

i

(t+ 1) := l

i

(t) + �

X

j2�(i)

(l

j

� l

i

) : (1)

Where �(i) is the set of neighbors of PE i. A lower bound for the e�ciency of

di�usion can be derived from previous results:

Theorem 4. The worst case balancing time for di�usion on d-dimensional meshes

with n

d

PEs is in 
(n

2

).

Proof. Let " denote any positive constant. Using [17, 19] it can be seen that there

is a choice of l(0) such that ke(0)k

1

= al

avg

(a > ") and ke(t)k

1

= j�j

t

ke(0)k

1

with j�j 2 1 ��(1=n

2

). (� is the subdominant eigenvalue of a matrix which can

be used to de�ne the di�usion rule and l(0) is l

avg

plus an appropriate scaling of

the corresponding eigenvector.) So, there is a constant c such that for su�ciently

large n, ke(t)k

1

� (1� c=n

2

)

t

a � e

�ct=n

2

a > " for t <

ln

a

"

c

n

2

.

4 The linear array

The analysis of di�usion for the linear array proceeds as follows. In Section 4.1 we

derive a simple closed form formula for l

i

(t) as a linear combination of the coe�-

cients of l(0). Two key observations make this possible. The linearity of di�usion

implies that the behavior for a unit load already contains all the information we

need. Furthermore, a special treatment of the border PEs 0 and n � 1 can be

avoided by introducing periodic boundary conditions. Section 4.2 establishes the

main result of this section, namely that with high probability T

bal

2 O((log n)

2

)

for random instances. The main tool making this possible are Hoe�ding bounds.

Finally in sections 4.3 and 4.4 the missing lower bounds for random instances

respectively upper bounds for the worst case are derived.
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4.1 A closed form solution

To get the main idea for �nding a closed form solution we start with some simpli�-

cations. We assume that there is an in�nite number of PEs { one for each integer.

Also, we �x the di�usion parameter � to 1=2. This value is identi�ed as optimal

for the linear array in [19]. (For the torus it is optimal for odd n.) The di�usion

rule (1) can now be written as

l

i

(t+ 1) =

l

i�1

(t) + l

i+1

(t)

2

:

Furthermore, assume

1

l

i

(0) = [i = 0], i.e. initially there is only a unit load on PE

0. Then we get the following load development:

l(0) = (: : : ; 0; 1; 0; : : : )

T

l(1) = 1=2 (: : : ; 0; 1; 0; 1; 0; : : : )

T

l(2) = 1=4 (: : : ; 0; 1; 0; 2; 0; 1; 0; : : : )

T

l(3) = 1=8 (: : : ; 0; 1; 0; 3; 0; 3; 0; 1; 0; : : : )

T

l(4) = 1=16 (: : : ; 0; 1; 0; 4; 0; 6; 0; 4; 0; 1; 0; : : : )

T

l(t) is basically the t-th row of a Pascal triangle. More precicely,

l

i

(t) = 2

�t

�

t

t+i

2

�

[even(t+ i)] :

Another useful observation is that l

i

(t) equals the probability that a particle start-

ing a random walk at PE 0 at time 0 is at PE i at time t. Yet another useful

interpretation is that l

i

(t) also equals 2

�t

times the number of paths a particle can

take to come from PE 0 to PE i in t steps.

The above result can be generalized for arbitrary initial load patterns by scal-

ing, shifting and adding several unit-load solutions.

Theorem 5. l

i

(t) = 2

�t

X

j

�

t

t+(i�j)

2

�

l

j

(0) [even(t+ (i� j))].

Proof. Instead of justifying the entire sequence of the above heuristic steps the

theorem can be proved directly by induction over t using the well known relation

�

t

k

�

+

�

t

k�1

�

=

�

t+1

k

�

.

This simple formula can also be used for a �nite array if we introduce the

periodic boundary condition l

i

:= l

g(imod2n)

with g(i) = min(i; 2n � i � 1). (The

ring topology can be treated similarly by using the periodic boundary condition

l

i

:= l

imodn

.) So, instead of considering a �nite linear array, we now use an

in�nite line of PEs with a periodic repetition of the initial load of the �nite array

alternating with its mirror image. Figure 1 shows the structure of this periodic

pattern.

4.2 Upper bound for random instances

This section is devoted to the proof of the following theorem:

1

We adopt the notation from [5] to de�ne [P ] = 1 if the predicate P ist true and [P ] = 0 else.
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... ...

mirror repeat

Figure 1: Periodic boundary conditions for the mesh.

Theorem 6. For random problem instances di�usion with parameter � = 1=2 on

an n PE linear array has

T

bal

2

~

O

�

(log n)

2

�

:

Our principal tool will be the following Hoe�ding bound theorem which we cite

from [6, Theorem 2.6.7] in a form slightly rewritten for our purposes:

Theorem 7 (Hoe�ding bounds). If X

1

; : : : ;X

n

are independent random vari-

ables with a

i

� X

i

� b

i

, then for "E

P

i

X

i

> 0

P

"

X

i

X

i

> (1 + ")E

X

i

X

i

#

� exp

"

�

"

2

(E

P

i

X

i

)

2

P

i

(b

i

� a

i

)

2

#

: (2)

Let � denote an arbitrary positive constant and let t = c(lnn)

2

for a value of

c still to be determined. Since P

�







l �

�

l







1

> "

�

l

�

� nP

�

�

�

l

i

(t)�

�

l

�

�

> "

�

l

�

for any

�xed i, it su�ces to show that P

�

�

�

l

i

(t)�

�

l

�

�

> "

�

l

�

� n

���1

. We consider the cases

l

i

(t) > (1 + ")

�

l and l

i

(t) < (1 � ")

�

l separately:

Lemma 8. P

�

l

i

(t) > (1 + ")

�

l

�

�

1

2

n

���1

.

Proof. FromTheorem 5 we know that l

i

(t) =

P

j

�

t

t+(i�j)

2

�

2

�t

[even(t+ (i� j))] l

j

(0).

By appropriately reordering this sum it can be written as l

i

(t) =

P

k

�

t

k

�

2

�t

l

j

k

(0)

and for t < n the nonzero terms are independent random variables in the range

h

0; 2

�t

�

t

k

�

^

l

i

. (Note that this also holds if PE i is near the border since for t < n

there are never any PEs whose initial load contributes to two nonzero terms of the

sum.) Furthermore, El

i

(t) =

�

l. Therefore we can use the Hoe�ding-bound (2) to

see that

P

�

l

i

(t) > (1 + ")

�

l

�

� exp

"

�

"

2

�

l

2

4

�t
^

l

2

P

k

�

t

k

�

2

#

:

We now use the relation

P

k

�

t

k

�

2

=

�

2t

t

�

(For example [5, Equation 5.23]) and the

Stirling approximation for the binomial coe�cient

�

2t

t

�

� 4

t

q

1

�t

.

= exp

"

�

"

2

�

l

2

4

t

2

�2t
^

l

2

�

2t

t

�

#

� exp

�

�

"

2

�

l

2

p

�t

^

l

2

�

= n

�

"

2

�

l

2

p

c�

^

l

2

�

1

2

n

���1

for c �

(� + 1 + 1= log n)

2

^

l

4

�"

4
�

l

4

:

Lemma 9. P

�

l

i

(t) < (1� ")

�

l

�

�

1

2

n

���1

.

Proof. Analogous to the proof of Lemma 8. The Hoe�ding bound can be used

to bound deviations below the expected value by substituting " �" and X

i

 

�X

i

.

Putting lemmata 8 and 9 together we can conclude that P

�

�

�

l

i

(t)�

�

l

�

�

> "

�

l

�

�

n

���1

.
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4.3 Lower bound for random instances

Theorem 10. There are distributions of l

j

(0) such that for most random instances

of di�usive load balancing the execution time is in 
((log n)

2

).

Proof. Consider the distribution P

h

l

j

(0) =

^

l

i

=

�

l=

^

l, P [l

j

(0) = 0] = 1 �

�

l=

^

l. Fix

any constant 
 < 1= log(

^

l=

�

l). (Mentally) subdivide the array into equal sized

intervals of length 
 log n.

2

Using elementary calculations, it can be proved that

with high probability there is at least one interval in which every PE receives

load

^

l. Balancing the load of this highly loaded interval can be shown to require


 ((log n)

2

) steps (using similar techniques we are using in Theorem 14 to show

worst case upper bounds).

The proof can also be adapted to other load distributions like the uniform

distribution. The only requirement is that there is a constant nonzero probability

that l

i

(0) > (1 + �)l

avg

for some constant � > ".

4.4 Upper bound for worst case instances

We start with some simple observations which constitute the building blocks of the

proof. First, \moving" initially present load closer to a PE can only increase its

load at time t. (Note that this operation can produce nonperiodic load patterns but

we do not claim that the modi�ed pattern corresponds to a legal initial situation.)

Lemma 11. For any t, substituting l

j

(0)  l

j

(0) � a and l

k

(0)  l

k

(0) + b can

only increase l

i

(t) if b � a, k � j is even and jk � ij � ji� jj.

Lemma 12. ke(t)k

1

is a decreasing function.

Lemma 13. l

i

(t) does only depend on l

j

(0) if even(t) = even(i� j).

Theorem 14. The worst case balancing time for di�usion on the linear array with

di�usion parameter � = 1=2 is in O(n

2

).

Proof. We again look at the maximum load �rst. Consider any PE i and any legal

initial load pattern. Due to the monotonicity of ke(t)k

1

we can restrict ourselves

to even times t without loss of generality. Due to Lemma 13 we can therefore

disregard all positions j with odd(i� j).

3

By exploiting the symmetry properties

of l(0) and repeatedly applying Lemma 11 it can be shown that l

i

(t) can only

get larger if we transform l(0) to l

j

(0) := l

avg

[i 6= j ^ even(i� j)] + 2nl

avg

[i = j].

(Strictly speaking we only need to rede�ne l

j

(0) for ji� jj � t.) Figure 2 shows

this transformation operations. Therefore

l

i

(t) �2

�t

l

avg

 

X

j 6=i

�

t

t+(i�j)

2

�

[even(t+ (i� j))] + 2n

�

t

t=2

�

!

�l

avg

�

1 + 2n2

�t

�

t

t=2

��

2

Slightly tighter results are possible by selecting subsets of PEs which include only every other

PE in an interval of length 2
 logn.

3

Note that we do not lose any information by doing that. For our periodic input patterns all

loads with odd(i� j) will also appear as a \mirror image" at an even distance.
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i

Figure 2: Transformation of initial load for worst case bound.

using the Stirling approximation for

�

2t

t

�

again, we get

l

i

(t) �l

avg

 

1 + 2n

r

2

t�

!

� l

avg

(1 + ") for t �

8n

2

�"

2

:

To bound the behavior of the minimum load we can construct a similar set

of lemmata and transform l(0) to l

j

(0) := l

avg

[i 6= j ^ even(i� j)]� 2nl

avg

[i = j].

Then the \hole" in l(0) will produce a load de�cit smaller than "l

avg

for some

t 2 O(n

2

). (Note that the negative load at PE 0 causes no problems because the

transformed con�guration need not be a legal initial load con�guration.)

5 Higher dimensions

Some generalizations are immediate. The optimal di�usion parameter for a d-

dimensional mesh is � =

1

2d

[19]. By introducing periodic boundary conditions for

all dimensions we can write

l

i

(t+ 1) =

1

2d

d

X

k=1

(l

i+u

k

(t) + l

i�u

k

(t))

(where u

k

denotes the k-th unit vector). Furthermore,

l

i

(t) =

X

j2Z

d

!

i�j

(t)l

j

(0)

and the coe�cients !

i�j

are independent of the load. In order to determine !

k

,

it is again su�cient to consider the development of a unit load at PE 0. The

probabilistic and combinatorial interpretation of this setting is still applicable.

!

(k

1

;::: ;k

d

)

is zero if t+ k

1

+ � � �+ k

d

is odd. For even t, we have !

k

� !

0

for all k.

Still, the coe�cients !

k

are more di�cult to determine and manipulate now. Only

for d = 2 we know a relatively simple closed form:

Theorem 15. For d = 2, !

(x;y)

(t) = 4

�t

�

t

t+x+y

2

��

t

t+x�y

2

�

[even(t+ x+ y)].

Proof. By induction over t.

Fortunately we do not really need to know all the !

k

if we have a good estimate

for !

0

.

Lemma 16. !

0

(t) 2 O

�

t

�d=2

�

.
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Proof. Assume without loss of generality that t is divisible by 2d. In the proba-

bilistic interpretation !

0

is the \return to origin" probability of a d-dimensional

random walk. Following [3, Section XIV.7] we get

!

0

=2

�t

�

t

t=2

�

X

k

1

+���+k

d

=t=2

�

d

�t=2

(t=2)!

Q

i

k

i

!

�

2

:

Using

P

a

2

i

� (max a

i

)(

P

a

i

) and the fact that the terms inside (�)

2

constitute a

multinomial distribution (and therefore sum to 1) we get

�2

�t

�

t

t=2

�

d

�t=2

max

k

1

+���+k

d

=t=2

(t=2)!

Q

i

k

i

!

= 2

�t

�

t

t=2

�

d

�t=2

(t=2)!

(

t

2d

)!

d

and using the Stirling approximation

�

r

2

�t

d

�t=2

p

�t(t=2)

(t=2)

e

�t=2

(1 + � (1=t))

�

p

�t=d(

t

2d

)

(

t

2d

)

e

�

t

2d

�

d

=

p

2 (�t=d)

�d=2

(1 + � (1=t)) :

In particular, the proof of Theorem 14 can now be adapted for arbitrary d:

Theorem 17. The worst case balancing time for di�usion on the d-dimensional

mesh with di�usion parameter � =

1

2d

is in O(n

2

).

For random instances we encounter a new problem. If i is near one of the

corners of the mesh then the random variables l

j

(0) which contribute to l

i

(t) are

not all independent even for small t. The reason is that due to the re
ections

implicit in the periodic boundary conditions there may be up to d indices which

are determined by the same value (for t < n). But l

i

(t) is nevertheless the sum of

�

�

t

d

�

independent random variables so that the Hoe�ding bound can be applied.

The expectation of the sum of these variables is still

�

l. Using a similar trick

as in the proof of Lemma 16 the sum over the squares of the bounds of these

random variables is not larger than

^

l

2

d!

0

. We can now modify the proof of the

one-dimensional case (Theorem 6) to conclude that P

�

l

i

(t) > (1 + ")

�

l

�

� e

��

(

t

d=2

)

so that there is a t 2 O

�

(log n)

2=d

�

which ensures that with high probability no

PE has load more than (1 + ")

�

l. Despite of this admittedly imprecise argument

we dare to conclude:

Theorem 18. For random problem instances di�usion with parameter � =

1

2d

on

the d-dimensional mesh has

T

bal

2

~

O

�

(log n)

2=d

�

:

The corresponding theorem for torus networks is even simpler to prove be-

cause there is no trouble with dependent variables. The lower bound for random

instances can be proved as in the one-dimensional case by showing that with high

probability there is a highly loaded subcube of side length 


�

(log n)

1=d

�

:

Theorem 19. There are distributions of l

j

(0) such that for most random instances

of di�usive load balancing the execution time is in 


�

(log n)

2=d

�

.
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6 Other algorithms

As explained in the introduction, di�usion is a relatively slow algorithm for worst

case instances. Algorithms with global control and the dimension exchange algo-

rithm are more e�cient. For random instances global algorithms still need time


 (n) and di�usion is now asymptotically superior. For dimension exchange, the

situation is more complicated but also more interesting:

Theorem 20. (Generalized) dimension exchange load balancing with the optimal

parameters from [19] needs load balancing time T

bal

2 
(n) both in the worst case

and for random instances.

Proof. In every step of the optimized algorithm from [19] a PE gives a fraction in

1 ��(1=n) of its load to its current communication partner. Using a calculation

analogous to the proof of Theorem 4 we can conclude that it takes 
 (n) steps

until a piece of load of size (1+a)l

avg

(a > ") can be reduced below (1+ ")l

avg

.

We conjecture, that the 
 in the above proof can be replaced by a �. For a heuristic

interpretation it is again useful to employ the analogy of the random movement of

a particle. Di�usion corresponds to a completely symmetric random walk and this

is the reason why it is so slow in the worst case { it takes time � (k

2

) to get k steps

away from the origin on the average. Dimension exchange with a very asymmetric

parameter is like adding a lot of \sti�ness" to the motion of the particle such that

a random motion only emerges on large scales.

4

But for random instances this

is disadvantageous because it is su�cient to balance O(log n) neighboring PEs in

order to get global balance. This also gives a hint how dimension exchange could

be improved for random instances:

Conjecture 21. Dimension exchange with a parameter in 1 � �(1= log n) has

T

bal

2

~

O

�

(log n)

1=d

�

for random instances.

The idea is to adapt the sti�ness of motion to the scale in which load balancing

is possible. We then get an algorithm which is again more e�cient than di�usion.

More generally, we expect that many load balancing algorithms have an asymptotic

performance for random instances which is identical to the worst case performance

on O(log n) PEs (possibly present parameters need to be tuned for this machine

size). The reason is that it can be proved that the network can be cut into

subnetworks of size O(log n) without making load balancing impossible. Therefore

it would be su�cient to run the algorithm locally on the subnetworks. It does not

seem to be a very far fetched assumption that an algorithm which is identical to the

one it was derived from, with the only di�erence, that its communication abilities

are pruned, performs no better on the average than the original algorithm. For

example, the discrete dimension exchange algorithm described in [15] presumably

needs load balancing time T

bal

2

~

O

�

ke(0)k

1

(log n)

1=d

�

for random instances. This

is optimal in the sense that with high probability a random instance cannot be

balanced asymptotically faster due to sheer bandwidth limitations. (Remember

that in the discrete variant of our model only one load unit per iteration can be

moved.)

4

Essentially we use the same strategy when we stir a cup of tea in order to \balance" the

sugar.
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7 Conclusions

Simple local load balancing algorithms can be much more e�cient for random

instances than in the worst case. For example, di�usion requires time T

bal

2 �(n

2

)

to achieve approximate load balance on a d dimensional mesh with n

d

PEs. For

random problem instances �

�

(log n)

2=d

�

steps are su�cient with high probability.

These results can also be adapted to torus networks.

5

In contrast, algorithms which

employ some kind of global control often have the same asymptotic performance for

worst case and random instances and are therefore inferior for situations for which

random instances are a more appropriate model. Nevertheless, di�usion is still

slow compared to other algorithms like the best variants of dimension exchange.

However, in the continuous case the parameters of dimension exchange need to be

tuned depending on the machine size and the class of problems to be balanced.

We see the role of di�usion mainly as a simple and robust algorithm which can

be used as a \�rst try". Furthermore, its simplicity makes it a good choice for

analyzing fundamental properties of load balancing.

There remains a lot of work to be done. One could consider di�erent intercon-

nection networks or asynchronous operation. There are also more sophisticated

algorithms about which little analytical results are known. For example, the gra-

dient model load balancing approach [11, 12] might be interesting because it is a

mixture between global and local operation. Regarding the goal of this paper the

largest gap is the discrepancy between the load model (static load balancing of

random instances) and the intended use (dynamic load balancing for real applica-

tions). What we would really like to have are dynamic load models which are at

the same time meaningful for a variety of applications and analytically tractable.

However, we believe that this will at least be very di�cult because the more ac-

curate a model gets, the more narrow is the domain of applications for which it

yields meaningful results. For example, consider two of the applications for which

nearest neighbor balancing has been used successfully: For particle simulation [8]

it is crucial that interacting particles are at nearby PEs. While this property is

easy to maintain on one-dimensional networks if nearest neighbor load balancing

is used, the situation is much more complicated for higher-dimensional networks.

For best �rst branch-and-bound (e.g. [9, 18]) we are not so much interested in

a balanced distributions of the number of search tree nodes but we want to have

some nodes with close to optimal evaluation on every PE. We believe that there

will always be room for simpli�ed abstract models because they make it possible

to judge the relative merits of di�erent algorithms for a wide spectrum of settings.
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