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Abstra
t

The edge 
oloring problem asks for assigning 
olors

from a minimum number of 
olors to edges of a graph

su
h that no two edges with the same 
olor are in-


ident to the same node. We give polynomial time

algorithms for approximate edge 
oloring of multi-

graphs, i.e., parallel edges are allowed. The best pre-

vious algorithms a
hieve a �xed 
onstant approxima-

tion fa
tor plus a small additive o�set. Our algo-

rithms a
hieve arbitrarily good approximation fa
-

tors at the 
ost of slightly larger additive term. In

parti
ular, for any � > 0 we a
hieve a solution quality

of (1 + �)opt + O(1=�). The exe
ution times of one

algorithm are independent of � and polynomial in the

number of nodes and the logarithm of the maximum

edge multipli
ity.

1 Introdu
tion

One of the most fundamental 
oloring problems asks

for assigning 
olors to edges su
h that no two edges

with the same 
olor meet at a node. The most im-

portant obje
tive fun
tion here is to minimize the

number of 
olors used.

Let us 
onsider a motivating example. Assume

that nodes are nodes of a (fully 
onne
ted) 
ommu-

ni
ation network and edges represent data pa
kets of

identi
al size to be ex
hanged between nodes. Fur-

ther assume that pa
kets are ex
hanged dire
tly
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be-

tween sender and re
eiver in one round and that in

ea
h round, a node 
an only be involved in one pa
ket

ex
hange. In this model it does not matter in what

dire
tion the data moves so that the graph is an undi-

re
ted graph. An edge 
oloring of this 
ommuni
a-
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Refer to [9℄ for what happens if this dire
t route assump-

tion is lifted.

tion graph that assigns 
olors 1; : : : ; q to the edges

yields a q round 
ommuni
ation s
hedule | just ex-


hange the pa
kets with 
olor 
 in round 
. We see

that minimizing the number of 
olors q will minimize

the time needed for ex
hanging all the pa
kets. Sin
e

there may be several pa
kets ex
hanged between two

nodes, we have to deal with a multigraph.

The minimal number of 
olors needed to 
olor the

edges of a graph G = (V;E) is the 
hromati
 index

�

0

(G). There are two obvious lower bounds:

�

0

� �:= max

v2V

degree(v) (1)

�

0

� �:= max

H�V

jE(H)j

bjHj=2


(2)

where E(H) denotes the set of edges of the subgraph

indu
ed by the vertex set H. For bipartite multi-

graphs we a
tually have �

0

= � and optimal 
olor-

ings 
an be found very qui
kly [2℄. For simple graphs,

Vizing's algorithm [11℄ gives a 
oloring with � + 1


olors in time O(jEj(jV j+�)) but it is NP-hard to

de
ide whether �

0

= �. Vizing's algorithm 
an be

generalized to 
olor multigraphs with � + � 
olors

where � is the maximum multipli
ity of an edge.

There is a 4=3-approximation algorithm for multi-

graphs but any better approximation is NP-hard

to obtain [6℄. However, if we allow a small addi-

tive error, mu
h better approximation fa
tors 
an

be obtained. In a sequen
e of results, approxima-

tion guarantees of 7�

0

=6 + 2=3, 9�

0

=8 + 0:75 [5℄, and

11�

0

=10 + 0:8 [8℄ have been obtained. All these al-

gorithms have the same basi
 stru
ture and it 
an

be expe
ted that any approximation of the form

(1 + 1=2k)�

0

+ 1 � 1=k 
an be a
hieved. However,

the a
tual algorithms be
ame more and more 
om-

plex with a large number of 
ase distin
tions that 
an

only be managed using 
areful exploitation of sym-

metri
 
ases. After eight more years, the most re
ent
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improvement only a�e
ted the additive 
onstant im-

proving it from 1� 1=k to 1� 3=2k [1℄. To break out

of this road blo
k, we relax the requirement on the

additive o�set and in ex
hange obtain better approx-

imation fa
tors. To understand the basi
 idea behind

this approa
h it is instru
tive to �rst have a look at

the previous algorithms:

The basi
 operations are 
olor ing an edge, un-


olor ing an edge, and shift ing, i.e., on a path with

edges alternatingly 
olored a and b, swap the 
ol-

ors a and b. The edges are 
olored sequentially in

arbitrary order. To 
olor an edge e , 
onstant size

subgraphs O 
ontaining e are investigated that are

de�ned by edges 
olored with a small number of 
ol-

ors. Using an exhaustive 
ase distin
tion, three basi


out
omes are possible: (1) e 
an be 
olored using

a small number of operations originating in O. (2)

O forms a witness that the number of 
olors 
an be

in
reased without getting too far away from the op-

timum. In that 
ase e is 
olored with the new 
olor.

(3) O is enlarged by taking additional 
olors and ad-

ditional nodes into a

ount; now an exhaustive 
ase

distin
tion for the larger graph is ne
essary. This pro-


ess eventually has to terminate sin
e for suÆ
iently

large subgraphs 
ase (1) or (2) has to be appli
able.

However, the approximation guarantee is determined

by the size of the graph for whi
h a 
omplete 
ase

distin
tion is feasible.

Our algorithm uses a similar basi
 approa
h but

avoids massive 
ase distin
tions by investing a small

number of additional 
olors that make it possible to

impose an additional stru
ture on O. This way the

algorithm 
an handle arbitrarily large subgraphs O.

Our algorithm is also more 
exible in a number of

other ways. Rather than insisting on 
oloring an ar-

bitrary edge, it pi
ks a multiply un
olored edge e and

\balan
es" it by 
oloring one of the parallel edges of e

| possibly by un
oloring a 
ompletely 
olored edge.

Eventually this pro
ess will terminate with a graph

without multiply un
olored edges. An additional 
ol-

oring me
hanism makes sure that subgraphs indu
ed

by 
onne
ted 
omponents of un
olored edges must

eventually be small. The remaining edges 
an then

be 
olored using Vizing's algorithm. In Se
tion 3 we

give a summary of our algorithm and then a detailed

derivation.

All previous algorithms for general multigraph

edge 
oloring have exe
ution time polynomial in jEj

but are only pseudopolynomial in the number of bits

needed to des
ribe a multigraph sin
e edge multipli
i-

ties 
an be en
oded as binary numbers. This problem


an be �xed by appropriately rounding edge multi-

pli
ities but this 
osts additional 
olors. In Se
tion 3

we develop a more elegant solution that a
hieves the

same approximation guarantees as the pseudopolyno-

mial algorithm. This algorithm exploits that a graph

with even edge multipli
ities 
an be 
olored by 
olor-

ing a graph with halved edge multipli
ities and then

using ea
h 
olor twi
e.

Se
tion 4 summarizes the paper and mentions some

open problems.

More Related Work

The fra
tional edge 
oloring problem asks to �nd a

set of mat
hings M and weights w(M) su
h that

P

M2M

w(M) is minimized subje
t to 8e 2 E :

P

fM2M:e2Mg

w(M) � 1. The fra
tional 
hromati


index e�

0

denotes the total weight of the optimal so-

lution. It is known that e�

0

= max(�;�) and it is


onje
tured that e�

0

� �

0

� e�

0

+ 1 [4, 10℄.

The fra
tional 
hromati
 index 
an be found in

time polynomial in jEj using the ellipsoid method [3℄.

Kahn [7℄ showed that �

0

� (1+ �)e�

0

+ o(�

0

) using the

probabilisti
 method. Although the proof is not 
on-

stru
tive, it might be possible to evolve it into a poly-

nomial time randomized algorithm based on the el-

lipsoid method and randomized rounding that yields

similar bounds as our algorithm. However our al-

gorithm is deterministi
, purely 
ombinatorial, 
om-

paratively simple and fast, and should yield better

approximation guarantees. Indeed, the polynomial

algorithm from Theorem 23 
an be used to approx-

imate the fra
tional 
hromati
 index faster than the

ellipsoid method: Repla
e every edge of G by a bun-

dle of M parallel edges (M may even be exponential

in jV j) and run our algorithm on this graph. In time

polynomial in jV j and logM one gets a 
oloring that


an be used to obtain a fra
tional 
oloring of G that

is within a fa
tor (1 +O

�

M

�1=2

�

) from optimal.

2 A Pseudopolynomial Algorithm

Sin
e the details of our algorithm are fairly te
hni
al,

we give an outline together with an overview of the

te
hni
al se
tions �rst. In this overview, we inten-

tionally do not quantify what adje
tives like \small",

\suÆ
iently many", : : : mean sin
e the right thresh-

olds 
an only be derived when all the te
hni
al ingre-

dients are assembled.

2



The algorithm massages a partial 
oloring of the

edges � : E * f1; : : : ; qg where q is initially � or

perhaps some larger value. The maximum 
olor q

is in
reased when it 
an be proven that q is 
loser

to �

0

than required for the 
laimed approximation

guarantee. Let G

0

denote the subgraph indu
ed by

the un
olored edges of the input graph G. A 
olor 


is missing at a node v if none of its in
ident edges is


olored 
.

Our algorithm produ
es a partial 
oloring where

G

0

is simple and has small 
onne
ted 
omponents

and then 
alls Vizing's algorithm to 
olor G

0

using

fresh 
olors. Sin
e the maximum degree of a simple

graph with small 
omponents is small, this last step

will only 
onsume few additional 
olors.

Making sure that the 
onne
ted 
omponents of

G

0

are small turns out to be easy. Se
tion 2.2 ex-

plains how to 
olor an edge when two nodes in the

same 
omponent of G

0

have a 
ommon missing 
olor.

Hen
e, when this routine is no longer appli
able,

nodes in a 
omponent of G

0

have disjoint missing


olors. If there are suÆ
iently many free 
olors at

ea
h node, this disjointness property limits the size

of 
omponents of G

0

.

The diÆ
ult part of the algorithm is to make G

0

simple. Progress towards this goal is measured using

the potential fun
tion � that is de�ned as the total

number of un
olored edges plus the number of bad

edges where bad edges are un
olored edges that are

not simple in G

0

. Note that � 
an be redu
ed by


oloring an edge or by 
oloring a bad edge and un-


oloring a lean edge where an edge e is lean if e itself

and all edges parallel to it are 
olored.

In order to fa
ilitate this balan
ing operation, we

de�ne the 
on
ept of an edge orbit O in Se
tion 2.3

that has a bad edge e as its nu
leus. Edge orbits are

subgraphs with properties that allow us to 
olor one

edge in e in ex
hange for un
oloring any other edge

in O. In parti
ular, if O 
ontains a lean edge, we 
an

redu
e �.

When an orbit O la
ks a lean edge, we 
an try to

grow it using the te
hniques des
ribed in Se
tion 2.4.

We show that this is possible whenever (1) there is

a 
olor 
 available that has not been used before to

grow the orbit. (2) There are at least two nodes in O

that either miss 
 or are in
ident to a 
 edge leaving

O. The additional stru
ture imposed by only grow-

ing the orbit using fresh 
olors is the main reason

why our algorithms are mu
h simpler than the pre-

vious ones. In parti
ular, although growing the orbit

requires 
omplex re
oloring operations a�e
ting the

entire graph, the basi
 properties of the orbits are

invariant under these transformation.

Finally, when an orbit O 
an neither be grown nor


ontains a lean edge, we show that it witnesses that

G is hard to 
olor | it either 
ontains a very high

degree node or it has a high ratio of edges to nodes.

In that 
ase, the number of 
olors q 
an be in
reased

without going too far away from the lower bounds

(1) and (2).

Se
tion 2.5 puts all the pie
es together and ana-

lyzes two algorithm variants. The simpler and faster

variant follows the 
lassi
al framework of an asymp-

toti
 approximation s
heme. It starts with (1 + �)�


olors and terminates using at most max((1 + �)� +

1=�; �

0

+3=�) 
olors. For 
onstant �, its running time

is O(jEj(V +�)) whi
h is asymptoti
ally as good as

the best previous algorithms [8, 1℄ but gives a better

approximation guarantee ex
ept for very small values

of �

0

. The se
ond variant is slower but more adaptive

to the input | it only in
reases the number of 
olors

when there is a ne
essity to do so. This algorithms

needs at most (1 +

p

4:5=�

0

)�

0


olors.

2.1 Notation

Sin
e we always refer to multigraphs, we 
onsider

edges as abstra
t entities and not as two element sets

or pairs of nodes. The in
iden
e relation is realized

by an impli
itly given fun
tion � mapping edges to

two element subsets of V . An edge e is in
ident

to a node u, if u 2 �(e). G = (V;E; �) is a par-

tial edge 
oloring or 
oloring with partial 
olor fun
-

tion � : E * f1; : : : ; qg. An edge e has 
olor 
, if

�(e) = 
. Only proper 
olorings are 
onsidered, i.e.,


olored edges in
ident to the same node must have

di�erent 
olors.

We 
onsider a subgraph H � G to be un
olored,

i.e., we 
an writeH � G andH � G

0

even if the edges

of H are 
olored di�erently in the 
olorings G and G

0

.

A subgraph P leaves another subgraph H, if V (P ) 6�

V (H). Let H be a subgraph of G and u a node, then

H � u denotes the subgraph obtained by removing u

and all edges in
ident to u from H. Similarly HnO

denotes the subgraph obtained by removing all nodes

of O and all edges in
ident to these nodes from H.

For the following de�nitions 
onsider some arbi-

trary but �xed 
oloring G. Then E




:= �

�1

(
) is the

set of edges of 
olor 
 and E

0

:= E n �

�1

(f1; : : : ; qg)

is the set of un
olored edges. The graph G




:= (V;E




)
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(a mat
hing) is the 
olor 
lass of 
olor 
 and

G

0

:= (V;E

0

) is the graph of un
olored edges. If a

node u is not in
ident to an edge of 
olor 
, then 
 is


alled missing at u and M(u) is the set of all 
olors

missing at a node u 2 V . We always assume, that at

least � 
olors are available in G, implying that every

node in
ident to an un
olored edge has at least one

missing 
olor.

Let u be a node of a proper 
oloring G and 
 and

d two 
olors, then Apath(u; 
; d) denotes the unique

maximal path P � G 
ontaining u and solely 
on-

sisting of edges of 
olor 
 or d. If 
 2 M(u), then

we say that Apath(u; 
; d) is the 
; d-alternating path

starting at u. One of our basi
 re
oloring te
hnique,

namely the shift operation, 
onsists of swapping the


olors of su
h an maximal alternating path. Due to

the maximality of these alternating paths a shift

operation always preserves the properness of a 
olor-

ing.

Let uv:= �

�1

(fu; vg) be the set of edges in
ident to

both u and v and for ea
h e 2 E let [e℄:= �

�1

(�(e))

denotes the set of all edges parallel to e. We partition

the edges E of G into three sets, namely

{ the lean edges E

(<)

:= fe 2 E : j[e℄ \E

0

j = 0g,

{ the even edges E

(=)

:= fe 2 E : j[e℄ \E

0

j = 1g

{ the fat edges E

(>)

:= fe 2 E : j[e℄ \E

0

j > 1g.

We de�ne the set of bad edges as E

(>)

0

:= E

(>)

\

E

0

. Now the potential �(G) of a 
oloring G is

�(G):= jE

0

j+ jE

(>)

0

j. Observe that �(G) � 2jE

0

j.

The lemmata and propositions in the following

three se
tions essentially represent fun
tions map-

ping a 
oloring G = (V;E; �) to a new 
oloring

G

0

= (V;E; �

0

). For 
onvenien
e we de�ne every sym-

bol Æ, that we de�ned above for G, also with respe
t

to G

0

and write Æ

0

.

For the time 
omplexity analysis we de�ne

poly(f

1

; : : : ; f

n

):=

S

k2N

O

�

Q

n

i=1

f

k

i

�

.

2.2 Coloring Edges in Large Components

of G

0

The following lemma is just a more abstra
t view

of the shift operation. With this operation we 
an

move a missing 
olor along an un
olored edge. By a

simple iteration of the operation we 
an 
olor edges

in large 
omponents of G

0

and therefore 
an shrink


omponents of G

0

to a 
ertain extent.

With 
onditions 1b and 1
 we assure that an iter-

ation of the operation is possible.
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�
�
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v
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v
c

c

Q

Figure 1: Proposition 3

Lemma 1 (Missing Color Move). Let e 2 uv \

E

0

be an un
olored edge between u and v in G and


 2 M(u) a missing 
olor of u. Then we 
an either

de
rease the potential � by assigning a 
olor to e or


ompute a 
oloring G

0

su
h that

a) 
 2 M

0

(v), i.e., missing 
olor 
 moved to v in

G

0

,

b) 8x 2 V n fu; vg : M

0

(x) = M(x), i.e., the miss-

ing 
olors of all other nodes were not 
hanged

and


) G

0

0

= G

0

, i.e., the un
olored edges were also not


hanged.

Proof. Let d 2M(v) be some missing 
olor of y and

Q:= Apath(u; 
; d) the 
; d-alternating path starting

at u and ending at #. Now 
ompute G

0

by shifting

Q. If # 6= v, then 
olor d be
ame missing at u and is

still missing at v hen
e we 
an assign 
olor d to edge

e. Otherwise, # = v and 
olor 
 be
ame missing at v

due to the shifting of Q. Hen
e G

0

ful�lls 
ondition

1a. Furthermore G

0

obviously ful�lls 
onditions 1b

and 1
.

De�nition 2 (Color Orbit & Weakness). A


olor orbit O � G is a node indu
ed subgraph of G

su
h that all nodes V (O) are 
onne
ted by un
olored

edges.

A 
olor orbit O is 
alled weak, if there are nodes

u and v in O that have a 
ommon missing 
olor 
 2

M(u) \M(v). Otherwise the 
olor orbit O is 
alled

strong.

In the next proposition we observe, that given a

weak 
olor orbit O we 
an move the 
ommon missing


olor 
 by iterating Lemma 1 along a path of un
ol-

ored edges until an un
olored edge 
an be 
olored.
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Proposition 3. If there is a weak 
olor orbit O in

G, then we 
an de
rease the potential � by 
oloring

some un
olored edge of O.

Proof. By de�nition of a weak 
olor orbit, two nodes

u and v in O have a 
ommon missing 
olor 
 and a

path P � G

0

joins u and v. Now the proof is by

indu
tion over the number of edges in P .

jE(P )j = 1: In this 
ase, P 
onsists of a single

un
olored edges e 2 uv. Sin
e u and v are assumed

to have a 
ommon missing 
olor 
, we 
an assign 
olor


 to edge e.

jE(P )j > 1: In that 
ase, P 
ontains an un
olored

edge e in
ident to u and some other node u

0

6= v.

We 
ompute G

0

by applying Lemma 1 on e. If e

got 
olored in G

0

, then the potential was de
reased

and our proposition is true. Otherwise, 
 be
ame

missing at u

0

and is still missing at v in G

0

by 1a

respe
tively 1b. Furthermore, by 1
 the un
olored

edges were not 
hanged and therefore

�

P := P �u is a

path of un
olored edges joining u

0

and v in G

0

. As

�

P

is stri
tly smaller than P , we 
an use the indu
tion

hypothesis to 
olor some edge of

�

P .

2.3 Edge Orbits

Again, the following lemma is just a more abstra
t

view of the shift operation. It enables us to move

the leanness of an edge along an alternating path.

Together with our 
on
ept of an edge orbit , the op-

eration is used to eliminate bad edges. Conditions

4b-4d are needed to maintain invariants of the edge

orbit stru
ture.

Lemma 4 (Lean Edge Move). Let e 2 xy be

some edge in G and P := Apath(x; a; b) an alternat-

ing path for some 
olors a 2 M(x) and b 2 M(y)

su
h that P 
ontains a lean edge f 2 E(P ) \E

(<)

.

Then we 
an either de
rease the potential � or


ompute a 
oloring G

0

su
h that

a) e 2 E

(<)

0

, i.e., leanness of f moved to e in G

0

,

b) 8
 62 fa; bg : G

0




= G




, i.e., no 
olor 
lass besides

that of a or b was 
hanged in G

0

,


) E

(>)

0

� E

(>)

, i.e., all fat edges in G are fat in

G

0

d) �(G

0

) = �(G), i.e., the potential was not


hanged.

Proof. Suppose the lean edge f of P is in
ident to

the nodes u and v and node u appears before v in

(b)

(a) (b)

(a)

(a)

(b)

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
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��
��

������
��
��
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������
��
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e

e
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xy
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(b) (a)
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(b)

(b)

(a)

Figure 2: Lemma 4

P . We may assume that e is not lean, otherwise the

proposition is trivially true with G

0

:= G. Let G

(1)

be the 
oloring obtained by un
oloring f . Sin
e f

was lean in G, it is not fat in G

(1)

. Thus we have

�(G

(1)

) = �(G) + 1. Let P

(1)

be the a; b-alternating

path starting at x in G

(1)

. Observe that P

(1)

ends

at u, sin
e either a or b is missing at u. Now G

(2)

is

obtained by shifting P

(1)

. Clearly �(G

(2)

) = �(G

(1)

).

In G

(2)

node u has missing 
olor b. Sin
e b is still

missing at y and e is assumed to be not lean, there is

an un
olored edge in [e℄, that 
an be 
olored with


olor b. Let G

(3)

be this new 
oloring. If e was

fat in G, then in G

(3)

the number of un
olored and

bad edges de
reased ea
h by at least one. Hen
e

�(G

(3)

) � �(G

(2)

) � 2 < �(G), i.e., the potential

was de
reased. And if e was even in G, then e is lean

in G

(3)

and G

0

:= G

(3)

ful�lls 
onditions 4a-4d.

For iterating Lemma 4 we introdu
e indu
tively

de�ned subgraphs of G 
alled edge orbits. In these

subgraphs some edges are marked.

De�nition 5 (Edge Orbit). The set of edge orbits

in a 
oloring G is indu
tively de�ned as

a) For a bad edge e 2 xy the graph O � G indu
ed

by x and y, in whi
h all un
olored edges between

x and y are marked, is an edge orbit.

b) Let O � G be an edge orbit, x and y nodes in O

and a 2M(x) and b 2M(y) 
olors, su
h that

{ an edge between x and y is marked in O,

{ no edge of 
olor a or b is marked in O and

{ the a; b-alternating path P := Apath(x; a; b)

leaves O.

5
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Figure 3: Proposition 7

If

^

O � G is indu
ed by V (O) [ V (P ) and the

edges of P and those marked in O are marked in

^

O, then

^

O is an edge orbit. We write

^

O = O+P .


) Nothing else is an edge orbit.

We say a 
olor 
 is marked in an edge orbit O, if

there are edges of 
olor 
, that are marked in O.

Note that the size of the orbit in
reases whenever

a pair of 
olors gets marked. Thus an edge orbit O


ontains at least i + 2 nodes, if 2i 
olors are marked

in O. In other words, the number of marked 
olors is

at most 2jV (O)j � 4.

Also note that an edge orbit is invariant under

re
oloring operations, that do not involve marked

edges.

De�nition 6 (Edge Orbit Weakness). An edge

orbit O � G is 
alled weak, if an edge marked in O

is lean. Otherwise, the edge orbit O is 
alled strong.

In the next proposition we observe similarly to

Proposition 3 that given a weak edge orbit O we 
an

move the leanness of an edge towards the nu
leus of

O until some bad edge gets 
olored and the potential

de
reased.

Proposition 7. If a 
oloring G 
ontains a weak edge

orbit O, then we 
an de
rease the potential �.

Proof. The proof is by indu
tion over the size of the

orbit.

jV (O)j = 2: If O 
ontains only two nodes, then O

is a trivial edge orbit indu
ed by two nodes x and y

su
h that the edges between x and y are fat. Thus

O 
annot be weak and the impli
ation in the propo-

sition is trivially true.

jV (O)j > 2: In this 
ase O =

�

O + P is indu
ed

by the nodes of a smaller orbit

�

O and an alternating

path P . Sin
e O is weak, it 
ontains a lean edge f .

We may assume that f is not marked in

�

O but in P ,

otherwise the indu
tion hypothesis 
ould be applied

to

�

O. By de�nition of an edge orbit, there is an edge

e 2 xy marked in

�

O su
h that P = Apath(x; a; b) for

some a 2M(x); b 2M(y).

Let G

0

be the 
oloring obtained by applying

Lemma 4 to edge e and path P . If the potential

was de
reased in G

0

, then our proposition is true. So

assume that the potential remained un
hanged in G

0

and G

0

ful�lls the 
onditions 4a-4d. Sin
e 
olors a

and b were not marked in

�

O, by 
onditions 4b and

4
, the marked edges of

�

O were not 
hanged inG

0

and

therefore

�

O is still an edge orbit in G

0

. By 
ondition

4a, edge e of

�

O be
ame lean. Thus we 
an apply the

indu
tion hypothesis to 
ompute a 
oloring of lower

potential.

2.4 Growing Orbits

We say a 
olor 
 is leaving O � G at node u 2 V (O),

if there is an edge e 2 uu

0

of 
olor 
 in
ident to u and

a node u

0

62 V (O).

A 
olor 
 is 
alled in
omplete in O � G, if there

are two nodes su
h that no 
 edge in O is in
ident to

either of them. Otherwise 
 is 
alled 
omplete.

De�nition 8 (Hard Orbit & Witnesses). A

subgraph O � G, that is a strong edge orbit and a

strong 
olor orbit, is 
alled a hard orbit.

For a hard orbit O two types of witnesses are de-

�ned:

(A) : all missing 
olors of some node u in O are

marked in O,

(B) : all in
omplete 
olors of O are marked in O.

The intuition of these witnesses is the following.

Assume that very few 
olors are marked in O. In


ase of an (A) witness, we found a node where the

number of in
ident edges is almost as large as the

number of available 
olors. And in 
ase of a (B) wit-

ness, a subgraph was found, in whi
h almost all 
olor


lasses are maximal mat
hings. Thus these witnesses

indi
ate, that it is `almost' impossible to 
olor an ad-

ditional edge using only the available 
olors.

Proposition 9. If O is a hard orbit, then we 
an

either in
rease the size of the orbit or �nd an (A) or

(B) witness.

For proving Proposition 9 we assume the following

lemma.

Lemma 10. Suppose O is a hard orbit and 
olor 


is not marked in O.

In either of the following 
ases we 
an in
rease the

size of the orbit or �nd an (A) witness.

6



a) 
olor 
 is missing at a node u of O and leaving

at a node v of O

b) 
olor 
 is leaving at nodes u and v in O.

Proof (Proposition 9): We may assume, that

there is an in
omplete 
olor 
, otherwise O has a (B)

witness. Let fu; vg � V (O) be the nodes with no

in
ident 
 edges in O.

If 
 were missing at u and v, then O would not

be a strong 
olor orbit 
ontradi
ting our hypothesis.

Thus we 
an assume without loss of generality that


 is leaving O at v. Hen
e, either Lemma 10a or 10b

is appli
able.

Proof (Lemma 10a): Note that the nodes of an

edge orbit are 
onne
ted by the edges marked in the

orbit. Thus there is a path P of edges marked in O

joining u and v. We may assume that every node

of O has at least one missing 
olor not marked in O,

otherwise we would have found an (A) witness. The

proof of the lemma is by indu
tion over the number

of edges in P .

jE(P )j = 1: There is an edge e 2 uv marked in O.

Sin
e 
olor 
 is leaving O at v, the alternating path

Q:= Apath(v; d; 
) leaves O for any d 2 M(v). As

mentioned before, we may assume that 
olor d is not

marked in O. Then

^

O = O+Q is an edge orbit of G

and stri
tly larger than O.

jE(P )j > 1: Let e 2 uu

0

be the �rst edge in P .

Consider the alternating path Q:= Apath(u; 
; d) for

some unmarked 
olor d 2M(u

0

). If Q leaves O, then

^

O = O+Q is an edge orbit of G that is stri
tly larger

than O. So suppose Q does not leave O and 
onsider

the 
oloring G

0

obtained by shifting Q. Note that

u and u

0

are the only nodes of O that have missing


olors 
 or d, sin
e O is a hard orbit. Thus Q ends

at node u

0

and the missing 
olors 
 and d of nodes

u and u

0

were ex
hanged in G

0

, in parti
ular 
 2

M

0

(u

0

). Also note, that all edges marked in O or not


ontained in O remained un
hanged in G

0

. Therefore

O is still an edge orbit in G

0

and 
olor 
 is still leaving

at v. Now the indu
tion hypothesis is appli
able on

the path

�

Q:= Q� u.

Lemma 10b whi
h is proven in the appendix is

similar to the leave routine in [5℄.

2.5 Algorithms

The following Proposition 
ombines the tools intro-

du
ed in the pre
eeding se
tions into an algorithm

for produ
ing a 
oloring without fat edges and where


omponents of G

0

will turn out to be `small'.

Proposition 11 (General Coloring Algorithm).

For a 
oloring G we 
an 
ompute a 
oloring G

�

su
h

that every 
olor orbit in G

�

is strong, no edge in G

�

is fat and during the 
omputation of G

�

the number

q of 
olors used in G

�

has only been in
reased if

there was an (A) or (B) witness in some hard orbit

O � G

0

for some intermediate 
oloring G

0

.

Proof. (By indu
tion over the potential � of G.)

For � = 0 the 
oloring G is 
omplete and the

proposition is trivially true. Obviously our propo-

sition is 
orre
t, if there is no weak 
olor orbit and

no fat edge. But if there is a weak 
olor orbit in G,

then we 
an de
rease the potential by Proposition 3

and the indu
tion hypothesis be
omes appli
able.

Therefore suppose all 
olor orbits are strong and

e is a fat edge in G. Let O be the trivial edge orbit

indu
ed by [e℄. By Proposition 9, we 
an in
rease

the size of the orbit, until it is no longer hard or has

a witness. In the 
ase that the orbit is no longer

a hard orbit, it either be
ame a weak edge orbit or

strong edge orbit and a weak 
olor orbit, thus we 
an

de
rease the potential either by Proposition 7 or 3.

In 
ase of a witness we introdu
e a new 
olor and


an de
rease the potential by assigning this 
olor to

some un
olored edge. In either 
ase the indu
tion

hypothesis is appli
able.

Clearly the running time of the algorithm de-

s
ribed above is in poly(jE

0

j; jV j;�), if jE

0

j denotes

the number of un
olored edges in G. The dependen
e

on � stems from �nding 
ommon missing 
olors and

in
omplete 
olors. For the spe
ial 
ase of 
onstant

size strong 
olor orbits it is worth having a 
loser look

at the exa
t 
omplexity of the algorithm sin
e it turns

out to mat
h the 
omplexity of previous algorithms

with weaker approximation guarantee.

Proposition 12. Under the assumption, that the

size of a strong 
olor orbit is always bounded by some


onstant, the time 
omplexity of the algorithm in

Proposition 11 is O(jE

0

j(jV j+�)).

Proof. Sin
e � � 2jE

0

j, it suÆ
es to show that the

potential 
an be de
reased in time O(jV j+�). We

use the 
olle
tion (G




)

q


=1

of 
olor 
lasses and the

7



graph G

0

of un
olored edges to represent the 
oloring

G. Clearly we have q 2 O(�), therefore we 
an �nd

missing 
olors and in
omplete 
olors in O(�). As-

signing a 
olor to an edge and un
oloring an edge 
an

be done in 
onstant time. Shifting an a; b-alternating

path 
an be done in time proportional to the number

of nodes in the path, sin
e we only have to modify two

mat
hings, G

a

and G

b

. Sin
e we greedily eliminate

weak 
olor orbits in the algorithm, the maximum size

of a weak 
olor orbit 
onsidered in the algorithm is

just one more than the maximum size of a strong


olor orbit.

We store a sta
k of fat edges, in order to be able

to �nd an edge orbit in 
onstant time. As long as

it is hard, we 
an grow it by Proposition 9 in time

O(jV j+�), sin
e we only have to perform a 
onstant

number of shift and `
olor �nd' operations.

After a 
onstant number of iterations of Proposi-

tion 9 there is a witness in the orbit or the orbit is

no longer hard. In the �rst 
ase we 
an redu
e the

potential in 
onstant time. In the latter 
ase we ap-

ply Proposition 3 or 7. In both propositions we only

perform a 
onstant number of shift and `
olor �nd'

operations.

If no more edges are fat, we 
ompute the 
olor

orbits of ea
h node. As soon as we found a weak 
olor

orbit, we use Proposition 3 to de
rease the potential.

Sin
e all 
onsidered 
olor orbits have 
onstant size,

time O(jV j+�) is needed to de
rease the potential.

Thus the total running time is O(jE

0

j(jV j+�).

Now we relate properties of our orbit stru
tures to

the known lower bounds of �

0

. This will �nally enable

us to design algorithms with guaranteed approxima-

tion ratios.

Lemma 13.

If O is a strong 
olor orbit, then jV (O)j �

q + 2

q ��+ 2

.

Proof. Sin
e no two nodes share a missing 
olor, we

have

P

u2V (O)

jM(u)j � q. Obviously, every node

in O has at least q � � missing 
olors. Sin
e O

is 
onne
ted by un
olored edges, there are at least

jV (O)j � 1 un
olored edges in O and therefore at

least 2(jV (O)j � 1) additional missing 
olors. Thus

we have, that the total number of missing 
olors is at

least jV (O)j(q ��) + 2(jV (O)j � 1).

Lemma 14. Let O be a hard orbit.

a) If there is an (A) witness in O, then

q ��+ 2 � 2jV (O)j � 4.

b) If there is a (B) witness in O, then

q � � + 2 � 2jV (O)j � 4.

Proof. As noted before the number of marked 
olors

in an edge orbit O is at most 2jV (O)j � 4.

In a hard orbit every node is in
ident to at least

two un
olored edges and at most ��2 
olored edges.

Therefore every node in O has at least q � � + 2

missing 
olors. If there is an (A) witness, then all

missing 
olors of some node in O are marked in O,

this implies q ��+ 2 � 2jV (O)j � 4.

A hard orbit 
ontains at least jV (O)j un
olored

edges and thus at most jE(O)j�jV (O)j 
olored edges,

i.e., there are at most

jE(O)j�jV (O)j

bjV (O)j=2


= ��

jV (O)j

bjV (O)j=2


�

� � 2 
omplete 
olors and thus at least q � � + 2

in
omplete 
olors. And if O has a (B) witness, then

all in
omplete 
olors of O are marked, implying q �

� + 2 � 2jV (O)j � 4.

Lemma 15. If q � b(1 + �)�
 � 1 for some � > 0,

then the following statements hold.

a) If O is a strong 
olor orbit, then jV (O)j � 1=�+1

b) If there is a (A) witness, then q < �+ 2=�� 1


) If there is a (B) witness, then q < � + 2=�� 1

Proof. By plugging q � b(1 + �)�
 � 1 into the in-

equality of Lemma 13, we obtain

jV (O)j

La:13

�

q + 2

q ��+ 2

�

b(1 + �)�
+ 1

b��
+ 1

�

�

b��
+ 1

+ 1 � 1=�+ 1

If we plug this into the inequalities in Lemma 14, then

we dire
tly obtain the inequalities b) and 
).

Theorem 16 (Algorithm I). For every 
onstant

� > 0 there is an approximation algorithm

for the multigraph edge 
oloring problem with

time 
omplexity O(jEj(jV j+�)) using at most

max fb(1 + �)�
+ 1=�; e�

0

+ 3=�g 
olors.

Proof. Start with b(1 + �)�
 � 1 
olors and apply

Proposition 11 to obtain G

0

. The number of 
olors

has only been in
reased, if there was some witness,

i.e., if q

15b;15


< e�

0

+2=��1 
olors were available. Hen
e

at most max fb(1 + �)�
 � 1; e�

0

+ 2=�� 1g 
olors are

used in G

0

.
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No edge in G

0

is fat and by Lemma 15a all 
olor

orbits are strong and of size at most 1=� + 1. Using

Vizing's algorithm and 1=�+1 additional 
olors, we


an now 
ompute the desired 
omplete 
oloring using

a total of at most max fb(1 + �)�
+ 1=�; e�

0

+ 3=�g


olors.

Sin
e the size of a strong 
olor orbit during the


omputation of G

0

was bounded by the 
onstant

1=�+1, the running time of the algorithm is by Propo-

sition 12 O(jEj(jV j+�).

In the best 
ase Algorithm I uses at least some

(1+ �)� 
olors. But from a pra
ti
al point of view it

may be worthwhile not to use that many 
olors in the

beginning but to add 
olors in an adaptive manner.

Algorithm II relies on the following lemma.

Lemma 17. If there is a witness in a hard 
olor or-

bit O of G , then q < e�

0

+

p

2e�

0

� 1.

Proof. Consider the following 
hain of inequalities

q � e�

0

+ 2

La:14

� 2jV (O)j � 4

La:13

� 2

q + 2

q � e�

0

+ 2

� 4:

For positive and integral q the solution is q �

j

e�

0

+

p

2e�

0

+ 1

k

� 3. Hen
e q ful�lls the 
laimed in-

equality.

The idea of Algorithm II is very simple. We start

with � 
olors and simplify G

0

using Proposition 11.

Thereafter we redu
e the number of 
olors needed to


olor G

0

by iteratively adding new 
olors and apply-

ing Proposition 3. As soon as a stopping 
riterion is

ful�lled, we stop adding 
olors and use Vizing's algo-

rithm to 
ompute a 
omplete 
oloring. For the rather

te
hni
al proof of the theorem refer to the appendix.

Theorem 18 (Algorithm II). There is an approx-

imation algorithm for the multigraph edge 
oloring

problem with time 
omplexity poly(jV j; j�j) using at

most

�

1 +

q

4:5

e�

0

�

e�

0


olors.

Note that the minimum of (1 + �)e�

0

+ 3=� in � is

�

1 +

q

12

e�

0

�

e�

0

, so the result of Theorem 18 is some-

what better than the naive approa
h.

3 A Polynomial Algorithm

In the following we will generalize the results of Se
-

tion 2 to obtain a balan
ing algorithm that tolerates

up to M un
olored parallel edges. This will be the

main me
hanism driving our polynomial algorithm.

For an arbitrary M 2 N we partition the edges E

of 
oloring G into three parts, namely

{ the lean edges E

(<M)

:= fe 2 E : j[e℄ \E

0

j < Mg,

{ the even edgesE

(=M)

:= fe 2 E : j[e℄ \E

0

j =Mg,

{ the fat edges E

(>M)

:= fe 2 E : j[e℄ \E

0

j > Mg.

Now the potential �

(M)

of 
oloring G is �

(M)

:= jE

0

j+

jE

(>M)

\E

0

j. Note that all lemmata and propositions

1{12 are still true, if we just repla
e the old de�nitions

of lean, even, and fat edges by these new ones. In the

following we refer to orbits and witnesses with respe
t

to the generalized de�nitions of lean, even and fat.

Now we re�ne the approximation lemmata of Se
-

tion 2.5.

Lemma 19. Let O be a hard orbit for some M 2 N

a) If O has an (A) witness, then

q ��+ 2M � 2jV (O)j � 4.

b) If O has a (B) witness, then

q � � + 2M � 2jV (O)j � 4.

The proof of the lemma is very similar to the proof

of Lemma 14. For 
ompleteness the proof of Lemma

19 
an be found in the appendix.

Lemma 20. If for M := jV j a hard orbit O has some

witness, then q < e�

0

.

Proof. Trivially jV (O)j �M . And then the inequal-

ity follows from Lemma 19.

In the following we 
ontra
t 
onse
utive 
olors

with the same 
olor 
lass to 
olor intervals, i.e. we

represent a 
oloring G by a 
olle
tion of mat
hings

(G

I

k

)

I

k=1

where the I

k

= [a

k

; b

k

℄ are intervals of 
ol-

ors with the same 
olor 
lass and I is the number of

these intervals. Then all `
olor �nd' operations need

time O(I). The shift and 
olor operations need

the same time than in the former representation, but

may in
rease the number of intervals by at most a


onstant.

Lemma 21. For any 
oloring G using at most e�

0


olors 
ontra
ted to I intervals we 
an 
ompute a 
ol-

oring G

0

in time poly(jE

0

j; jV j; I) using at most e�

0


olors 
ontra
ted to I +poly(jE

0

j; jV j) intervals su
h

that at most jV j

3

edges are un
olored.

9



Proof. Let M := jV j. Then apply Proposition 11 on

G to obtain a 
oloringG

0

with no fat edges. Therefore

at most M jV j

2

= jV j

3

edges remain un
olored in G

0

.

The number of 
olors has only been in
reased, if

there was a witness, i.e., q

La:19

< e�

0

. Hen
e we still use

at most e�

0


olors.

The number of shift and 
olor operations is poly-

nomial in jE

0

j and jV j and does not depend on I.

Thus the number of intervals in
reased polynomially

in jE

0

j and jV j.

Sin
e the `
olor �nd' operations 
an be done in

O(I) we use total time of poly(jE

0

j; jV j; I).

We de�ne the multipli
ity-weighted adja
en
y ma-

trix of the multigraph G = (V;E) as A = (juvj)

u;v2V

For any fun
tion f : N ! N and multigraph G the

notation f(G) means that f is applied on every entry

of A. The notation G +G

0

means the standard ma-

trix addition of the multipli
ity-weighted adja
en
y

matri
es A and A

0

of G respe
tively G

0

.

Proposition 22. There is an algorithm with time


omplexity poly(jV j; log �) that 
omputes a 
oloring

G

�

of a multigraph G with maximum edge multipli
-

ity � su
h that at most jV j

3

edges of G

�

are un
olored

and at most e�

0


olors are used in G

�

.

Proof. (By indu
tion over � of G.)

For � = 0 the graph 
ontains no edges and our

proposition is trivially true. Now suppose � > 0.

We partition the input graph into three parts, i.e.,

G = 2(bG=2
) + (G mod 2). Note that e�

0

(G) �

2e�

0

(bG=2
).

The algorithm re
ursively 
omputes a 
oloring

bG=2


�

of bG=2
 that uses at most e�

0

(bG=2
) 
olors

and has at most jV j

3

un
olored edges.

By simply doubling the endpoints of the intervals

in 
oloring bG=2


�

, we obtain a 
oloring 2 bG=2


�

of

2 bG=2
, that uses at most 2e�

0

(bG=2
) � e�

0

(G) 
olors

and has at most 2jV j

3

un
olored edges. Obviously the

number of intervals did not in
rease by this doubling.

Now we add the edges of the graph (G mod 2) to

the 
oloring 2 bG=2


�

and obtain a 
oloring G

0

of G

with at most 2jV j

3

+ jV j

2

un
olored edges.

The algorithm of Lemma 21 uses

poly(jE

0

0

j; jV j; I) = poly(jV j; I) time to 
olor

all but at most jV j

3


olors and in
reases the number

of intervals polynomially in jV j. Let G

�

be this new


oloring.

Clearly the depth of re
ursion is O(log �). In ea
h

re
ursive step the number of intervals in
reases poly-

nomially in jV j. Therefore the maximum number

I of intervals is polynomial in jV j and log�. Thus

only poly(jV j; I) = poly(jV j; log �) time is spend in

ea
h re
ursive step and therefore the total time is also

poly(jV j; log �).

The running time of the following algorithm de-

pends only logarithmi
ally on � and is therefore poly-

nomial in the input size.

Theorem 23 (Polynomial Algorithm). There

is an approximation algorithm for the multi-

graph edge 
oloring problem with time 
omplexity

poly(jV j; log �) using at most

�

1 +

q

4:5

e�

0

�

e�

0


olors.

Proof. Use Proposition 22 and then apply Theorem

18. After appli
ation of Proposition 22 only jV j

3

un-


olored edges remain and the number of intervals is

polynomial in jV j and log �. In the 
oloring obtained

by Proposition 22 at most e�

0


olors are used. There-

fore the algorithm in Theorem 18 runs in time poly-

nomial in jV j and log � to 
olor the remaining un
ol-

ored edges and the number of used 
olors is then at

most

�

1 +

q

4:5

e�

0

�

e�

0

.

Note that for jV j 2 O(log j�j) the approximation

ratio of this algorithm de
reases exponentially in the

size of the input.

4 Con
lusion

Our edge 
oloring algorithms o�er a way out of the


ombinatorial explosion in the number of ne
essary


ase distin
tions for edge 
oloring algorithms along

the lines of [5, 8℄. Our algorithms give better approx-

imation ex
ept for graphs with very small maximum

degree.

If one wants to implement our algorithm to solve

real world instan
es, it would be interesting to add

further heuristi
s. For example, Algorithm II from

Se
tion 2 
ould be re�ned su
h that before adding a

fresh 
olor, it �rst tries to 
olor edges by swapping


riti
al paths. It would then get optimal solutions at

least for bipartite multigraphs. It might also be in-

teresting to attempt to redu
e the maximum degree

of G

0

before swit
hing to Vizing's algorithm, e.g., us-

ing balan
ing operations similar to the ones we apply

to bad edges. There are also many opportunities for

speeding up the algorithm. For example, after adding

a fresh 
olor, one 
an 
olor many edges by �nding a

maximal mat
hing in G

0

.

10



Referen
es

[1℄ A. Caprara and R. Rizzi. Improving a family of

approximation algorithms to edge 
olor multi-

graphs. Information Pro
essing Letters, 68:11{

15, 1998.

[2℄ R. Cole, K. Ost, and S. S
hirra. Edge-
oloring

bipartite multigraphs in O(E logD) time. Com-

binatori
a, 21(1):5{12, 2000.

[3℄ U. Feige, E. Ofek, and U. Wieder. Approxi-

mating maximum edge 
oloring in multigraphs.

In APPROX, volume 2462 of LNCS, pages 108{

121. Springer, 2002.

[4℄ M. K. Goldberg. On multigraphs of almost max-

imal 
hromati
 
lass (in russian). Diskret Analiz,

23:3{7, 1973.

[5℄ D. S. Ho
hbaum, T. Nishizeki, and D. B.

Shmoys. A better than \best possible" algo-

rithm to edge 
olor multigraphs. Journal of Al-

gorithms, 7:79{104, 1986.

[6℄ I. Holyer. The NP-
ompleteness of edge-


oloring. SIAM Journal on Computing,

10(4):718{720, 1981.

[7℄ J. Kahn. Asymptoti
s of the 
hromati
 index for

multigraphs. Journal of Combinatorial Theory

B, 68:233{254, 1996.

[8℄ T. Nishizeki and K. Kashiwagi. On the 1:1 edge-


oloring of multigraphs. SIAM Journal on Dis-


rete Mathemati
s, 3(3):391{410, August 1990.

[9℄ P. Sanders and R. Solis-Oba. How helpers has-

ten h-relations. Journal of Algorithms, 41:86{98,

2001.

[10℄ P. D. Seymour. Some unsolved problems on one-

fa
torization of graphs. In J. A. Bondy and

U. S. R. Murty, editors, Graph Theory and Re-

lated Topi
s, pages 367{368. A
ademi
 Press,

1979.

[11℄ V. G. Vizing. On an estimate of the 
hromati



lass of a p-graph (in russian). Diskret. Analiz,

3:23{30, 1964.

��
��

��
��
�
�
�
�

����

��
����

�
�
�
�

��
��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
���

��
��
����
��
��
��

����
�
�
�
�

���� ��
�
�
�
�

��
��
��
��

��
��
��
����

��
��
�� �

�
�
��
�
�
���Q

R

u
O

(c)
(c)

d e
u’

R

u

(c)

u’
eO

Q

(d)

R

u

(c)
(c)

O

Q

u’
d

e

c

Figure 4: Lemma 10b

A Further Proofs

Proof (Lemma 10b): As in the proof of Lemma

10a we may assume that every node of O has at least

one missing 
olor not marked in O. Consider the al-

ternating path Q:= Apath(u; d; 
) for some unmarked


olor d 2M(u). We distinguish two 
ases.

1.) V (O)\V (Q) = fug: If u is the only node of O


ontained in Q, we 
an shift Q to obtain a new 
olor-

ing, su
h that 
olor 
 is missing at u and still leaving

at v, and apply Lemma 10a on this new 
oloring.

2.) V (O) \ V (Q) = fu; :::; u

0

g: Let u

0

be the last

node in Q that is still in O. Consider the alternating

path R:= Apath(u; d; e) for some unmarked 
olor e 2

M(u

0

). If R leaves O, then either d or e is leaving

O and therefore Lemma 10a is appli
able either on


olor d or e. So assume R does not leave O. Sin
e O

is a hard orbit, u and u

0

are the only nodes of O, that

have missing 
olors d or e. Therefore R ends at u

0

.

Now 
onsider the 
oloring G

0

obtained by shifting R.

In G

0

only edges 
ontained in O and not marked in O

were 
hanged. Therefore O is an hard orbit in G

0

and

the subpath

�

Q of Qn(O�u

0

) beginning at u

0

remained

un
hanged. Sin
e d 2 M

0

(u

0

), the alternating path

Apath

0

(u

0

; d; 
) equals

�

Q and therefore fu

0

g = V (

�

Q)\

V (O

0

) and we are ba
k to the �rst 
ase.

Proof (of Theorem 18): Start with � 
olors.

Then 
ompute a partial edge 
oloring of the input

multigraph G by Proposition 11. Now every 
olor

orbit is strong an no edge is fat. Furthermore the

number of 
olors has only been in
reased if there was

some witness, i.e., if q

La:17

< (1 +

p

2

p

e�

0

)e�

0

� 1.

Now iteratively add new 
olors and apply Propo-

11



sition 3 until q � � + U , where U is the number

of 
olors Vizing's algorithm would use to 
olor the


urrent G

0

.

Now we 
ompute a 
omplete 
oloring of G using

Vizing's algorithm and U additional 
olors.

If q � �+

p

�, then

q + U = q ��+�+ U

�+U�q

� q ��+ q

q��+

p

�

� �+ 2

p

�

Otherwise,

q + U � q +

q + 2

q ��+ 2

q�e�

0

+

p

2e�

0

�1

� e�

0

+

p

4:5e�

0

where the last inequality uses that q+

q+2

q��+2

is mono-

toni
ally in
reasing for q > �+

p

�.

Proof (of Lemma 19): In a hard orbit O every

node u has at least q��+2M missing 
olors, sin
e u

is 
onne
ted to at least two neighbors by even or fat

edges and thus is in
ident to at least 2M un
olored

and at most �� 2M 
olored edges.

Furthermore, at leastM jV (O)j edges are un
olored

in O and thus at most

jE(O)j�M jV (O)j

bjV (O)j=2


� ��

M jV (O)j

jV (O)j=2

=

� � 2M 
olors do not leave O, i.e., at least q � � +

2M 
olors are leaving O. As noted before, at most

2jV (O)j � 4 
olors are marked in O.

By de�nition of the witnesses, we know that if there

is an (A) witness, then for some u all missing 
olors

are marked in O, implying q��+2M � 2jV (O)j�4.

If there is a (B) witness, then all leaving 
olors are

marked in O, so that q��+2M � 2jV (O)j�4.
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