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Abstrat

The edge oloring problem asks for assigning olors

from a minimum number of olors to edges of a graph

suh that no two edges with the same olor are in-

ident to the same node. We give polynomial time

algorithms for approximate edge oloring of multi-

graphs, i.e., parallel edges are allowed. The best pre-

vious algorithms ahieve a �xed onstant approxima-

tion fator plus a small additive o�set. Our algo-

rithms ahieve arbitrarily good approximation fa-

tors at the ost of slightly larger additive term. In

partiular, for any � > 0 we ahieve a solution quality

of (1 + �)opt + O(1=�). The exeution times of one

algorithm are independent of � and polynomial in the

number of nodes and the logarithm of the maximum

edge multipliity.

1 Introdution

One of the most fundamental oloring problems asks

for assigning olors to edges suh that no two edges

with the same olor meet at a node. The most im-

portant objetive funtion here is to minimize the

number of olors used.

Let us onsider a motivating example. Assume

that nodes are nodes of a (fully onneted) ommu-

niation network and edges represent data pakets of

idential size to be exhanged between nodes. Fur-

ther assume that pakets are exhanged diretly
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be-

tween sender and reeiver in one round and that in

eah round, a node an only be involved in one paket

exhange. In this model it does not matter in what

diretion the data moves so that the graph is an undi-

reted graph. An edge oloring of this ommunia-
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Refer to [9℄ for what happens if this diret route assump-

tion is lifted.

tion graph that assigns olors 1; : : : ; q to the edges

yields a q round ommuniation shedule | just ex-

hange the pakets with olor  in round . We see

that minimizing the number of olors q will minimize

the time needed for exhanging all the pakets. Sine

there may be several pakets exhanged between two

nodes, we have to deal with a multigraph.

The minimal number of olors needed to olor the

edges of a graph G = (V;E) is the hromati index

�

0

(G). There are two obvious lower bounds:

�

0

� �:= max

v2V

degree(v) (1)

�

0

� �:= max

H�V

jE(H)j

bjHj=2

(2)

where E(H) denotes the set of edges of the subgraph

indued by the vertex set H. For bipartite multi-

graphs we atually have �

0

= � and optimal olor-

ings an be found very quikly [2℄. For simple graphs,

Vizing's algorithm [11℄ gives a oloring with � + 1

olors in time O(jEj(jV j+�)) but it is NP-hard to

deide whether �

0

= �. Vizing's algorithm an be

generalized to olor multigraphs with � + � olors

where � is the maximum multipliity of an edge.

There is a 4=3-approximation algorithm for multi-

graphs but any better approximation is NP-hard

to obtain [6℄. However, if we allow a small addi-

tive error, muh better approximation fators an

be obtained. In a sequene of results, approxima-

tion guarantees of 7�

0

=6 + 2=3, 9�

0

=8 + 0:75 [5℄, and

11�

0

=10 + 0:8 [8℄ have been obtained. All these al-

gorithms have the same basi struture and it an

be expeted that any approximation of the form

(1 + 1=2k)�

0

+ 1 � 1=k an be ahieved. However,

the atual algorithms beame more and more om-

plex with a large number of ase distintions that an

only be managed using areful exploitation of sym-

metri ases. After eight more years, the most reent
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improvement only a�eted the additive onstant im-

proving it from 1� 1=k to 1� 3=2k [1℄. To break out

of this road blok, we relax the requirement on the

additive o�set and in exhange obtain better approx-

imation fators. To understand the basi idea behind

this approah it is instrutive to �rst have a look at

the previous algorithms:

The basi operations are olor ing an edge, un-

olor ing an edge, and shift ing, i.e., on a path with

edges alternatingly olored a and b, swap the ol-

ors a and b. The edges are olored sequentially in

arbitrary order. To olor an edge e , onstant size

subgraphs O ontaining e are investigated that are

de�ned by edges olored with a small number of ol-

ors. Using an exhaustive ase distintion, three basi

outomes are possible: (1) e an be olored using

a small number of operations originating in O. (2)

O forms a witness that the number of olors an be

inreased without getting too far away from the op-

timum. In that ase e is olored with the new olor.

(3) O is enlarged by taking additional olors and ad-

ditional nodes into aount; now an exhaustive ase

distintion for the larger graph is neessary. This pro-

ess eventually has to terminate sine for suÆiently

large subgraphs ase (1) or (2) has to be appliable.

However, the approximation guarantee is determined

by the size of the graph for whih a omplete ase

distintion is feasible.

Our algorithm uses a similar basi approah but

avoids massive ase distintions by investing a small

number of additional olors that make it possible to

impose an additional struture on O. This way the

algorithm an handle arbitrarily large subgraphs O.

Our algorithm is also more exible in a number of

other ways. Rather than insisting on oloring an ar-

bitrary edge, it piks a multiply unolored edge e and

\balanes" it by oloring one of the parallel edges of e

| possibly by unoloring a ompletely olored edge.

Eventually this proess will terminate with a graph

without multiply unolored edges. An additional ol-

oring mehanism makes sure that subgraphs indued

by onneted omponents of unolored edges must

eventually be small. The remaining edges an then

be olored using Vizing's algorithm. In Setion 3 we

give a summary of our algorithm and then a detailed

derivation.

All previous algorithms for general multigraph

edge oloring have exeution time polynomial in jEj

but are only pseudopolynomial in the number of bits

needed to desribe a multigraph sine edge multiplii-

ties an be enoded as binary numbers. This problem

an be �xed by appropriately rounding edge multi-

pliities but this osts additional olors. In Setion 3

we develop a more elegant solution that ahieves the

same approximation guarantees as the pseudopolyno-

mial algorithm. This algorithm exploits that a graph

with even edge multipliities an be olored by olor-

ing a graph with halved edge multipliities and then

using eah olor twie.

Setion 4 summarizes the paper and mentions some

open problems.

More Related Work

The frational edge oloring problem asks to �nd a

set of mathings M and weights w(M) suh that

P

M2M

w(M) is minimized subjet to 8e 2 E :

P

fM2M:e2Mg

w(M) � 1. The frational hromati

index e�

0

denotes the total weight of the optimal so-

lution. It is known that e�

0

= max(�;�) and it is

onjetured that e�

0

� �

0

� e�

0

+ 1 [4, 10℄.

The frational hromati index an be found in

time polynomial in jEj using the ellipsoid method [3℄.

Kahn [7℄ showed that �

0

� (1+ �)e�

0

+ o(�

0

) using the

probabilisti method. Although the proof is not on-

strutive, it might be possible to evolve it into a poly-

nomial time randomized algorithm based on the el-

lipsoid method and randomized rounding that yields

similar bounds as our algorithm. However our al-

gorithm is deterministi, purely ombinatorial, om-

paratively simple and fast, and should yield better

approximation guarantees. Indeed, the polynomial

algorithm from Theorem 23 an be used to approx-

imate the frational hromati index faster than the

ellipsoid method: Replae every edge of G by a bun-

dle of M parallel edges (M may even be exponential

in jV j) and run our algorithm on this graph. In time

polynomial in jV j and logM one gets a oloring that

an be used to obtain a frational oloring of G that

is within a fator (1 +O

�

M

�1=2

�

) from optimal.

2 A Pseudopolynomial Algorithm

Sine the details of our algorithm are fairly tehnial,

we give an outline together with an overview of the

tehnial setions �rst. In this overview, we inten-

tionally do not quantify what adjetives like \small",

\suÆiently many", : : : mean sine the right thresh-

olds an only be derived when all the tehnial ingre-

dients are assembled.
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The algorithm massages a partial oloring of the

edges � : E * f1; : : : ; qg where q is initially � or

perhaps some larger value. The maximum olor q

is inreased when it an be proven that q is loser

to �

0

than required for the laimed approximation

guarantee. Let G

0

denote the subgraph indued by

the unolored edges of the input graph G. A olor 

is missing at a node v if none of its inident edges is

olored .

Our algorithm produes a partial oloring where

G

0

is simple and has small onneted omponents

and then alls Vizing's algorithm to olor G

0

using

fresh olors. Sine the maximum degree of a simple

graph with small omponents is small, this last step

will only onsume few additional olors.

Making sure that the onneted omponents of

G

0

are small turns out to be easy. Setion 2.2 ex-

plains how to olor an edge when two nodes in the

same omponent of G

0

have a ommon missing olor.

Hene, when this routine is no longer appliable,

nodes in a omponent of G

0

have disjoint missing

olors. If there are suÆiently many free olors at

eah node, this disjointness property limits the size

of omponents of G

0

.

The diÆult part of the algorithm is to make G

0

simple. Progress towards this goal is measured using

the potential funtion � that is de�ned as the total

number of unolored edges plus the number of bad

edges where bad edges are unolored edges that are

not simple in G

0

. Note that � an be redued by

oloring an edge or by oloring a bad edge and un-

oloring a lean edge where an edge e is lean if e itself

and all edges parallel to it are olored.

In order to failitate this balaning operation, we

de�ne the onept of an edge orbit O in Setion 2.3

that has a bad edge e as its nuleus. Edge orbits are

subgraphs with properties that allow us to olor one

edge in e in exhange for unoloring any other edge

in O. In partiular, if O ontains a lean edge, we an

redue �.

When an orbit O laks a lean edge, we an try to

grow it using the tehniques desribed in Setion 2.4.

We show that this is possible whenever (1) there is

a olor  available that has not been used before to

grow the orbit. (2) There are at least two nodes in O

that either miss  or are inident to a  edge leaving

O. The additional struture imposed by only grow-

ing the orbit using fresh olors is the main reason

why our algorithms are muh simpler than the pre-

vious ones. In partiular, although growing the orbit

requires omplex reoloring operations a�eting the

entire graph, the basi properties of the orbits are

invariant under these transformation.

Finally, when an orbit O an neither be grown nor

ontains a lean edge, we show that it witnesses that

G is hard to olor | it either ontains a very high

degree node or it has a high ratio of edges to nodes.

In that ase, the number of olors q an be inreased

without going too far away from the lower bounds

(1) and (2).

Setion 2.5 puts all the piees together and ana-

lyzes two algorithm variants. The simpler and faster

variant follows the lassial framework of an asymp-

toti approximation sheme. It starts with (1 + �)�

olors and terminates using at most max((1 + �)� +

1=�; �

0

+3=�) olors. For onstant �, its running time

is O(jEj(V +�)) whih is asymptotially as good as

the best previous algorithms [8, 1℄ but gives a better

approximation guarantee exept for very small values

of �

0

. The seond variant is slower but more adaptive

to the input | it only inreases the number of olors

when there is a neessity to do so. This algorithms

needs at most (1 +

p

4:5=�

0

)�

0

olors.

2.1 Notation

Sine we always refer to multigraphs, we onsider

edges as abstrat entities and not as two element sets

or pairs of nodes. The inidene relation is realized

by an impliitly given funtion � mapping edges to

two element subsets of V . An edge e is inident

to a node u, if u 2 �(e). G = (V;E; �) is a par-

tial edge oloring or oloring with partial olor fun-

tion � : E * f1; : : : ; qg. An edge e has olor , if

�(e) = . Only proper olorings are onsidered, i.e.,

olored edges inident to the same node must have

di�erent olors.

We onsider a subgraph H � G to be unolored,

i.e., we an writeH � G andH � G

0

even if the edges

of H are olored di�erently in the olorings G and G

0

.

A subgraph P leaves another subgraph H, if V (P ) 6�

V (H). Let H be a subgraph of G and u a node, then

H � u denotes the subgraph obtained by removing u

and all edges inident to u from H. Similarly HnO

denotes the subgraph obtained by removing all nodes

of O and all edges inident to these nodes from H.

For the following de�nitions onsider some arbi-

trary but �xed oloring G. Then E



:= �

�1

() is the

set of edges of olor  and E

0

:= E n �

�1

(f1; : : : ; qg)

is the set of unolored edges. The graph G



:= (V;E



)
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(a mathing) is the olor lass of olor  and

G

0

:= (V;E

0

) is the graph of unolored edges. If a

node u is not inident to an edge of olor , then  is

alled missing at u and M(u) is the set of all olors

missing at a node u 2 V . We always assume, that at

least � olors are available in G, implying that every

node inident to an unolored edge has at least one

missing olor.

Let u be a node of a proper oloring G and  and

d two olors, then Apath(u; ; d) denotes the unique

maximal path P � G ontaining u and solely on-

sisting of edges of olor  or d. If  2 M(u), then

we say that Apath(u; ; d) is the ; d-alternating path

starting at u. One of our basi reoloring tehnique,

namely the shift operation, onsists of swapping the

olors of suh an maximal alternating path. Due to

the maximality of these alternating paths a shift

operation always preserves the properness of a olor-

ing.

Let uv:= �

�1

(fu; vg) be the set of edges inident to

both u and v and for eah e 2 E let [e℄:= �

�1

(�(e))

denotes the set of all edges parallel to e. We partition

the edges E of G into three sets, namely

{ the lean edges E

(<)

:= fe 2 E : j[e℄ \E

0

j = 0g,

{ the even edges E

(=)

:= fe 2 E : j[e℄ \E

0

j = 1g

{ the fat edges E

(>)

:= fe 2 E : j[e℄ \E

0

j > 1g.

We de�ne the set of bad edges as E

(>)

0

:= E

(>)

\

E

0

. Now the potential �(G) of a oloring G is

�(G):= jE

0

j+ jE

(>)

0

j. Observe that �(G) � 2jE

0

j.

The lemmata and propositions in the following

three setions essentially represent funtions map-

ping a oloring G = (V;E; �) to a new oloring

G

0

= (V;E; �

0

). For onveniene we de�ne every sym-

bol Æ, that we de�ned above for G, also with respet

to G

0

and write Æ

0

.

For the time omplexity analysis we de�ne

poly(f

1

; : : : ; f

n

):=

S

k2N

O

�

Q

n

i=1

f

k

i

�

.

2.2 Coloring Edges in Large Components

of G

0

The following lemma is just a more abstrat view

of the shift operation. With this operation we an

move a missing olor along an unolored edge. By a

simple iteration of the operation we an olor edges

in large omponents of G

0

and therefore an shrink

omponents of G

0

to a ertain extent.

With onditions 1b and 1 we assure that an iter-

ation of the operation is possible.

��������
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v
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v
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Figure 1: Proposition 3

Lemma 1 (Missing Color Move). Let e 2 uv \

E

0

be an unolored edge between u and v in G and

 2 M(u) a missing olor of u. Then we an either

derease the potential � by assigning a olor to e or

ompute a oloring G

0

suh that

a)  2 M

0

(v), i.e., missing olor  moved to v in

G

0

,

b) 8x 2 V n fu; vg : M

0

(x) = M(x), i.e., the miss-

ing olors of all other nodes were not hanged

and

) G

0

0

= G

0

, i.e., the unolored edges were also not

hanged.

Proof. Let d 2M(v) be some missing olor of y and

Q:= Apath(u; ; d) the ; d-alternating path starting

at u and ending at #. Now ompute G

0

by shifting

Q. If # 6= v, then olor d beame missing at u and is

still missing at v hene we an assign olor d to edge

e. Otherwise, # = v and olor  beame missing at v

due to the shifting of Q. Hene G

0

ful�lls ondition

1a. Furthermore G

0

obviously ful�lls onditions 1b

and 1.

De�nition 2 (Color Orbit & Weakness). A

olor orbit O � G is a node indued subgraph of G

suh that all nodes V (O) are onneted by unolored

edges.

A olor orbit O is alled weak, if there are nodes

u and v in O that have a ommon missing olor  2

M(u) \M(v). Otherwise the olor orbit O is alled

strong.

In the next proposition we observe, that given a

weak olor orbit O we an move the ommon missing

olor  by iterating Lemma 1 along a path of unol-

ored edges until an unolored edge an be olored.
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Proposition 3. If there is a weak olor orbit O in

G, then we an derease the potential � by oloring

some unolored edge of O.

Proof. By de�nition of a weak olor orbit, two nodes

u and v in O have a ommon missing olor  and a

path P � G

0

joins u and v. Now the proof is by

indution over the number of edges in P .

jE(P )j = 1: In this ase, P onsists of a single

unolored edges e 2 uv. Sine u and v are assumed

to have a ommon missing olor , we an assign olor

 to edge e.

jE(P )j > 1: In that ase, P ontains an unolored

edge e inident to u and some other node u

0

6= v.

We ompute G

0

by applying Lemma 1 on e. If e

got olored in G

0

, then the potential was dereased

and our proposition is true. Otherwise,  beame

missing at u

0

and is still missing at v in G

0

by 1a

respetively 1b. Furthermore, by 1 the unolored

edges were not hanged and therefore

�

P := P �u is a

path of unolored edges joining u

0

and v in G

0

. As

�

P

is stritly smaller than P , we an use the indution

hypothesis to olor some edge of

�

P .

2.3 Edge Orbits

Again, the following lemma is just a more abstrat

view of the shift operation. It enables us to move

the leanness of an edge along an alternating path.

Together with our onept of an edge orbit , the op-

eration is used to eliminate bad edges. Conditions

4b-4d are needed to maintain invariants of the edge

orbit struture.

Lemma 4 (Lean Edge Move). Let e 2 xy be

some edge in G and P := Apath(x; a; b) an alternat-

ing path for some olors a 2 M(x) and b 2 M(y)

suh that P ontains a lean edge f 2 E(P ) \E

(<)

.

Then we an either derease the potential � or

ompute a oloring G

0

suh that

a) e 2 E

(<)

0

, i.e., leanness of f moved to e in G

0

,

b) 8 62 fa; bg : G

0



= G



, i.e., no olor lass besides

that of a or b was hanged in G

0

,

) E

(>)

0

� E

(>)

, i.e., all fat edges in G are fat in

G

0

d) �(G

0

) = �(G), i.e., the potential was not

hanged.

Proof. Suppose the lean edge f of P is inident to

the nodes u and v and node u appears before v in

(b)

(a) (b)

(a)

(a)

(b)

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
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������
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��
��

������
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��
��

������
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��
��

��
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(b)

(b)

(a)

Figure 2: Lemma 4

P . We may assume that e is not lean, otherwise the

proposition is trivially true with G

0

:= G. Let G

(1)

be the oloring obtained by unoloring f . Sine f

was lean in G, it is not fat in G

(1)

. Thus we have

�(G

(1)

) = �(G) + 1. Let P

(1)

be the a; b-alternating

path starting at x in G

(1)

. Observe that P

(1)

ends

at u, sine either a or b is missing at u. Now G

(2)

is

obtained by shifting P

(1)

. Clearly �(G

(2)

) = �(G

(1)

).

In G

(2)

node u has missing olor b. Sine b is still

missing at y and e is assumed to be not lean, there is

an unolored edge in [e℄, that an be olored with

olor b. Let G

(3)

be this new oloring. If e was

fat in G, then in G

(3)

the number of unolored and

bad edges dereased eah by at least one. Hene

�(G

(3)

) � �(G

(2)

) � 2 < �(G), i.e., the potential

was dereased. And if e was even in G, then e is lean

in G

(3)

and G

0

:= G

(3)

ful�lls onditions 4a-4d.

For iterating Lemma 4 we introdue indutively

de�ned subgraphs of G alled edge orbits. In these

subgraphs some edges are marked.

De�nition 5 (Edge Orbit). The set of edge orbits

in a oloring G is indutively de�ned as

a) For a bad edge e 2 xy the graph O � G indued

by x and y, in whih all unolored edges between

x and y are marked, is an edge orbit.

b) Let O � G be an edge orbit, x and y nodes in O

and a 2M(x) and b 2M(y) olors, suh that

{ an edge between x and y is marked in O,

{ no edge of olor a or b is marked in O and

{ the a; b-alternating path P := Apath(x; a; b)

leaves O.
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If

^

O � G is indued by V (O) [ V (P ) and the

edges of P and those marked in O are marked in

^

O, then

^

O is an edge orbit. We write

^

O = O+P .

) Nothing else is an edge orbit.

We say a olor  is marked in an edge orbit O, if

there are edges of olor , that are marked in O.

Note that the size of the orbit inreases whenever

a pair of olors gets marked. Thus an edge orbit O

ontains at least i + 2 nodes, if 2i olors are marked

in O. In other words, the number of marked olors is

at most 2jV (O)j � 4.

Also note that an edge orbit is invariant under

reoloring operations, that do not involve marked

edges.

De�nition 6 (Edge Orbit Weakness). An edge

orbit O � G is alled weak, if an edge marked in O

is lean. Otherwise, the edge orbit O is alled strong.

In the next proposition we observe similarly to

Proposition 3 that given a weak edge orbit O we an

move the leanness of an edge towards the nuleus of

O until some bad edge gets olored and the potential

dereased.

Proposition 7. If a oloring G ontains a weak edge

orbit O, then we an derease the potential �.

Proof. The proof is by indution over the size of the

orbit.

jV (O)j = 2: If O ontains only two nodes, then O

is a trivial edge orbit indued by two nodes x and y

suh that the edges between x and y are fat. Thus

O annot be weak and the impliation in the propo-

sition is trivially true.

jV (O)j > 2: In this ase O =

�

O + P is indued

by the nodes of a smaller orbit

�

O and an alternating

path P . Sine O is weak, it ontains a lean edge f .

We may assume that f is not marked in

�

O but in P ,

otherwise the indution hypothesis ould be applied

to

�

O. By de�nition of an edge orbit, there is an edge

e 2 xy marked in

�

O suh that P = Apath(x; a; b) for

some a 2M(x); b 2M(y).

Let G

0

be the oloring obtained by applying

Lemma 4 to edge e and path P . If the potential

was dereased in G

0

, then our proposition is true. So

assume that the potential remained unhanged in G

0

and G

0

ful�lls the onditions 4a-4d. Sine olors a

and b were not marked in

�

O, by onditions 4b and

4, the marked edges of

�

O were not hanged inG

0

and

therefore

�

O is still an edge orbit in G

0

. By ondition

4a, edge e of

�

O beame lean. Thus we an apply the

indution hypothesis to ompute a oloring of lower

potential.

2.4 Growing Orbits

We say a olor  is leaving O � G at node u 2 V (O),

if there is an edge e 2 uu

0

of olor  inident to u and

a node u

0

62 V (O).

A olor  is alled inomplete in O � G, if there

are two nodes suh that no  edge in O is inident to

either of them. Otherwise  is alled omplete.

De�nition 8 (Hard Orbit & Witnesses). A

subgraph O � G, that is a strong edge orbit and a

strong olor orbit, is alled a hard orbit.

For a hard orbit O two types of witnesses are de-

�ned:

(A) : all missing olors of some node u in O are

marked in O,

(B) : all inomplete olors of O are marked in O.

The intuition of these witnesses is the following.

Assume that very few olors are marked in O. In

ase of an (A) witness, we found a node where the

number of inident edges is almost as large as the

number of available olors. And in ase of a (B) wit-

ness, a subgraph was found, in whih almost all olor

lasses are maximal mathings. Thus these witnesses

indiate, that it is `almost' impossible to olor an ad-

ditional edge using only the available olors.

Proposition 9. If O is a hard orbit, then we an

either inrease the size of the orbit or �nd an (A) or

(B) witness.

For proving Proposition 9 we assume the following

lemma.

Lemma 10. Suppose O is a hard orbit and olor 

is not marked in O.

In either of the following ases we an inrease the

size of the orbit or �nd an (A) witness.
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a) olor  is missing at a node u of O and leaving

at a node v of O

b) olor  is leaving at nodes u and v in O.

Proof (Proposition 9): We may assume, that

there is an inomplete olor , otherwise O has a (B)

witness. Let fu; vg � V (O) be the nodes with no

inident  edges in O.

If  were missing at u and v, then O would not

be a strong olor orbit ontraditing our hypothesis.

Thus we an assume without loss of generality that

 is leaving O at v. Hene, either Lemma 10a or 10b

is appliable.

Proof (Lemma 10a): Note that the nodes of an

edge orbit are onneted by the edges marked in the

orbit. Thus there is a path P of edges marked in O

joining u and v. We may assume that every node

of O has at least one missing olor not marked in O,

otherwise we would have found an (A) witness. The

proof of the lemma is by indution over the number

of edges in P .

jE(P )j = 1: There is an edge e 2 uv marked in O.

Sine olor  is leaving O at v, the alternating path

Q:= Apath(v; d; ) leaves O for any d 2 M(v). As

mentioned before, we may assume that olor d is not

marked in O. Then

^

O = O+Q is an edge orbit of G

and stritly larger than O.

jE(P )j > 1: Let e 2 uu

0

be the �rst edge in P .

Consider the alternating path Q:= Apath(u; ; d) for

some unmarked olor d 2M(u

0

). If Q leaves O, then

^

O = O+Q is an edge orbit of G that is stritly larger

than O. So suppose Q does not leave O and onsider

the oloring G

0

obtained by shifting Q. Note that

u and u

0

are the only nodes of O that have missing

olors  or d, sine O is a hard orbit. Thus Q ends

at node u

0

and the missing olors  and d of nodes

u and u

0

were exhanged in G

0

, in partiular  2

M

0

(u

0

). Also note, that all edges marked in O or not

ontained in O remained unhanged in G

0

. Therefore

O is still an edge orbit in G

0

and olor  is still leaving

at v. Now the indution hypothesis is appliable on

the path

�

Q:= Q� u.

Lemma 10b whih is proven in the appendix is

similar to the leave routine in [5℄.

2.5 Algorithms

The following Proposition ombines the tools intro-

dued in the preeeding setions into an algorithm

for produing a oloring without fat edges and where

omponents of G

0

will turn out to be `small'.

Proposition 11 (General Coloring Algorithm).

For a oloring G we an ompute a oloring G

�

suh

that every olor orbit in G

�

is strong, no edge in G

�

is fat and during the omputation of G

�

the number

q of olors used in G

�

has only been inreased if

there was an (A) or (B) witness in some hard orbit

O � G

0

for some intermediate oloring G

0

.

Proof. (By indution over the potential � of G.)

For � = 0 the oloring G is omplete and the

proposition is trivially true. Obviously our propo-

sition is orret, if there is no weak olor orbit and

no fat edge. But if there is a weak olor orbit in G,

then we an derease the potential by Proposition 3

and the indution hypothesis beomes appliable.

Therefore suppose all olor orbits are strong and

e is a fat edge in G. Let O be the trivial edge orbit

indued by [e℄. By Proposition 9, we an inrease

the size of the orbit, until it is no longer hard or has

a witness. In the ase that the orbit is no longer

a hard orbit, it either beame a weak edge orbit or

strong edge orbit and a weak olor orbit, thus we an

derease the potential either by Proposition 7 or 3.

In ase of a witness we introdue a new olor and

an derease the potential by assigning this olor to

some unolored edge. In either ase the indution

hypothesis is appliable.

Clearly the running time of the algorithm de-

sribed above is in poly(jE

0

j; jV j;�), if jE

0

j denotes

the number of unolored edges in G. The dependene

on � stems from �nding ommon missing olors and

inomplete olors. For the speial ase of onstant

size strong olor orbits it is worth having a loser look

at the exat omplexity of the algorithm sine it turns

out to math the omplexity of previous algorithms

with weaker approximation guarantee.

Proposition 12. Under the assumption, that the

size of a strong olor orbit is always bounded by some

onstant, the time omplexity of the algorithm in

Proposition 11 is O(jE

0

j(jV j+�)).

Proof. Sine � � 2jE

0

j, it suÆes to show that the

potential an be dereased in time O(jV j+�). We

use the olletion (G



)

q

=1

of olor lasses and the
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graph G

0

of unolored edges to represent the oloring

G. Clearly we have q 2 O(�), therefore we an �nd

missing olors and inomplete olors in O(�). As-

signing a olor to an edge and unoloring an edge an

be done in onstant time. Shifting an a; b-alternating

path an be done in time proportional to the number

of nodes in the path, sine we only have to modify two

mathings, G

a

and G

b

. Sine we greedily eliminate

weak olor orbits in the algorithm, the maximum size

of a weak olor orbit onsidered in the algorithm is

just one more than the maximum size of a strong

olor orbit.

We store a stak of fat edges, in order to be able

to �nd an edge orbit in onstant time. As long as

it is hard, we an grow it by Proposition 9 in time

O(jV j+�), sine we only have to perform a onstant

number of shift and `olor �nd' operations.

After a onstant number of iterations of Proposi-

tion 9 there is a witness in the orbit or the orbit is

no longer hard. In the �rst ase we an redue the

potential in onstant time. In the latter ase we ap-

ply Proposition 3 or 7. In both propositions we only

perform a onstant number of shift and `olor �nd'

operations.

If no more edges are fat, we ompute the olor

orbits of eah node. As soon as we found a weak olor

orbit, we use Proposition 3 to derease the potential.

Sine all onsidered olor orbits have onstant size,

time O(jV j+�) is needed to derease the potential.

Thus the total running time is O(jE

0

j(jV j+�).

Now we relate properties of our orbit strutures to

the known lower bounds of �

0

. This will �nally enable

us to design algorithms with guaranteed approxima-

tion ratios.

Lemma 13.

If O is a strong olor orbit, then jV (O)j �

q + 2

q ��+ 2

.

Proof. Sine no two nodes share a missing olor, we

have

P

u2V (O)

jM(u)j � q. Obviously, every node

in O has at least q � � missing olors. Sine O

is onneted by unolored edges, there are at least

jV (O)j � 1 unolored edges in O and therefore at

least 2(jV (O)j � 1) additional missing olors. Thus

we have, that the total number of missing olors is at

least jV (O)j(q ��) + 2(jV (O)j � 1).

Lemma 14. Let O be a hard orbit.

a) If there is an (A) witness in O, then

q ��+ 2 � 2jV (O)j � 4.

b) If there is a (B) witness in O, then

q � � + 2 � 2jV (O)j � 4.

Proof. As noted before the number of marked olors

in an edge orbit O is at most 2jV (O)j � 4.

In a hard orbit every node is inident to at least

two unolored edges and at most ��2 olored edges.

Therefore every node in O has at least q � � + 2

missing olors. If there is an (A) witness, then all

missing olors of some node in O are marked in O,

this implies q ��+ 2 � 2jV (O)j � 4.

A hard orbit ontains at least jV (O)j unolored

edges and thus at most jE(O)j�jV (O)j olored edges,

i.e., there are at most

jE(O)j�jV (O)j

bjV (O)j=2

= ��

jV (O)j

bjV (O)j=2

�

� � 2 omplete olors and thus at least q � � + 2

inomplete olors. And if O has a (B) witness, then

all inomplete olors of O are marked, implying q �

� + 2 � 2jV (O)j � 4.

Lemma 15. If q � b(1 + �)� � 1 for some � > 0,

then the following statements hold.

a) If O is a strong olor orbit, then jV (O)j � 1=�+1

b) If there is a (A) witness, then q < �+ 2=�� 1

) If there is a (B) witness, then q < � + 2=�� 1

Proof. By plugging q � b(1 + �)� � 1 into the in-

equality of Lemma 13, we obtain

jV (O)j

La:13

�

q + 2

q ��+ 2

�

b(1 + �)�+ 1

b��+ 1

�

�

b��+ 1

+ 1 � 1=�+ 1

If we plug this into the inequalities in Lemma 14, then

we diretly obtain the inequalities b) and ).

Theorem 16 (Algorithm I). For every onstant

� > 0 there is an approximation algorithm

for the multigraph edge oloring problem with

time omplexity O(jEj(jV j+�)) using at most

max fb(1 + �)�+ 1=�; e�

0

+ 3=�g olors.

Proof. Start with b(1 + �)� � 1 olors and apply

Proposition 11 to obtain G

0

. The number of olors

has only been inreased, if there was some witness,

i.e., if q

15b;15

< e�

0

+2=��1 olors were available. Hene

at most max fb(1 + �)� � 1; e�

0

+ 2=�� 1g olors are

used in G

0

.
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No edge in G

0

is fat and by Lemma 15a all olor

orbits are strong and of size at most 1=� + 1. Using

Vizing's algorithm and 1=�+1 additional olors, we

an now ompute the desired omplete oloring using

a total of at most max fb(1 + �)�+ 1=�; e�

0

+ 3=�g

olors.

Sine the size of a strong olor orbit during the

omputation of G

0

was bounded by the onstant

1=�+1, the running time of the algorithm is by Propo-

sition 12 O(jEj(jV j+�).

In the best ase Algorithm I uses at least some

(1+ �)� olors. But from a pratial point of view it

may be worthwhile not to use that many olors in the

beginning but to add olors in an adaptive manner.

Algorithm II relies on the following lemma.

Lemma 17. If there is a witness in a hard olor or-

bit O of G , then q < e�

0

+

p

2e�

0

� 1.

Proof. Consider the following hain of inequalities

q � e�

0

+ 2

La:14

� 2jV (O)j � 4

La:13

� 2

q + 2

q � e�

0

+ 2

� 4:

For positive and integral q the solution is q �

j

e�

0

+

p

2e�

0

+ 1

k

� 3. Hene q ful�lls the laimed in-

equality.

The idea of Algorithm II is very simple. We start

with � olors and simplify G

0

using Proposition 11.

Thereafter we redue the number of olors needed to

olor G

0

by iteratively adding new olors and apply-

ing Proposition 3. As soon as a stopping riterion is

ful�lled, we stop adding olors and use Vizing's algo-

rithm to ompute a omplete oloring. For the rather

tehnial proof of the theorem refer to the appendix.

Theorem 18 (Algorithm II). There is an approx-

imation algorithm for the multigraph edge oloring

problem with time omplexity poly(jV j; j�j) using at

most

�

1 +

q

4:5

e�

0

�

e�

0

olors.

Note that the minimum of (1 + �)e�

0

+ 3=� in � is

�

1 +

q

12

e�

0

�

e�

0

, so the result of Theorem 18 is some-

what better than the naive approah.

3 A Polynomial Algorithm

In the following we will generalize the results of Se-

tion 2 to obtain a balaning algorithm that tolerates

up to M unolored parallel edges. This will be the

main mehanism driving our polynomial algorithm.

For an arbitrary M 2 N we partition the edges E

of oloring G into three parts, namely

{ the lean edges E

(<M)

:= fe 2 E : j[e℄ \E

0

j < Mg,

{ the even edgesE

(=M)

:= fe 2 E : j[e℄ \E

0

j =Mg,

{ the fat edges E

(>M)

:= fe 2 E : j[e℄ \E

0

j > Mg.

Now the potential �

(M)

of oloring G is �

(M)

:= jE

0

j+

jE

(>M)

\E

0

j. Note that all lemmata and propositions

1{12 are still true, if we just replae the old de�nitions

of lean, even, and fat edges by these new ones. In the

following we refer to orbits and witnesses with respet

to the generalized de�nitions of lean, even and fat.

Now we re�ne the approximation lemmata of Se-

tion 2.5.

Lemma 19. Let O be a hard orbit for some M 2 N

a) If O has an (A) witness, then

q ��+ 2M � 2jV (O)j � 4.

b) If O has a (B) witness, then

q � � + 2M � 2jV (O)j � 4.

The proof of the lemma is very similar to the proof

of Lemma 14. For ompleteness the proof of Lemma

19 an be found in the appendix.

Lemma 20. If for M := jV j a hard orbit O has some

witness, then q < e�

0

.

Proof. Trivially jV (O)j �M . And then the inequal-

ity follows from Lemma 19.

In the following we ontrat onseutive olors

with the same olor lass to olor intervals, i.e. we

represent a oloring G by a olletion of mathings

(G

I

k

)

I

k=1

where the I

k

= [a

k

; b

k

℄ are intervals of ol-

ors with the same olor lass and I is the number of

these intervals. Then all `olor �nd' operations need

time O(I). The shift and olor operations need

the same time than in the former representation, but

may inrease the number of intervals by at most a

onstant.

Lemma 21. For any oloring G using at most e�

0

olors ontrated to I intervals we an ompute a ol-

oring G

0

in time poly(jE

0

j; jV j; I) using at most e�

0

olors ontrated to I +poly(jE

0

j; jV j) intervals suh

that at most jV j

3

edges are unolored.
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Proof. Let M := jV j. Then apply Proposition 11 on

G to obtain a oloringG

0

with no fat edges. Therefore

at most M jV j

2

= jV j

3

edges remain unolored in G

0

.

The number of olors has only been inreased, if

there was a witness, i.e., q

La:19

< e�

0

. Hene we still use

at most e�

0

olors.

The number of shift and olor operations is poly-

nomial in jE

0

j and jV j and does not depend on I.

Thus the number of intervals inreased polynomially

in jE

0

j and jV j.

Sine the `olor �nd' operations an be done in

O(I) we use total time of poly(jE

0

j; jV j; I).

We de�ne the multipliity-weighted adjaeny ma-

trix of the multigraph G = (V;E) as A = (juvj)

u;v2V

For any funtion f : N ! N and multigraph G the

notation f(G) means that f is applied on every entry

of A. The notation G +G

0

means the standard ma-

trix addition of the multipliity-weighted adjaeny

matries A and A

0

of G respetively G

0

.

Proposition 22. There is an algorithm with time

omplexity poly(jV j; log �) that omputes a oloring

G

�

of a multigraph G with maximum edge multipli-

ity � suh that at most jV j

3

edges of G

�

are unolored

and at most e�

0

olors are used in G

�

.

Proof. (By indution over � of G.)

For � = 0 the graph ontains no edges and our

proposition is trivially true. Now suppose � > 0.

We partition the input graph into three parts, i.e.,

G = 2(bG=2) + (G mod 2). Note that e�

0

(G) �

2e�

0

(bG=2).

The algorithm reursively omputes a oloring

bG=2

�

of bG=2 that uses at most e�

0

(bG=2) olors

and has at most jV j

3

unolored edges.

By simply doubling the endpoints of the intervals

in oloring bG=2

�

, we obtain a oloring 2 bG=2

�

of

2 bG=2, that uses at most 2e�

0

(bG=2) � e�

0

(G) olors

and has at most 2jV j

3

unolored edges. Obviously the

number of intervals did not inrease by this doubling.

Now we add the edges of the graph (G mod 2) to

the oloring 2 bG=2

�

and obtain a oloring G

0

of G

with at most 2jV j

3

+ jV j

2

unolored edges.

The algorithm of Lemma 21 uses

poly(jE

0

0

j; jV j; I) = poly(jV j; I) time to olor

all but at most jV j

3

olors and inreases the number

of intervals polynomially in jV j. Let G

�

be this new

oloring.

Clearly the depth of reursion is O(log �). In eah

reursive step the number of intervals inreases poly-

nomially in jV j. Therefore the maximum number

I of intervals is polynomial in jV j and log�. Thus

only poly(jV j; I) = poly(jV j; log �) time is spend in

eah reursive step and therefore the total time is also

poly(jV j; log �).

The running time of the following algorithm de-

pends only logarithmially on � and is therefore poly-

nomial in the input size.

Theorem 23 (Polynomial Algorithm). There

is an approximation algorithm for the multi-

graph edge oloring problem with time omplexity

poly(jV j; log �) using at most

�

1 +

q

4:5

e�

0

�

e�

0

olors.

Proof. Use Proposition 22 and then apply Theorem

18. After appliation of Proposition 22 only jV j

3

un-

olored edges remain and the number of intervals is

polynomial in jV j and log �. In the oloring obtained

by Proposition 22 at most e�

0

olors are used. There-

fore the algorithm in Theorem 18 runs in time poly-

nomial in jV j and log � to olor the remaining unol-

ored edges and the number of used olors is then at

most

�

1 +

q

4:5

e�

0

�

e�

0

.

Note that for jV j 2 O(log j�j) the approximation

ratio of this algorithm dereases exponentially in the

size of the input.

4 Conlusion

Our edge oloring algorithms o�er a way out of the

ombinatorial explosion in the number of neessary

ase distintions for edge oloring algorithms along

the lines of [5, 8℄. Our algorithms give better approx-

imation exept for graphs with very small maximum

degree.

If one wants to implement our algorithm to solve

real world instanes, it would be interesting to add

further heuristis. For example, Algorithm II from

Setion 2 ould be re�ned suh that before adding a

fresh olor, it �rst tries to olor edges by swapping

ritial paths. It would then get optimal solutions at

least for bipartite multigraphs. It might also be in-

teresting to attempt to redue the maximum degree

of G

0

before swithing to Vizing's algorithm, e.g., us-

ing balaning operations similar to the ones we apply

to bad edges. There are also many opportunities for

speeding up the algorithm. For example, after adding

a fresh olor, one an olor many edges by �nding a

maximal mathing in G

0

.
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Figure 4: Lemma 10b

A Further Proofs

Proof (Lemma 10b): As in the proof of Lemma

10a we may assume that every node of O has at least

one missing olor not marked in O. Consider the al-

ternating path Q:= Apath(u; d; ) for some unmarked

olor d 2M(u). We distinguish two ases.

1.) V (O)\V (Q) = fug: If u is the only node of O

ontained in Q, we an shift Q to obtain a new olor-

ing, suh that olor  is missing at u and still leaving

at v, and apply Lemma 10a on this new oloring.

2.) V (O) \ V (Q) = fu; :::; u

0

g: Let u

0

be the last

node in Q that is still in O. Consider the alternating

path R:= Apath(u; d; e) for some unmarked olor e 2

M(u

0

). If R leaves O, then either d or e is leaving

O and therefore Lemma 10a is appliable either on

olor d or e. So assume R does not leave O. Sine O

is a hard orbit, u and u

0

are the only nodes of O, that

have missing olors d or e. Therefore R ends at u

0

.

Now onsider the oloring G

0

obtained by shifting R.

In G

0

only edges ontained in O and not marked in O

were hanged. Therefore O is an hard orbit in G

0

and

the subpath

�

Q of Qn(O�u

0

) beginning at u

0

remained

unhanged. Sine d 2 M

0

(u

0

), the alternating path

Apath

0

(u

0

; d; ) equals

�

Q and therefore fu

0

g = V (

�

Q)\

V (O

0

) and we are bak to the �rst ase.

Proof (of Theorem 18): Start with � olors.

Then ompute a partial edge oloring of the input

multigraph G by Proposition 11. Now every olor

orbit is strong an no edge is fat. Furthermore the

number of olors has only been inreased if there was

some witness, i.e., if q

La:17

< (1 +

p

2

p

e�

0

)e�

0

� 1.

Now iteratively add new olors and apply Propo-

11



sition 3 until q � � + U , where U is the number

of olors Vizing's algorithm would use to olor the

urrent G

0

.

Now we ompute a omplete oloring of G using

Vizing's algorithm and U additional olors.

If q � �+

p

�, then

q + U = q ��+�+ U

�+U�q

� q ��+ q

q��+

p

�

� �+ 2

p

�

Otherwise,

q + U � q +

q + 2

q ��+ 2

q�e�

0

+

p

2e�

0

�1

� e�

0

+

p

4:5e�

0

where the last inequality uses that q+

q+2

q��+2

is mono-

tonially inreasing for q > �+

p

�.

Proof (of Lemma 19): In a hard orbit O every

node u has at least q��+2M missing olors, sine u

is onneted to at least two neighbors by even or fat

edges and thus is inident to at least 2M unolored

and at most �� 2M olored edges.

Furthermore, at leastM jV (O)j edges are unolored

in O and thus at most

jE(O)j�M jV (O)j

bjV (O)j=2

� ��

M jV (O)j

jV (O)j=2

=

� � 2M olors do not leave O, i.e., at least q � � +

2M olors are leaving O. As noted before, at most

2jV (O)j � 4 olors are marked in O.

By de�nition of the witnesses, we know that if there

is an (A) witness, then for some u all missing olors

are marked in O, implying q��+2M � 2jV (O)j�4.

If there is a (B) witness, then all leaving olors are

marked in O, so that q��+2M � 2jV (O)j�4.
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