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Abstract

The edge coloring problem asks for assigning colors
from a minimum number of colors to edges of a graph
such that no two edges with the same color are in-
cident to the same node. We give polynomial time
algorithms for approximate edge coloring of multi-
graphs, i.e., parallel edges are allowed. The best pre-
vious algorithms achieve a fixed constant approxima-
tion factor plus a small additive offset. Our algo-
rithms achieve arbitrarily good approximation fac-
tors at the cost of slightly larger additive term. In
particular, for any € > 0 we achieve a solution quality
of (1 + €)opt + O(1/e). The execution times of one
algorithm are independent of € and polynomial in the
number of nodes and the logarithm of the maximum
edge multiplicity.

1 Introduction

One of the most fundamental coloring problems asks
for assigning colors to edges such that no two edges
with the same color meet at a node. The most im-
portant objective function here is to minimize the
number of colors used.

Let us consider a motivating example. Assume
that nodes are nodes of a (fully connected) commu-
nication network and edges represent data packets of
identical size to be exchanged between nodes. Fur-
ther assume that packets are exchanged directly' be-
tween sender and receiver in one round and that in
each round, a node can only be involved in one packet
exchange. In this model it does not matter in what
direction the data moves so that the graph is an undi-
rected graph. An edge coloring of this communica-

'Refer to [9] for what happens if this direct route assump-
tion is lifted.

tion graph that assigns colors 1,...,q to the edges
yields a ¢ round communication schedule — just ex-
change the packets with color ¢ in round c. We see
that minimizing the number of colors ¢ will minimize
the time needed for exchanging all the packets. Since
there may be several packets exchanged between two
nodes, we have to deal with a multigraph.

The minimal number of colors needed to color the
edges of a graph G = (V, E) is the chromatic index
X'(G). There are two obvious lower bounds:

(1)
(2)

X' > A:= max degree(v)
veV

|E(H)|

I'> 1= —_—
X=0T wE |2

where F(H) denotes the set of edges of the subgraph
induced by the vertex set H. For bipartite multi-
graphs we actually have ¥’ = A and optimal color-
ings can be found very quickly [2]. For simple graphs,
Vizing’s algorithm [11] gives a coloring with A + 1
colors in time O(|E|(|V] + A)) but it is NP-hard to
decide whether x' = A. Vizing’s algorithm can be
generalized to color multigraphs with A 4+ p colors
where p is the maximum multiplicity of an edge.
There is a 4/3-approximation algorithm for multi-
graphs but any better approximation is NP-hard
to obtain [6]. However, if we allow a small addi-
tive error, much better approximation factors can
be obtained. In a sequence of results, approxima-
tion guarantees of 7x'/6 +2/3, 9x'/8 + 0.75 [5], and
11x'/10 + 0.8 [8] have been obtained. All these al-
gorithms have the same basic structure and it can
be expected that any approximation of the form
(1 +1/2k)x" + 1 — 1/k can be achieved. However,
the actual algorithms became more and more com-
plex with a large number of case distinctions that can
only be managed using careful exploitation of sym-
metric cases. After eight more years, the most recent



improvement only affected the additive constant im-
proving it from 1 —1/k to 1 —3/2k [1]. To break out
of this road block, we relax the requirement on the
additive offset and in exchange obtain better approx-
imation factors. To understand the basic idea behind
this approach it is instructive to first have a look at
the previous algorithms:

The basic operations are coloring an edge, un-
coloring an edge, and shifting, i.e., on a path with
edges alternatingly colored a and b, swap the col-
ors a and b. The edges are colored sequentially in
arbitrary order. To color an edge e , constant size
subgraphs O containing e are investigated that are
defined by edges colored with a small number of col-
ors. Using an exhaustive case distinction, three basic
outcomes are possible: (1) e can be colored using
a small number of operations originating in O. (2)
O forms a witness that the number of colors can be
increased without getting too far away from the op-
timum. In that case e is colored with the new color.
(3) O is enlarged by taking additional colors and ad-
ditional nodes into account; now an exhaustive case
distinction for the larger graph is necessary. This pro-
cess eventually has to terminate since for sufficiently
large subgraphs case (1) or (2) has to be applicable.
However, the approximation guarantee is determined
by the size of the graph for which a complete case
distinction is feasible.

Our algorithm uses a similar basic approach but
avoids massive case distinctions by investing a small
number of additional colors that make it possible to
impose an additional structure on O. This way the
algorithm can handle arbitrarily large subgraphs O.
Our algorithm is also more flexible in a number of
other ways. Rather than insisting on coloring an ar-
bitrary edge, it picks a multiply uncolored edge e and
“balances” it by coloring one of the parallel edges of e
— possibly by uncoloring a completely colored edge.
Eventually this process will terminate with a graph
without multiply uncolored edges. An additional col-
oring mechanism makes sure that subgraphs induced
by connected components of uncolored edges must
eventually be small. The remaining edges can then
be colored using Vizing’s algorithm. In Section 3 we
give a summary of our algorithm and then a detailed
derivation.

All previous algorithms for general multigraph
edge coloring have execution time polynomial in |F|
but are only pseudopolynomial in the number of bits
needed to describe a multigraph since edge multiplici-

ties can be encoded as binary numbers. This problem
can be fixed by appropriately rounding edge multi-
plicities but this costs additional colors. In Section 3
we develop a more elegant solution that achieves the
same approximation guarantees as the pseudopolyno-
mial algorithm. This algorithm exploits that a graph
with even edge multiplicities can be colored by color-
ing a graph with halved edge multiplicities and then
using each color twice.

Section 4 summarizes the paper and mentions some
open problems.

More Related Work

The fractional edge coloring problem asks to find a
set of matchings M and weights w(M) such that
Y vem w(M) is minimized subject to Ve € E :

(memeersy W(M) > 1. The fractional chromatic
inder X' denotes the total weight of the optimal so-
lution. It is known that X' = max(A,T) and it is
conjectured that x' < x' < x' +1 [4, 10].

The fractional chromatic index can be found in
time polynomial in |E| using the ellipsoid method [3].
Kahn [7] showed that x' < (1+€)x’ +o(x) using the
probabilistic method. Although the proof is not con-
structive, it might be possible to evolve it into a poly-
nomial time randomized algorithm based on the el-
lipsoid method and randomized rounding that yields
similar bounds as our algorithm. However our al-
gorithm is deterministic, purely combinatorial, com-
paratively simple and fast, and should yield better
approximation guarantees. Indeed, the polynomial
algorithm from Theorem 23 can be used to approx-
imate the fractional chromatic index faster than the
ellipsoid method: Replace every edge of G by a bun-
dle of M parallel edges (M may even be exponential
in |V]) and run our algorithm on this graph. In time
polynomial in |V| and log M one gets a coloring that
can be used to obtain a fractional coloring of G that
is within a factor (1 + O(M~'/2)) from optimal.

2 A Pseudopolynomial Algorithm

Since the details of our algorithm are fairly technical,
we give an outline together with an overview of the
technical sections first. In this overview, we inten-
tionally do not quantify what adjectives like “small”,
“sufficiently many”, ... mean since the right thresh-
olds can only be derived when all the technical ingre-
dients are assembled.



The algorithm massages a partial coloring of the
edges 7 : E — {1,...,q} where ¢ is initially A or
perhaps some larger value. The maximum color ¢
is increased when it can be proven that ¢ is closer
to X' than required for the claimed approximation
guarantee. Let Gy denote the subgraph induced by
the uncolored edges of the input graph G. A color ¢
is missing at a node v if none of its incident edges is
colored c.

Our algorithm produces a partial coloring where
Gy is simple and has small connected components
and then calls Vizing’s algorithm to color Gy using
fresh colors. Since the maximum degree of a simple
graph with small components is small, this last step
will only consume few additional colors.

Making sure that the connected components of
Go are small turns out to be easy. Section 2.2 ex-
plains how to color an edge when two nodes in the
same component of Gy have a common missing color.
Hence, when this routine is no longer applicable,
nodes in a component of Gy have disjoint missing
colors. If there are sufficiently many free colors at
each node, this disjointness property limits the size
of components of Gj.

The difficult part of the algorithm is to make Gy
simple. Progress towards this goal is measured using
the potential function ® that is defined as the total
number of uncolored edges plus the number of bad
edges where bad edges are uncolored edges that are
not simple in GGy. Note that ® can be reduced by
coloring an edge or by coloring a bad edge and un-
coloring a lean edge where an edge e is lean if e itself
and all edges parallel to it are colored.

In order to facilitate this balancing operation, we
define the concept of an edge orbit O in Section 2.3
that has a bad edge e as its nucleus. Edge orbits are
subgraphs with properties that allow us to color one
edge in e in exchange for uncoloring any other edge
in O. In particular, if O contains a lean edge, we can
reduce .

When an orbit O lacks a lean edge, we can try to
grow it using the techniques described in Section 2.4.
We show that this is possible whenever (1) there is
a color ¢ available that has not been used before to
grow the orbit. (2) There are at least two nodes in O
that either miss c or are incident to a c edge leaving
O. The additional structure imposed by only grow-
ing the orbit using fresh colors is the main reason
why our algorithms are much simpler than the pre-
vious ones. In particular, although growing the orbit

requires complex recoloring operations affecting the
entire graph, the basic properties of the orbits are
invariant under these transformation.

Finally, when an orbit O can neither be grown nor
contains a lean edge, we show that it witnesses that
G is hard to color — it either contains a very high
degree node or it has a high ratio of edges to nodes.
In that case, the number of colors ¢ can be increased
without going too far away from the lower bounds
(1) and (2).

Section 2.5 puts all the pieces together and ana-
lyzes two algorithm variants. The simpler and faster
variant follows the classical framework of an asymp-
totic approximation scheme. It starts with (1 + €)A
colors and terminates using at most max((1 + €)A +
1/e,x" + 3/€) colors. For constant e, its running time
is O(|E|(V + A)) which is asymptotically as good as
the best previous algorithms [8, 1] but gives a better
approximation guarantee except for very small values
of x¥’. The second variant is slower but more adaptive
to the input — it only increases the number of colors
when there is a necessity to do so. This algorithms

needs at most (1 4+ +/4.5/x")x’ colors.

2.1 Notation

Since we always refer to multigraphs, we consider
edges as abstract entities and not as two element sets
or pairs of nodes. The incidence relation is realized
by an implicitly given function ¢ mapping edges to
two element subsets of V. An edge e is incident
to a node u, if u € 1(e). G = (V,E,7) is a par-
tial edge coloring or coloring with partial color func-
tion T : E — {1,...,q}. An edge e has color c, if
7(e) = ¢. Only proper colorings are considered, i.e.,
colored edges incident to the same node must have
different colors.

We consider a subgraph H C G to be uncolored,
i.e., we can write H C G and H C G’ even if the edges
of H are colored differently in the colorings G' and G'.
A subgraph P [eaves another subgraph H, if V(P) ¢
V(H). Let H be a subgraph of G and u a node, then
H — u denotes the subgraph obtained by removing u
and all edges incident to u from H. Similarly H\O
denotes the subgraph obtained by removing all nodes
of O and all edges incident to these nodes from H.

For the following definitions consider some arbi-
trary but fixed coloring G. Then E.:= 7 !(c) is the
set of edges of color c and Eg:= E \ 77'({1,...,¢})
is the set of uncolored edges. The graph G.:= (V, E.)



(a matching) is the color class of color ¢ and
Go:= (V, Ey) is the graph of uncolored edges. If a
node u is not incident to an edge of color ¢, then c is
called missing at u and M (u) is the set of all colors
missing at a node u € V. We always assume, that at
least A colors are available in G, implying that every
node incident to an uncolored edge has at least one
missing color.

Let u be a node of a proper coloring G and ¢ and
d two colors, then Apath(u,c,d) denotes the unique
maximal path P C G containing « and solely con-
sisting of edges of color ¢ or d. If ¢ € M(u), then
we say that Apath(u,c,d) is the ¢, d-alternating path
starting at u. One of our basic recoloring technique,
namely the shift operation, consists of swapping the
colors of such an maximal alternating path. Due to
the maximality of these alternating paths a shift
operation always preserves the properness of a color-
ing.

Let uv:= 1! ({u,v}) be the set of edges incident to
both u and v and for each e € E let [e]:= ¢+ (1(e))
denotes the set of all edges parallel to e. We partition
the edges F of G into three sets, namely

— the lean edges E<):= {e € E : |[e] N Ey| = 0},
— the even edges E=):= {e € E :|[e]N Ey| =1}
— the fat edges E):= {e € E : |[e] N Ep| > 1}.

We define the set of bad edges as Ej':= E>) N
Ey. Now the potential ®(G) of a coloring G is
®(G):= |Eo| + |EJ”’|. Observe that ®(G) < 2|Ey|.

The lemmata and propositions in the following
three sections essentially represent functions map-
ping a coloring G = (V,E,7) to a new coloring
G' = (V, E,7"). For convenience we define every sym-
bol o, that we defined above for G, also with respect
to G’ and write o’.

For the time complexity analysis

poly(fi,..., fn):= UkeN O(H?:l fz'k)'

we define

2.2 Coloring Edges in Large Components
of GU

The following lemma is just a more abstract view
of the shift operation. With this operation we can
move a missing color along an uncolored edge. By a
simple iteration of the operation we can color edges
in large components of Gy and therefore can shrink
components of Gy to a certain extent.

With conditions 1b and lc we assure that an iter-
ation of the operation is possible.

\ o
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Figure 1: Proposition 3

Lemma 1 (Missing Color Move). Let e € uv N
Ey be an uncolored edge between u and v in G and
¢ € M(u) a missing color of u. Then we can either
decrease the potential ® by assigning a color to e or
compute a coloring G' such that

a) ¢ € M'(v), i.e., missing color ¢ moved to v in
G/

b) Vx € V\{u,v} : M'(x) = M(x), i.e., the miss-
ing colors of all other nodes were not changed
and

¢) Gy = Gy, i.e., the uncolored edges were also not
changed.

Proof. Let d € M (v) be some missing color of y and
Q:= Apath(u,c,d) the ¢, d-alternating path starting
at v and ending at 9. Now compute G’ by shifting
Q. If ¥ # v, then color d became missing at u and is
still missing at v hence we can assign color d to edge
e. Otherwise, ¥ = v and color ¢ became missing at v
due to the shifting of Q. Hence G’ fulfills condition
la. Furthermore G’ obviously fulfills conditions 1b
and lc. O

Definition 2 (Color Orbit & Weakness). A
color orbit O C @ is a node induced subgraph of G
such that all nodes V' (O) are connected by uncolored
edges.

A color orbit O is called weak, if there are nodes
uw and v in O that have a common missing color ¢ €
M (u) N M(v). Otherwise the color orbit O is called
strong.

In the next proposition we observe, that given a
weak color orbit O we can move the common missing
color ¢ by iterating Lemma 1 along a path of uncol-
ored edges until an uncolored edge can be colored.



Proposition 3. If there is a weak color orbit O in
G, then we can decrease the potential ® by coloring
some uncolored edge of O.

Proof. By definition of a weak color orbit, two nodes
» and v in O have a common missing color ¢ and a
path P C Gg joins u and v. Now the proof is by
induction over the number of edges in P.

|E(P)] = 1: In this case, P consists of a single
uncolored edges e € uv. Since u and v are assumed
to have a common missing color ¢, we can assign color
¢ to edge e.

|E(P)| > 1: In that case, P contains an uncolored
edge e incident to u and some other node u' # v.
We compute G’ by applying Lemma 1 on e. If e
got colored in G’, then the potential was decreased
and our proposition is true. Otherwise, ¢ became
missing at «' and is still missing at v in G’ by la
respectively 1b. Furthermore, by 1lc the uncolored
edges were not changed and therefore P:= P —u is a
path of uncolored edges joining v’ and v in G'. As P
is strictly smaller than P, we can use the induction
hypothesis to color some edge of P. O

2.3 Edge Orbits

Again, the following lemma is just a more abstract
view of the shift operation. It enables us to move
the leanness of an edge along an alternating path.
Together with our concept of an edge orbit , the op-
eration is used to eliminate bad edges. Conditions
4b-4d are needed to maintain invariants of the edge
orbit structure.

Lemma 4 (Lean Edge Move). Let ¢ € zy be
some edge in G and P:= Apath(z,a,b) an alternat-
ing path for some colors a € M(x) and b € M(y)
such that P contains a lean edge f € E(P) N E(.

Then we can either decrease the potential ® or
compute a coloring G' such that

a) e € B i.e., leanness of f moved to e in G,

b) Ve & {a,b} : G = G, i.e., no color class besides
that of a or b was changed in G',

¢) E>'" D E™, i.e., all fat edges in G are fat in
G/

d) ®(G") = ®(G), i.e., the potential was not
changed.

Proof. Suppose the lean edge f of P is incident to
the nodes v and v and node u appears before v in

P
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Figure 2: Lemma 4

P. We may assume that e is not lean, otherwise the
proposition is trivially true with G':= G. Let G
be the coloring obtained by uncoloring f. Since f
was lean in G, it is not fat in G. Thus we have
O(GW) = (@) + 1. Let PY be the a, b-alternating
path starting at z in G. Observe that P ends
at u, since either a or b is missing at u. Now G® is
obtained by shifting P®"). Clearly ®(G®) = ®(G").
In G® node u has missing color b. Since b is still
missing at y and e is assumed to be not lean, there is
an uncolored edge in [e], that can be colored with
color b. Let G® be this new coloring. If e was
fat in G, then in G® the number of uncolored and
bad edges decreased each by at least one. Hence
P(G®) < P(G?) — 2 < P(G), ie., the potential
was decreased. And if e was even in GG, then e is lean
in G® and G':= G® fulfills conditions 4a-4d. O

For iterating Lemma 4 we introduce inductively
defined subgraphs of G called edge orbits. In these
subgraphs some edges are marked.

Definition 5 (Edge Orbit). The set of edge orbits
in a coloring G is inductively defined as

a) For a bad edge e € xy the graph O C G induced
by z and y, in which all uncolored edges between
x and y are marked, is an edge orbit.

b) Let O C G be an edge orbit, z and y nodes in O
and a € M(z) and b € M (y) colors, such that
— an edge between z and y is marked in O,

— no edge of color a or b is marked in O and

— the a, b-alternating path P:= Apath(z,a,b)
leaves O.



Figure 3: Proposition 7

If O C G is induced by V(0) U V(P) and the
edges of P and those marked in @) are marked in
O, then O is an edge orbit. We write O = O+ P.

c¢) Nothing else is an edge orbit.

We say a color ¢ is marked in an edge orbit O, if
there are edges of color ¢, that are marked in O.

Note that the size of the orbit increases whenever
a pair of colors gets marked. Thus an edge orbit O
contains at least ¢ + 2 nodes, if 2¢ colors are marked
in O. In other words, the number of marked colors is
at most 2|V (0)| — 4.

Also note that an edge orbit is invariant under
recoloring operations, that do not involve marked
edges.

Definition 6 (Edge Orbit Weakness). An edge
orbit O C G is called weak, if an edge marked in O
is lean. Otherwise, the edge orbit O is called strong.

In the next proposition we observe similarly to
Proposition 3 that given a weak edge orbit O we can
move the leanness of an edge towards the nucleus of
O until some bad edge gets colored and the potential
decreased.

Proposition 7. If a coloring G contains a weak edge
orbit O, then we can decrease the potential ®.

Proof. The proof is by induction over the size of the
orbit.

|[V(0)| = 2: If O contains only two nodes, then O
is a trivial edge orbit induced by two nodes x and y
such that the edges between z and y are fat. Thus
O cannot be weak and the implication in the propo-
sition is trivially true.

|[V(O)| > 2: In this case O = O + P is induced
by the nodes of a smaller orbit O and an alternating
path P. Since O is weak, it contains a lean edge f.
We may assume that f is not marked in O but in P,
otherwise the induction hypothesis could be applied
to O. By definition of an edge orbit, there is an edge
e € xy marked in O such that P = Apath(z,a,b) for
some a € M(z),b € M(y).

Let G’ be the coloring obtained by applying
Lemma 4 to edge e and path P. If the potential
was decreased in G’, then our proposition is true. So
assume that the potential remained unchanged in G’
and G’ fulfills the conditions 4a-4d. Since colors a
and b were not marked in O, by conditions 4b and
4c, the marked edges of O were not changed in G’ and
therefore O is still an edge orbit in G’. By condition
4a, edge e of O became lean. Thus we can apply the
induction hypothesis to compute a coloring of lower
potential. O

2.4 Growing Orbits

We say a color ¢ is leaving O C G at node u € V(0),
if there is an edge e € uu’ of color ¢ incident to u and
a node v’ ¢ V(O).

A color ¢ is called incomplete in O C @G, if there
are two nodes such that no ¢ edge in O is incident to
either of them. Otherwise c is called complete.

Definition 8 (Hard Orbit & Witnesses). A
subgraph O C G, that is a strong edge orbit and a
strong color orbit, is called a hard orbit.

For a hard orbit O two types of witnesses are de-
fined:

(A) : all missing colors of some node u in O are
marked in O,

(B) :

all incomplete colors of O are marked in O.

The intuition of these witnesses is the following.
Assume that very few colors are marked in O. In
case of an (A) witness, we found a node where the
number of incident edges is almost as large as the
number of available colors. And in case of a (B) wit-
ness, a subgraph was found, in which almost all color
classes are maximal matchings. Thus these witnesses
indicate, that it is ‘almost’ impossible to color an ad-
ditional edge using only the available colors.

Proposition 9. If O is a hard orbit, then we can
either increase the size of the orbit or find an (A) or
(B) witness.

For proving Proposition 9 we assume the following
lemma.

Lemma 10. Suppose O is a hard orbit and color c
is not marked in O.

In either of the following cases we can increase the
size of the orbit or find an (A) witness.



a) color ¢ is missing at a node u of O and leaving
at a node v of O

b) color c is leaving at nodes u and v in O.

Proof (Proposition 9): We may assume, that
there is an incomplete color ¢, otherwise O has a (B)
witness. Let {u,v} C V(O) be the nodes with no
incident ¢ edges in O.

If ¢ were missing at u and v, then O would not
be a strong color orbit contradicting our hypothesis.
Thus we can assume without loss of generality that
¢ is leaving O at v. Hence, either Lemma 10a or 10b
is applicable. O

Proof (Lemma 10a): Note that the nodes of an
edge orbit are connected by the edges marked in the
orbit. Thus there is a path P of edges marked in O
joining v and v. We may assume that every node
of O has at least one missing color not marked in O,
otherwise we would have found an (A) witness. The
proof of the lemma is by induction over the number
of edges in P.

|E(P)| = 1: There is an edge e € uv marked in O.
Since color ¢ is leaving O at v, the alternating path
(Q):= Apath(v,d,c) leaves O for any d € M(v). As
mentioned before, we may assume that color d is not
marked in O. Then O = O+ Q is an edge orbit of G
and strictly larger than O.

|E(P)| > 1: Let e € uu’ be the first edge in P.
Consider the alternating path Q:= Apath(u,c,d) for
some unmarked color d € M (u'). If Q leaves O, then
O = O+Q is an edge orbit of G that is strictly larger
than O. So suppose ) does not leave O and consider
the coloring G’ obtained by shifting ). Note that
u and v’ are the only nodes of O that have missing
colors ¢ or d, since O is a hard orbit. Thus @ ends
at node v’ and the missing colors ¢ and d of nodes
u and u' were exchanged in G’, in particular ¢ €
M'(u"). Also note, that all edges marked in O or not
contained in O remained unchanged in G'. Therefore
O is still an edge orbit in G’ and color ¢ is still leaving
at v. Now the induction hypothesis is applicable on
the path Q:= Q — u. O

Lemma 10b which is proven in the appendix is
similar to the leave routine in [5].

2.5 Algorithms

The following Proposition combines the tools intro-
duced in the preceeding sections into an algorithm
for producing a coloring without fat edges and where
components of Gy will turn out to be ‘small’.

Proposition 11 (General Coloring Algorithm).
For a coloring G we can compute a coloring G* such
that every color orbit in G* is strong, no edge in G*
is fat and during the computation of G* the number
q of colors used in G* has only been increased if
there was an (A) or (B) witness in some hard orbit
O C G for some intermediate coloring G'.

Proof. (By induction over the potential ® of G.)
For @ = 0 the coloring G is complete and the
proposition is trivially true. Obviously our propo-
sition is correct, if there is no weak color orbit and
no fat edge. But if there is a weak color orbit in G,
then we can decrease the potential by Proposition 3
and the induction hypothesis becomes applicable.
Therefore suppose all color orbits are strong and
e is a fat edge in G. Let O be the trivial edge orbit
induced by [e]. By Proposition 9, we can increase
the size of the orbit, until it is no longer hard or has
a witness. In the case that the orbit is no longer
a hard orbit, it either became a weak edge orbit or
strong edge orbit and a weak color orbit, thus we can
decrease the potential either by Proposition 7 or 3.
In case of a witness we introduce a new color and
can decrease the potential by assigning this color to
some uncolored edge. In either case the induction
hypothesis is applicable. ]

Clearly the running time of the algorithm de-
scribed above is in poly(|Ep|, |V |, A), if |Ey| denotes
the number of uncolored edges in G. The dependence
on A stems from finding common missing colors and
incomplete colors. For the special case of constant
size strong color orbits it is worth having a closer look
at the exact complexity of the algorithm since it turns
out to match the complexity of previous algorithms
with weaker approximation guarantee.

Proposition 12. Under the assumption, that the
size of a strong color orbit is always bounded by some
constant, the time complexity of the algorithm in
Proposition 11 is O(|Ep|(|V ] + A)).

Proof. Since ® < 2|Ey|, it suffices to show that the
potential can be decreased in time O(|V|+ A). We
use the collection (G.)?_, of color classes and the



graph Gy of uncolored edges to represent the coloring
G. Clearly we have g € O(A), therefore we can find
missing colors and incomplete colors in O(A). As-
signing a color to an edge and uncoloring an edge can
be done in constant time. Shifting an a, b-alternating
path can be done in time proportional to the number
of nodes in the path, since we only have to modify two
matchings, G, and G,. Since we greedily eliminate
weak color orbits in the algorithm, the maximum size
of a weak color orbit considered in the algorithm is
just one more than the maximum size of a strong
color orbit.

We store a stack of fat edges, in order to be able
to find an edge orbit in constant time. As long as
it is hard, we can grow it by Proposition 9 in time
O(|]V] + A), since we only have to perform a constant
number of shift and ‘color find’ operations.

After a constant number of iterations of Proposi-
tion 9 there is a witness in the orbit or the orbit is
no longer hard. In the first case we can reduce the
potential in constant time. In the latter case we ap-
ply Proposition 3 or 7. In both propositions we only
perform a constant number of shift and ‘color find’
operations.

If no more edges are fat, we compute the color
orbits of each node. As soon as we found a weak color
orbit, we use Proposition 3 to decrease the potential.
Since all considered color orbits have constant size,
time O(|V| 4+ A) is needed to decrease the potential.

Thus the total running time is O(|Eo|(|V ]+ A).

O

Now we relate properties of our orbit structures to
the known lower bounds of . This will finally enable
us to design algorithms with guaranteed approxima-
tion ratios.

Lemma 13.

2
If O is a strong color orbit, then |V (O)| < i+

qg—A+2

Proof. Since no two nodes share a missing color, we
have 3, cv (o) M (u)| < g. Obviously, every node
in O has at least ¢ — A missing colors. Since O
is connected by uncolored edges, there are at least
|[V(O)| — 1 uncolored edges in O and therefore at
least 2(|V(0)| — 1) additional missing colors. Thus
we have, that the total number of missing colors is at
least [V (O)|(g — A) +2(|]V(0)| —1). O

Lemma 14. Let O be a hard orbit.

a) If there is an (A) witness in O, then
qg—A+2<2[V(0)] -4

b) If there is a (B) witness in O, then
g—-T+2<2iV(0)| -4

Proof. As noted before the number of marked colors
in an edge orbit O is at most 2|V (0)| — 4

In a hard orbit every node is incident to at least
two uncolored edges and at most A — 2 colored edges.
Therefore every node in O has at least ¢ — A + 2
missing colors. If there is an (A) witness, then all
missing colors of some node in O are marked in O,
this implies ¢ — A +2 < 2|V(0)| — 4.

A hard orbit contains at least |V(O)| uncolored

edges and thus at most |E(O)|— |V (0)| colored edges,

: \E( )\ V(o) _ _V(O)|
i.e., there are at most L =I- LIV( )|/2J <
us at least ¢ + 2

I' — 2 complete colors an
incomplete colors. And if O has a (B) Wltness, then
all incomplete colors of O are marked, implying g —
I'+2<2|V(0)] —4. O

Lemma 15. If ¢ > [(1 +€)A| — 1 for some € > 0,
then the following statements hold.
a) If O is a strong color orbit, then |V (0)| < 1/e+1
b) If there is a (A) witness, then ¢ < A+2/e—1
¢) If there is a (B) witness, then ¢ <T +2/e —1

Proof. By plugging ¢ > [(1+¢€)A] — 1 into the in-
equality of Lemma 13, we obtain

vioy M a2 _10+9a] 41
T qg-A+27 |eAl+1
A
Sm-l-lﬁl/e-l-l

If we plug this into the inequalities in Lemma, 14, then
we directly obtain the inequalities b) and ¢). O

Theorem 16 (Algorithm I). For every constant
e > 0 there 1is an approrimation algorithm
for the multigraph edge coloring problem with
time complexity O(|E|(|V|+ A)) wusing at most
max {[(1 +€)A] +1/e, X" + 3/€} colors.

Proof. Start with |[(14+€)A| — 1 colors and apply
Proposition 11 to obtain G’. The number of colors
has only been increased, if there was some witness,

15b,15¢ _
ie,ifg < ‘ X +2/e—1 colors were available. Hence
at most max {[(1 + €)A| — 1, X" + 2/e — 1} colors are
used in G'.



No edge in G’ is fat and by Lemma 15a all color
orbits are strong and of size at most 1/e + 1. Using
Vizing’s algorithm and 1/e 4+ 1 additional colors, we
can now compute the desired complete coloring using
a total of at most max {[(1 4+ €)A] +1/¢, X" + 3/¢}
colors.

Since the size of a strong color orbit during the
computation of G’ was bounded by the constant
1/e+1, the running time of the algorithm is by Propo-
sition 12 O(|E|(|V| + A). O

In the best case Algorithm I uses at least some
(1+€)A colors. But from a practical point of view it
may be worthwhile not to use that many colors in the
beginning but to add colors in an adaptive manner.

Algorithm IT relies on the following lemma.

Lemma 17. If there is a witness in a hard color or-

bit O of G, then q < X' + /2Xx' — 1.
Proof. Consider the following chain of inequalities

_ La.14 La.13 2
-7 +2 < Vo) -4 < 211

T og=x'+2

For positive and integral ¢ the solution is ¢ <

[%’ + 42X + 1J — 3. Hence ¢ fulfills the claimed in-
equality. O

The idea of Algorithm IT is very simple. We start
with A colors and simplify G using Proposition 11.
Thereafter we reduce the number of colors needed to
color G by iteratively adding new colors and apply-
ing Proposition 3. As soon as a stopping criterion is
fulfilled, we stop adding colors and use Vizing’s algo-
rithm to compute a complete coloring. For the rather
technical proof of the theorem refer to the appendix.

Theorem 18 (Algorithm II). There is an approx-
imation algorithm for the multigraph edge coloring
problem with time complexity poly(|V],|A|) using at

most (1 + 4/ %—,5) X' colors.

Note that the minimum of (1 4 €)X’ + 3/€ in € is
(1 + ,/%) X', so the result of Theorem 18 is some-

what better than the naive approach.

3 A Polynomial Algorithm

In the following we will generalize the results of Sec-
tion 2 to obtain a balancing algorithm that tolerates

up to M uncolored parallel edges. This will be the
main mechanism driving our polynomial algorithm.

For an arbitrary M € N we partition the edges F
of coloring GG into three parts, namely

— the lean edges E<"):= {e € E : |[e] N Ey| < M},
— theeven edges EGY):= {e € E : |[e] N Ey| = M},
— the fat edges EC*:= {e € E : |[e]N Ey| > M}.

Now the potential @™ of coloring G is ®*):= |Ey|+
|[E> N Ey|. Note that all lemmata and propositions
1-12 are still true, if we just replace the old definitions
of lean, even, and fat edges by these new ones. In the
following we refer to orbits and witnesses with respect
to the generalized definitions of lean, even and fat.

Now we refine the approximation lemmata of Sec-
tion 2.5.

Lemma 19. Let O be a hard orbit for some M € N

a) If O has an (A) witness, then
q—A+2M <2|V(0)] — 4.

b) If O has a (B) witness, then
q—T+2M < 2|V(0)| — 4.

The proof of the lemma is very similar to the proof
of Lemma 14. For completeness the proof of Lemma
19 can be found in the appendix.

Lemma 20. If for M:= |V| a hard orbit O has some
witness, then g < X'.

Proof. Trivially |V(O)| < M. And then the inequal-
ity follows from Lemma 19. U

In the following we contract consecutive colors
with the same color class to color intervals, i.e. we
represent a coloring G by a collection of matchings
(Gr,)i_, where the I}, = [ay; by] are intervals of col-
ors with the same color class and I is the number of
these intervals. Then all ‘color find’ operations need
time O(I). The shift and color operations need
the same time than in the former representation, but
may increase the number of intervals by at most a
constant.

Lemma 21. For any coloring G using at most X'
colors contracted to I intervals we can compute a col-
oring G' in time poly(|Epl,|V|,I) using at most X'
colors contracted to I + poly(|Ey|, |V|) intervals such
that at most |V'|3 edges are uncolored.



Proof. Let M:= |V|. Then apply Proposition 11 on
G to obtain a coloring G’ with no fat edges. Therefore
at most M|V |2 = |[V|? edges remain uncolored in G’.

The number of colors has only been increased, if
La.19 _ 3
there was a witness, i.e., ¢ < X'. Hence we still use

at most Y’ colors.

The number of shift and color operations is poly-
nomial in |Fy| and |V| and does not depend on I.
Thus the number of intervals increased polynomially
in |Ep| and |V].

Since the ‘color find’ operations can be done in
O(I) we use total time of poly(|Eo|, |V, I). O

We define the multiplicity-weighted adjacency ma-
trix of the multigraph G = (V, E) as A = (Juv|)upev
For any function f : N — N and multigraph G the
notation f(G) means that f is applied on every entry
of A. The notation G + G’ means the standard ma-
trix addition of the multiplicity-weighted adjacency
matrices A and A’ of G respectively G.

Proposition 22. There is an algorithm with time
complezity poly(|V|,logp) that computes a coloring
G* of a multigraph G with mazimum edge multiplic-
ity p such that at most |V | edges of G* are uncolored
and at most X' colors are used in G*.

Proof. (By induction over p of G.)

For 4 = 0 the graph contains no edges and our
proposition is trivially true. Now suppose p > 0.
We partition the input graph into three parts, i.e.,
G = 2(|G/2]) + (G mod 2). Note that ¥'(G) >
2%(1G/2)).

The algorithm recursively computes a coloring
|G/2]" of |G/2] that uses at most X'(|G/2]) colors
and has at most |V'|* uncolored edges.

By simply doubling the endpoints of the intervals
in coloring |G/2]*, we obtain a coloring 2 |G/2]" of
2| G/2], that uses at most 2x'(|G/2]) < X'(G) colors
and has at most 2|V|? uncolored edges. Obviously the
number of intervals did not increase by this doubling.

Now we add the edges of the graph (G mod 2) to
the coloring 2 |G/2]™ and obtain a coloring G’ of G
with at most 2|V|3 4+ |V|? uncolored edges.

The algorithm  of  Lemma 21 uses
poly(|E}|,|[V|,I) = poly(|V],I) time to color
all but at most [V'|* colors and increases the number
of intervals polynomially in |V|. Let G* be this new
coloring.

Clearly the depth of recursion is O(log x). In each
recursive step the number of intervals increases poly-
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nomially in |V|. Therefore the maximum number
I of intervals is polynomial in |V| and log . Thus
only poly(|V],I) = poly(|V|,log ) time is spend in
each recursive step and therefore the total time is also
poly(|V],log p). O

The running time of the following algorithm de-
pends only logarithmically on x4 and is therefore poly-
nomial in the input size.

Theorem 23 (Polynomial Algorithm). There
is an approrimation algorithm for the
graph edge coloring problem with time complezity

poly(|V],log i) using at most (1 4 /%’)) ¥ colors.

Proof. Use Proposition 22 and then apply Theorem
18. After application of Proposition 22 only |V'|? un-
colored edges remain and the number of intervals is
polynomial in |V| and log . In the coloring obtained
by Proposition 22 at most x' colors are used. There-
fore the algorithm in Theorem 18 runs in time poly-
nomial in |V| and log i to color the remaining uncol-
ored edges and the number of used colors is then at

most (1-!-@/%’))?'. O

Note that for |V| € O(log|A|) the approximation
ratio of this algorithm decreases exponentially in the
size of the input.

multi-

4 Conclusion

Our edge coloring algorithms offer a way out of the
combinatorial explosion in the number of necessary
case distinctions for edge coloring algorithms along
the lines of [5, 8]. Our algorithms give better approx-
imation except for graphs with very small maximum
degree.

If one wants to implement our algorithm to solve
real world instances, it would be interesting to add
further heuristics. For example, Algorithm IT from
Section 2 could be refined such that before adding a
fresh color, it first tries to color edges by swapping
critical paths. It would then get optimal solutions at
least for bipartite multigraphs. It might also be in-
teresting to attempt to reduce the maximum degree
of Gy before switching to Vizing’s algorithm, e.g., us-
ing balancing operations similar to the ones we apply
to bad edges. There are also many opportunities for
speeding up the algorithm. For example, after adding
a fresh color, one can color many edges by finding a
maximal matching in Gj.
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Figure 4: Lemma 10b

A  Further Proofs

Proof (Lemma 10b): As in the proof of Lemma
10a we may assume that every node of O has at least
one missing color not marked in O. Consider the al-
ternating path Q:= Apath(u, d, ¢) for some unmarked
color d € M (u). We distinguish two cases.

1.) V(O)nV(Q) = {u}: If u is the only node of O
contained in (), we can shift () to obtain a new color-
ing, such that color ¢ is missing at v and still leaving
at v, and apply Lemma 10a on this new coloring.

2.) V(O)nV(Q) = {u,....,u'}: Let v’ be the last
node in @ that is still in O. Consider the alternating
path R:= Apath(u,d, e) for some unmarked color e €
M (u'). If R leaves O, then either d or e is leaving
O and therefore Lemma 10a is applicable either on
color d or e. So assume R does not leave O. Since O
is a hard orbit, u and «' are the only nodes of O, that
have missing colors d or e. Therefore R ends at u'.
Now consider the coloring G’ obtained by shifting R.
In G’ only edges contained in O and not marked in O
were changed. Therefore O is an hard orbit in G’ and
the subpath @ of Q\(O—u') beginning at u' remained
unchanged. Since d € M'(u'), the alternating path
Apath’(u', d, c) equals Q and therefore {u'} = V(Q)N
V(0O') and we are back to the first case. O

Proof (of Theorem 18):  Start with A colors.
Then compute a partial edge coloring of the input
multigraph G by Proposition 11. Now every color
orbit is strong an no edge is fat. Furthermore the
number of colors has only been increased if there was
V2)7 - 1.

b%
Now iteratively add new colors and apply Propo-

. . . La.17
some witness, i.e.,if g < (14



sition 3 until ¢ > A 4+ U, where U is the number
of colors Vizing’s algorithm would use to color the
current Gj.

Now we compute a complete coloring of G using

Vizing’s algorithm and U additional colors.
If ¢ < A+ VA, then

g+U=q—-A+A+U

A+U<q g<A+VA
< g-At+gqg < A+2V/A

Otherwise,

g+2 ISV -

1
Q+U§q+m < X +\/4.5%

q+2
q—A+2

tonically increasing for ¢ > A 4+ V/A. O

where the last inequality uses that g+ is mono-

Proof (of Lemma 19): In a hard orbit O every
node u has at least g — A +2M missing colors, since u
is connected to at least two neighbors by even or fat
edges and thus is incident to at least 2M uncolored
and at most A — 2M colored edges.

Furthermore, at least M|V (O)| edges are uncolored
in O and thus at most W <I'— ‘]\‘/5‘(‘8()(')/)2' =
I' — 2M colors do not leave O, i.e., at least ¢ — I' +
2M colors are leaving O. As noted before, at most
2|V (O)| — 4 colors are marked in O.

By definition of the witnesses, we know that if there
is an (A) witness, then for some u all missing colors
are marked in O, implying ¢g— A+2M < 2|V (0)|—4.
If there is a (B) witness, then all leaving colors are
marked in O, so that ¢—T'+2M <2|V(0)|—4. O
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