
Duality Between Prefetching and Queued

Writing with Parallel Disks

David A. Hutchinson

1?

, Peter Sanders

2??

, Je�rey Scott Vitter

1? ? ?

1

Department of Computer Science, Duke University, Durham, NC 27708{0129

{hutchins,jsv}@cs.duke.edu

2

Max-Planck-Institute for Computer Science, Stuhlsatzenhausweg 85, 66123

Saarbr�ucken, Germany, sanders@mpi-sb.mpg.de

Abstract. Parallel disks promise to be a cost e�ective means for achiev-

ing high bandwidth in applications involving massive data sets, but al-

gorithms for parallel disks can be di�cult to devise. To combat this

problem, we de�ne a useful and natural duality between writing to par-

allel disks and the seemingly more di�cult problem of prefetching. We

�rst explore this duality for applications involving read-once accesses

using parallel disks. We get a simple linear time algorithm for comput-

ing optimal prefetch schedules and analyze the e�ciency of the resulting

schedules for randomly placed data and for arbitrary interleaved accesses

to striped sequences. Duality also provides an optimal schedule for the

integrated caching and prefetching problem, in which blocks can be ac-

cessed multiple times. Another application of this duality gives us the

�rst parallel disk sorting algorithms that are provably optimal up to lower

order terms. One of these algorithms is a simple and practical variant of

multiway merge sort, addressing a question that has been open for some

time.

1 Introduction

External memory (EM) algorithms are designed to be e�cient when the problem

data do not �t into the high-speed random access memory (RAM) of a computer

and therefore must reside on external devices such as disk drives [17]. In order to

cope with the high latency of accessing data on such devices, e�cient EM algo-

rithms exploit locality in their design. They access a large block of B contiguous

data elements at a time and perform the necessary algorithmic operations on

the elements in the block while in the high-speed memory. The speedup can

be signi�cant. However, even with blocked access, a single disk provides much

less bandwidth than the internal memory. This problem can be mitigated by

using multiple disks in parallel. For each input/output operation, one block is

?

Supported in part by the NSF through research grant CCR{0082986.

??

Partially supported by the IST Programme of the EU under contract number IST-

1999-14186 (ALCOM-FT)

? ? ?

Supported in part by the NSF through research grants CCR{9877133 and EIA{

9870724 and by the ARO through MURI grant DAAH04{96{1{0013

1

transferred between memory and each of the D disks. The algorithm therefore

transfers D blocks at the cost of a single-disk access delay.

A simple approach to algorithm design for parallel disks is to employ large

logical blocks, or superblocks of size B �D in the algorithm. A superblock is split

into D physical blocks|one on each disk. We refer to this as superblock striping.

Unfortunately, this approach is suboptimal for EM algorithms like sorting that

deal with many blocks at the same time. An optimal algorithm for sorting and

many related EM problems requires independent access to the D disks, in which

each of the D blocks in a parallel I/O operation can reside at a di�erent position

on its disk [19, 17]. Designing algorithms for independent parallel disks has been

surprisingly di�cult [19, 14, 15, 3, 8, 9, 17, 16, 18].

In this paper we consider parallel disk output and input separately, in par-

ticular as the output scheduling problem problem and the prefetch scheduling

problem respectively. The (online) output scheduling (or queued writing) prob-

lem takes as input a �xed size pool of m (initially empty) memory bu�ers for

storing blocks, and the sequence hw

0

; w

1

; : : : ; w

L�1

i of block write requests as

they are issued. Each write request is labeled with the disk it will use. The re-

sulting schedule speci�es when the blocks are output. The bu�er pool can be

used to reorder the outputs with respect to the logical writing order given by �

so that the total number of output steps is minimized.

The (o�ine) prefetch scheduling problem takes as input a �xed size pool of m

(empty) memory bu�ers for storing blocks, and the sequence hr

0

; r

1

; : : : ; r

L�1

i

of distinct block read requests that will be issued. Each read request is labeled

with the disk it will use. The resulting prefetch schedule speci�es when the blocks

should be fetched so that they can be consumed by the application in the right

order.

The central theme in this paper is the newly discovered duality between these

two problems. Roughly speaking, an output schedule corresponds to a prefetch

schedule with reversed time axis and vice versa. We illustrate how computa-

tions in one domain can be analyzed via duality with computations in the other

domain.

Sect. 2 introduces the duality principle formally for the case of distinct blocks

to be written or read (write-once and read-once scheduling). Then Sect. 3 de-

rives an optimal write-once output scheduling algorithm and applies the duality

principle to obtain an optimal read-once prefetch scheduling algorithm.

Even an optimal schedule might use parallel disks very ine�ciently because

for di�cult inputs most disks might be idle most of the time. In Sect. 4 we there-

fore give performance guarantees for randomly placed data and for arbitrarily

interleaved accesses to a number of data streams. In particular, we discuss the

following allocation strategies:

Fully Randomized (FR): Each block is allocated to a random disk.

Striping (S): Consecutive blocks of a stream are allocated to consecutive disks

in a simple, round-robin manner.

Simple Randomized (SR): Striping where the disk selected for the �rst block

of each stream is chosen randomly.

2

Randomized Cycling (RC): Each stream i chooses a random permutation �

i

of disk numbers and allocates the j-th block of stream i on disk �

i

(j mod D).

In Sect. 5 we relax the restriction that blocks are accessed only once and

allow repetitions (write-many and read-many scheduling). Again we derive a

simple optimal algorithm for the writing case and obtain an optimal algorithm

for the reading case using the duality principle. A similar result has recently been

obtained by Kallahalla and Varman [11] using more complicated arguments.

Finally, in Sect. 6 we apply the results from Sects. 3 and 4 to parallel disk

sorting. Results on online writing translate into improved sorting algorithms us-

ing the distribution paradigm. Results on o�ine reading translate into improved

sorting algorithms based on multi-way merging. By appending a `D' for distri-

bution sort or an `M' for mergesort to an allocation strategy (FR, S, SR, RC) we

obtain a descriptor for a sorting algorithm (FRD, FRM, SD, SM, SRD, SRM,

RCD, RCM). This notation is an extension of the notation used in [18]. RCD

and RCM turn out to be particularly e�cient. Let

Sort(N) =

N

DB

�

1 + logM

B

N

M

�

and note that 2 � Sort(N) appears to be the lower bound for sorting N elements

on D disks [1]. Our versions of RCD and RCM are the �rst algorithms that

provably match this bound up to a lower order term O(BD=M) Sort(N). The

good performance of RCM is particularly interesting. The question of whether

there is a simple variant of mergesort that is asymptotically optimal has been

open for some time.

Related Work

Prefetching and caching has been intensively studied and can be a quite di�-

cult problem. Belady [5] solves the caching problem for a single disk using our

machine model. Cao et al. [7] propose a model that additionally allows overlap-

ping of I/O and computation. Albers et al. [2] were the �rst to �nd an optimal

polynomial time o�ine algorithm for the single-disk case in this model but it

does not generalize well to multiple disks. Kimbrel and Karlin [12] devised a

simple algorithm called reverse aggressive that obtains good approximations in

the parallel disk case if the bu�er pool is large and the failure penalty F is small.

However, in our model, which corresponds to F ! 1, the approximation ratio

that they show goes to in�nity. Reverse aggressive is very similar to our algo-

rithm so that it is quite astonishing that the algorithm is optimal in our model.

Kallahalla and Varman [10] studied online prefetching of read-once sequences for

our model. They showed that very large lookahead L� mD is needed to obtain

good competitiveness against an optimal o�ine algorithm. They proposed an

O

�

L

2

D

�

time algorithm with this property, and yielding optimal schedules for

the o�ine case. A practical disadvantage of this algorithm is that some blocks

may be fetched and discarded several times before they can be delivered to the

application.

3

There is less work on performance guarantees. A (slightly) suboptimal writing

algorithm is analyzed in [16] for FR allocation and extended to RC-allocation

in [18]. These results are the basis for our results in Sect. 4. For reading there is

an algorithm for SR allocation that is close to optimal if m� D logD [3].

There are asymptotically optimal deterministic algorithms for external sort-

ing [15], but the constant factors involved make them unattractive in practice.

Barve et al. [3] introduced a simple and e�cient randomized sorting algorithm

called Simple Randomized Mergesort (SRM). For each run, SRM allocates blocks

to disks using the SR allocation discipline. SRM comes within
 �Sort(N) of the

apparent lower bound if M=B =

�

D log(D)=

2

�

but for M = o(D logD) the

bound proven is not asymptotically optimal. It was an open problem whether

SRM or another variant of striped mergesort could be asymptotically optimal

for small internal memory. Knuth [13, Exercise 5.4.9-31] gives the question of a

tight analysis of SR a di�culty of 48 on a scale between 0 and 50.

To overcome the apparent di�culty of analyzing SR, Vitter and Hutchin-

son [18] analyzed RC allocation, which provides more randomness but retains

the advantages of striping. RCD is an asymptotically optimal distribution sort

algorithm for multiple disks that allocates successive blocks of a bucket to the

disks according to the RC discipline and adapts the approach and analysis of

Sanders, Egner, and Korst [16] for write scheduling of blocks. However, the ques-

tion remained whether such a result can be obtained for mergesort and how close

one can come to the lower bound for small internal memory.

2 The Duality Principle

Duality is a quite simple concept once the model is properly de�ned. Therefore,

we start with a more formal description of the model:

Our machine model is the parallel disk model of Vitter and Shriver [19]

with a single

1

processor, D disks and an internal memory of size M . All blocks

have the same size B. In one I/O step, one block on each disk can be accessed

in a synchronized fashion. We consider either a queued writing or a bu�ered

prefetching arrangement, where a pool of m block bu�ers is available to the

algorithm (see Fig. 1).

A write-once output scheduling problem is de�ned by a sequence � =

hb

0

; : : : ; b

L�1

i of distinct blocks. Let disk(b

i

) denote the disk on which block b

i

is

located. An application process writes these blocks in the order speci�ed by �.

We use the term write for the logical process of moving a block from the respon-

sibility of the application to the responsibility of the scheduling algorithm. The

scheduling algorithm orchestrates the physical output of these blocks to disks.

An output schedule is speci�ed by giving a function oStep : fb

0

; : : : ; b

L�1

g ! N

that speci�es for each disk block b

i

2 � the time step when it will be output. An

output schedule is correct if the following conditions hold: (i) No disk is refer-

enced more than once in a single time step, i.e., if i 6= j and disk(b

i

) = disk(b

j

)

1

A generalization our results to multiple processors is relatively easy as long as data

exchange between processors is much faster than disk access.

4

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
����
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
����
��
��
����
��
��
��

Output Queues / Prefetch Buffers

1 2 3 4 5 6

Up to m

Disk numbers

Queued or
Prefetched
Blocks

Consumed in
Stream of Blocks are

Σ order

Produced in

Correspondence between
Output Step (oStep) in greedyWriting and
Prefetching Priority (iStep) in Lazy Prefetching

Disks

Stream of Blocks are

Σ R order

Fig. 1.Duality between the prefetching priority and the output step. The hashed blocks

illustrate how the blocks of disk 2 might be distributed.

then oStep(b

i

) 6= oStep(b

j

). (ii) The bu�er pool is large enough to hold all the

blocks b

j

that are written before a block b

i

but not output before b

i

, i.e.,

80 � i < L : oBacklog(b

i

) := jfj < i : oStep(b

j

) � oStep(b

i

)gj < m :

The number of steps needed by an output schedule is T = max

0�i<L

oStep(b

i

).

A schedule is optimal if it minimizes T among all correct schedules.

It will turn out that our write-once output scheduling algorithms even work

if they are given the blocks online, i.e., one at a time without specifying �

explicitly.

A read-once prefetch scheduling problem is de�ned analogously. Now read-

ing means the logical process of moving a block from the responsibility of the

scheduling algorithm to the application and fetching means the physical disk ac-

cess. A prefetch schedule is de�ned using a function iStep : fb

0

; : : : ; b

L�1

g ! N.

The limited bu�er pool size requires the correctness condition

80 � i < L : iBacklog(b

i

) := jfj > i : iStep(b

j

) � iStep(b

i

)gj < m

(all blocks b

j

that are fetched no later than a block b

i

but consumed after b

i

must be bu�ered).

It will turn out that our prefetch scheduling algorithms work o�ine, i.e.,

they need to know � in advance.

5

The following theorem shows that the reading and writing not only have

similar models but are equivalent to each other in a quite interesting sense:

Theorem 1. (Duality Principle) Consider any sequence � = hb

0

; : : : ; b

L�1

i

of distinct write requests. Let oStep denote a correct output schedule for � that

uses T output steps. Then we get a correct prefetch schedule iStep for �

R

=

hb

L�1

; : : : ; b

0

i that uses T fetch steps by setting iStep(b

i

) = T � oStep(b

i

) + 1.

Vice versa, every correct prefetch schedule iStep for �

R

that uses T fetch

steps yields a correct output schedule oStep(b

i

) = T � iStep(b

i

) + 1 for �, using

T output steps.

Proof. For the �rst part, consider iStep(b

i

) = T � oStep(b

i

) + 1. The resulting

fetch steps are between 1 and T and all blocks on the same disk get di�erent

fetch steps. It remains to show that iBacklog(b

i

) < m for 0 � i < L. With

respect to �

R

, we have

iBacklog(b

i

) = jfj < i : iStep(b

j

) � iStep(b

i

)gj

= jfj < i : T � oStep(b

j

) + 1 � T � oStep(b

i

) + 1gj

= jfj < i : oStep(b

j

) � oStep(b

i

)gj :

the latter value is oBacklog(b

i

) with respect to � and hence smaller than m.

The proof for the converse case is completely analogous. ut

3 Optimal Write-Once and Read-Once Scheduling

We give an optimal algorithm for writing a write-once sequence, prove its op-

timality and then apply the duality principle to transform it into a read-once

prefetching algorithm.

Consider the following algorithm greedyWriting for writing a sequence � =

hb

0

; : : : ; b

L�1

i of distinct blocks. Let Q denote the set of blocks in the bu�er

pool, so initially Q = ;. Let Q

d

= fb 2 Q : disk(b) = dg. Write the blocks b

i

in

sequence as follows: (1) If jQj < m then simply insert b

i

into Q. (2) Otherwise,

each disk with Q

d

6= ; outputs the block in Q

d

that appears �rst in �. The blocks

output are then removed from Q and b

i

is inserted into Q. (3) Once all blocks

are written the queues are
ushed, i.e., additional output steps are performed

until Q is empty,

Any schedule where blocks are output in arrival order on each disk, is called a

FIFO schedule. The following lemma tells us that it is su�cient to consider FIFO

schedules when we look for optimal schedules. The proof is based on transforming

a non-FIFO schedule into a FIFO schedule by exchanging blocks in the schedule

of a disk that are output out of order.

Lemma 1. For any sequence of blocks � and every correct output schedule

oStep

0

there is a FIFO output schedule oStep consisting of at most the same

number of output steps.

6

Algorithm greedyWriting is one way to compute a FIFO schedule. The fol-

lowing lemma shows that greedyWriting outputs every block as early as possible.

Lemma 2. For any sequence of blocks � and any FIFO output schedule oStep

0

,

let oStep denote the schedule produced by algorithm greedyWriting. Then for all

b

i

2 �, we have oStep(b

i

) � oStep

0

(b

i

).

Proof. (Outline) The proof is by induction over the number of blocks. There are

two nontrivial cases. One case corresponds to the situation where the output

step of a block immediately follows an output of a previous block on the same

disk. The other case corresponds to the situation where no earlier step is possible

because otherwise its oBacklog would be too large.

Combining Lemmas 1 and 2 we see that greedyWriting gives us optimal

schedules for write-once sequences:

Theorem 2. Algorithm greedyWriting gives a correct, minimum length output

schedule for any write-once reference sequence �.

Combining the duality principle and the optimality of greedyWriting, we get

an optimal algorithm for read-once prefetching that we call lazy prefetching :

Corollary 1. An optimal prefetch schedule iStep for a sequence � can be ob-

tained by using greedyWriting to get an output schedule oStep for �

R

and setting

iStep(b

i

) = T � oStep(b

i

) + 1.

Note that the schedule can be computed in time O(L+D) using very simple

data structures.

4 How Good is Optimal?

When we are processing several streams concurrently, the knowledge that we

have an optimal prefetching algorithm is often of little help. We also want to

know \how good is optimal?" In the worst case, all requests may go to the same

disk and no prefetching algorithm can cure the dreadful performance caused by

this bottleneck. However, the situation is di�erent if blocks are allocated to disks

using striping, randomization

2

, or both.

Theorem 3. Consider a sequence of L block requests. and a bu�er pool of size

m � D blocks. The number of I/O steps needed by greedyWriting or lazy prefetch-

ing is given by the following bounds, depending on the allocation discipline. For

striping and randomized cycling, an arbitrary interleaving of sequential accesses

to S sequences is allowed.

Striping:

L

D

+ S; if m > S(D � 1);

Fully Random (FR):

�

1 +O

�

D

m

��

L

D

+O

�

m

D

logm

�

(expected);

Randomized Cycling (RC):

�

1 +O

�

D

m

��

L

D

+min

�

S +

L

D

;

m

D

logm

	

(expected)

2

In practice, this will be done using simple hash functions. However, for the analysis

we assume that we have a perfect source of randomness.

7

Proof. (Outline) The bound for striped writing is based on the observation that

L=D+ S is the maximum number of blocks to be handled by any disk and that

the oBacklog of any block can never exceed m if m > S(D � 1).

For fully random placement the key idea is that greedyWriting dominates

the \throttled" algorithm of [16], which admits only (1��(D=M))D blocks per

output step into the queues.

The bound for RC is a combination of the two previous bounds. The bound

for FR applies to RC writing using the observation of [18] that the throttled

algorithm of [16] performs at least as well for RC as for FR.

The results for writing transfer to o�ine prefetching via duality. For the RC

case we also need the observation that the reverse of a sequence using RC is

indistinguishable from a nonreversed sequence. ut

For writing, the trailing additive term for each case enumerated in Theorem 3

can be dropped if the �nal contents of the bu�er pool is not
ushed.

5 Integrated Caching and Prefetching

We now relax the condition that the read requests in � are for distinct blocks,

permitting the possibility of saving disk accesses by keeping previously accessed

blocks in memory. For this read-many problem, we get a tradeo� for the use of

the bu�er pool because it has to serve the double purposes of keeping blocks

that are accessed multiple times, and decoupling physical and logical accesses to

equalize transient load imbalance of the disks. We de�ne the write-many problem

in such a way that the duality principle from Theorem 1 transfers: The latest

instance of each block must be kept either on its assigned disk, or in the bu�er

pool. The �nal instance of each block must be written to its assigned disk.

3

We prove that the following o�ine algorithm manyWriting minimizes the

number of output operations for the write-many problem: Let Q and Q

d

be

de�ned as for greedyWriting. To write block b

i

, if b

i

2 Q, the old version is

overwritten in its existing bu�er. Otherwise, if jQj < m, b

i

is inserted into Q.

If this also fails, an output step is performed before b

i

is inserted into Q. The

output analogue of Belady's min rule [5] is used on each disk, i.e., each disk with

Q

d

6= ; outputs the block in Q

d

that is accessed again farthest in the future.

Applying duality, we also get an optimal algorithm for integrated prefetching

and caching of a sequence �: using the same construction as in Cor. 1 we get

an optimal prefetching and caching schedule. It remains to prove the following

theorem:

Theorem 4. Algorithm manyWriting solves the write-many problem with the

fewest number of output steps.

3

The requirement that the latest versions have to be kept might seem odd in an o�ine

setting. However, this makes sense if there is a possibility that there are reads at

unknown times that need an up-to-date version of a block.

8

Proof. We generalize the optimality proof of Belady's algorithm by Borodin and

El-Yaniv [6] to the case of writing and multiple disks. Let � = hb

0

; : : : ; b

L�1

i be

any sequence of blocks to be written. The proof is based on the following claim.

Claim: Let alg be any algorithm for cached writing. Let d denote a �xed

disk. For any 0 � i < L it is possible to construct an o�ine algorithm alg

i

that

satis�es the following properties: (i) alg

i

processes the �rst i� 1 writes exactly

as alg does. (ii) alg

i

takes no more steps than alg. (iii) If block b

i

is the �rst

block written after output step s, then immediately before output step s we had

b

i

62 Q and jQj = m. (iv) If b

i

is is the �rst block written after output step s,

then alg

i

performs this output according to the min rule on disk d.

Once this claim is established, the theorem can be proven as follows: Starting

with an optimal o�ine algorithm opt, we apply the claim with i = 0 and d = 0

to obtain another optimal algorithm opt

0

, then apply the claim with i = 1

and d = 0 to obtain opt

1

and so on. By induction over i, it can be seen that

opt

L�1

never leaves unused bu�er frames before an output step and uses min

for deciding which blocks to output on disk 0. We repeat this game for each

disk and �nally obtain an optimal algorithm that works like manyWriting on all

disks.

It remains to prove the claim. We �rst set alg

i

= alg. Now properties (i)

and (ii) hold whereas properties (iii) and (iv) are violated. We now apply further

transformations that preserve the smaller numbered properties until all prperties

hold.

If property (iii) is violated by the current alg

i

, then b

i

is the �rst block

the new alg

i

writes after step s. In the new alg

i

, b

i

is the last block written

before step s. Note that this maintains the order in which block are written and

properties (i) and (ii) are maintained. If property (iii) is still violated, this trans-

formation is repeated until propterty (iii) holds. This process must terminate at

the latest when b

i

is written before the �rst output step.

If properties (i){(iii) hold for alg

i

but property (iv) is violated, we de�ne

a new version alg

0

i

that ful�lls property (iv) as follows. We use X + b as a

shorthand for X+fbg for a set of blocks X and a block b. alg

0

i

works identically

to alg

i

until the �rst i� 1 blocks are written. In the subsequent output step s,

alg

0

i

follows the min rule for disk d. It remains to de�ne the behavior of alg

0

i

after step s so that property (ii) is also maintained.

If during output step s alg

i

outputs block b

0

on disk d and alg

i

outputs

block b on disk d then b 6= b

0

and the bu�er pool of alg

i

can be written as

Q = X + b whereas alg

0

i

has Q = X + b

0

. Until b is written again (or until the

end if b is not written again), alg

0

i

mimics alg

i

except for outputting b

0

if alg

i

should output b. If the latter happens, both algorithms have the same state of Q

again and subsequently, alg

0

i

can completely follow alg

i

to maintain property

(iv).

By de�nition of the min strategy, b

0

will be written again before b. Consider

the state of Q of alg

i

and alg

0

i

after such a write of b

0

. The pool of alg

i

can

be written as Q = Y + b+ b

0

and the pool of alg

0

i

as Q = Y + b

0

+ " for some

set of blocks Y and an unused bu�er slot ". alg

0

i

does not exploit the free slot

9

" to get ahead of alg. Rather, alg

0

i

preserves " until b is written again. Now, "

can be used to bu�er b without an additional output. After this, both alg

i

and

alg

0

i

are in the same state again.

Finally it might be that in step s alg

i

does not output anything on disk d

yet alg

0

i

outputs block b according to the min strategy. Then the bu�er pools of

alg

i

can be written Q = X+ b whereas for alg

0

i

we have Q = X+ ". As before,

this free slot is only used to unify the states of alg

i

and alg

0

i

after a possible

later access to b. ut

6 Application to Sorting

Optimal algorithms for read-once prefetching or write-once output scheduling

can be used to analyze or improve a number of interesting parallel disk sorting

algorithms. We start by discussing multiway mergesort using randomized cycling

allocation (RCM) in some detail and then survey a number of additional results.

Multiway mergesort is a frequently used external sorting algorithm. We de-

scribe a variant that is similar to the SRM algorithm in [3]. Originally the N

input elements are stored as a single data stream using any kind of striping.

During run formation the input is read in chunks of size M , that are sorted in-

ternally and then written out in runs allocated using RC allocation. Neglecting

trivial rounding issues, run formation is easy to do using 2N=(DB) I/O steps.

By investing another O

�

N=(DB

2

)

�

I/O steps we can keep triggers, the largest

keys of each block, in a separate �le. Then we set aside a bu�er pool of size

m = cD for some constant c and perform dlog

M=B�O(D)

N

M

e merge phases. In a

merge phase, groups of k =

M

B

� O(D) runs are merged into new sorted runs,

i.e., after the last merge phase, only one sorted run is left. Merging k runs of size

sB can be performed using s block reads by keeping one block of each run in the

internal memory of the sorting application. The order of these reads for an en-

tire phase can be exactly predicted using the trigger information and O

�

N=B

2

�

I/Os for merging trigger �les [3]. Hence, if we use optimal prefetching, Theo-

rem 3 gives an upper bound of (1 + O(1=c))

N

BD

+ � � � for the number of fetch

steps of a phase. The number of output steps for a phase is N=(BD) if we have

an additional output bu�er of D blocks. The �nal result is written using any

striped allocation strategy, i.e., the application calling the sorting routing need

not be able to handle RC allocation. We can write the resulting total number of

I/O steps as Sort

2+O(1=c);min(

N

BD

;

logD

O(
)

)

m+D

(N) where

Sort

a;f

m

(N) =

2N

DB

+ a �

N

DB

�

�

logM

B

�m

N

M

�

+ f + o

�

N

DB

�

:

Table 1 compares a selection of sorting algorithms using this generalized form

of the I/O bound for parallel disk sorting. (In the full paper we present additional

results for example for FR allocation.) The term

2N

DB

represents the reading and

writing of the input and the �nal output respectively. The factor a is a constant

that dominates the I/O complexity for large inputs. Note that for a = 2 and

10

f = m = 0 this expression is the apparent lower bound for sorting. The additive

o�set f may dominate for small inputs. The reduction of the memory by m

blocks in the base of the logarithm is due to memory that is used for output or

prefetching bu�er pools outside the merging or distribution routines, and hence

reduces the number of data streams that can be handled concurrently. One way

to interpret m is to view it as the amount of additional memory needed to match

the performance of the algorithm on the multihead I/O model [1] (where load

balancing disk accesses is not an issue).

4

Table 1. Summary of Main Results for I/O Complexity of Parallel Disk Sorting Algo-

rithms. Algorithms with boldface names are asymptotically optimal: M/D = Merge

/Distribution sort. SM/SD = merge / distribution sort with any striping (S) alloca-

tion. SRM and SRD use Simple Randomized striping (SR). RCD, RCD+ and RCM

use Randomized Cycling (RC) allocation.

Sort

a;f

m

(N) I/Os Algorithm Source

a f �(m)

Deterministic algorithms

2 +
 0 (2D)

1+

2

M, superblock striping

2 +
 0 (2D)

1+

2

SM here

2 +
 0 (2D)

1+

2

SD here

Randomized algorithms

2 +
 0 D log(D)=

2

SRM [3]

2 +
 0 D log(D)=

2

SRD here

3 +
 0 D=
 RCD [18]

2 +
 min(

N

BD

; log(D)=O(
)) D=
 RCM here

2 +
 0 D=
 RCD+ here

Even without any randomization, Theorem 3 shows that mergesort with de-

terministic striping and optimal prefetching (SM) is at least as e�cient as the

common practice of using superblock striping. However, both algorithms achieve

good performance only if a lot of internal memory is available.

Using previous work on distribution sort and the duality between prefetching

and writing, all results obtained for mergesort can be extended to distribution

sort (e.g., SD, SRD, FRD, RCD+). There are several sorting algorithms based

on the distribution principle, e.g. radix sort. The bounds given here are based

on a generalization of quicksort where k� 1 splitter elements are chosen to split

an unsorted input stream into k approximately equal sized output streams with

4

If we assume a �xed memory size we cannot discriminate between some of the al-

gorithms using the abstract I/O model. One algorithm may have a smaller factor a

yet need an extra distribution or merging phase for some input sizes N . In practice,

one could use a smaller block size for these input sizes. The abstract I/O model does

not tell us how this a�ects the total I/O time needed.

11

disjoint ranges of keys. After dlog

M=B�O(D)

N

M

e splitting phases, the remaining

streams can be sorted using internal sorting.

A simple variant of distribution sort with randomized cycling (RCD) was

already analyzed in [18]. The new variant, RCD+, has some practical improve-

ments (fewer tuning parameters, simpler application interface) and, it turns out

that the additive term f can also be eliminated. Using a careful formulation

of the algorithmic details it is never necessary to
ush the write bu�ers. All in

all, RCD+ is currently the parallel disk sorting algorithm with the best I/O

performance bounds known.

Acknowledgments: We would like to thank Je�rey Chase, Andreas Crauser,

S. Mitra, Nitin Rajput, Erhard Rahm, and Berthold V�ocking for valuable dis-

cussions.

References

1. A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and related

problems. Communications of the ACM, 31(9):1116{1127, 1988.

2. S. Albers, N. Garg, and S. Leonardi. Minimizing stall time in single and parallel

disk systems. In Proceedings of the 30th Annual ACM Symposium on Theory of

Computing (STOC-98), pages 454{462, New York, May 23{26 1998. ACM Press.

3. R. D. Barve and J. S. Vitter. A simple and e�cient parallel disk mergesort.

In Proceedings of the 11th Annual ACM Symposium on Parallel Algorithms and

Architectures, pages 232{241, St. Malo, France, June 1999.

4. Rakesh D. Barve, Edward F. Grove, and Je�rey Scott Vitter. Simple randomized

mergesort on parallel disks. Parallel Computing, 23(4):601{631, 1997.

5. A. L. Belady. A study of replacement algorithms for virtual storage computers.

IBM Systems Journal, 5:78{101, 1966.

6. Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis.

Cambridge University Press, Cambridge, 1998.

7. Pei Cao, Edward W. Felten, Anna R. Karlin, and Kai Li. Implementation and

performance of integrated application-controlled �le caching, prefetching and disk

scheduling. ACM Transactions on Computer Systems, 14(4):311{343, Nov. 1996.

8. F. Dehne, W. Dittrich, and D. Hutchinson. E�cient external memory algorithms

by simulating coarse-grained parallel algorithms. In Proceedings of the 9th ACM

Symposium on Parallel Algorithms and Architectures, pages 106{115, June 1997.

9. F. Dehne, D. Hutchinson, and A. Maheshwari. Reducing I/O complexity by simu-

lating coarse grained parallel algorithms. In Proc. of the Intl. Parallel Processing

Symmposium, pages 14{20, April 1999.

10. M. Kallahalla and P. J.Varman. Optimal read-once parallel disk scheduling. In

IOPADS, pages 68{77, 1999.

11. M. Kallahalla and P.J. Varman. Optimal prefetching and caching for parallel I/O

systems. In Proc. of the ACM Symposium on Parallel Algorithms and Architectures,

2001. To appear.

12. Tracy Kimbrel and Anna R. Karlin. Near-optimal parallel prefetching and caching.

SIAM Journal on Computing, 29(4):1051{1082, 2000.

13. D. E. Knuth. The Art of Computer Programming | Sorting and Searching, vol-

ume 3. Addison Wesley, 2nd edition, 1998.

12

14. M. H. Nodine and J. S. Vitter. Deterministic distribution sort in shared and

distributed memory multiprocessors. In Proceedings of the 5th Annual ACM Sym-

posium on Parallel Algorithms and Architectures, pages 120{129, Velen, Germany,

June{July 1993.

15. M. H. Nodine and J. S. Vitter. Greed Sort: An optimal sorting algorithm for

multiple disks. Journal of the ACM, 42(4):919{933, July 1995.

16. P. Sanders, S. Egner, and J. Korst. Fast concurrent access to parallel disks. In

11th ACM-SIAM Symposium on Discrete Algorithms, pages 849{858, 2000.

17. J. S. Vitter. External memory algorithms and data structures: Dealing with mas-

sive data. ACM Computing Surveys, in press. An earlier version entitled \Ex-

ternal Memory Algorithms and Data Structures" appeared in External Memory

Algorithms and Visualization, DIMACS Series in Discrete Mathematics and The-

oretical Computer Science, American Mathematical Society, 1999, 1{38.

18. J. S. Vitter and D. A. Hutchinson. Distribution sort with randomized cycling. In

Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms, Washing-

ton, January 2001.

19. J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory I: Two-level

memories. Algorithmica, 12(2{3):110{147, 1994.

13

