
The Hierarchical Factor Algorithm for

All-to-all Communication

Peter Sanders

1?

and Jesper Larsson Tr�a�

2

1

Max-Planck-Institut f�ur Informatik

Stuhlsatzenhausweg 85, 66123 Saarbr�ucken, Germany

sanders@mpi-sb.mpg.de, http://www.mpi-sb.mpg.de/~sanders/

2

C&C Research Laboratories, NEC Europe Ltd.

Rathausallee 10, 53757 Sankt Augustin, Germany

traff@ccrl-nece.de

Abstract. We present an algorithm for all-to-all personalized communication, in which every processor

has an individual message to deliver to every other processor. The machine model we consider is a cluster

of processing nodes where each node, possibly consisting of several processors, can participate in only

one communication operation with another node at a time. The nodes may have di�erent numbers

of processors. This general model is important for the implementation of all-to-all communication

in libraries such as MPI where collective communication may take place over arbitrary subsets of

processors. The algorithm is simple and optimal up to an additive term that is small if the total

number of processors is large compared to the maximal number of processors in a node.

1 Introduction

A successful approach to parallel programming is to write a sequential program executing on all processors

and delegate interprocessor communication and coordination to a communication library such as MPI [13].

Within this approach, many parallel computations can be conveniently expressed in terms of a small number

of collective communication operations, where \collective" means that a subset of processors is cooperating

in a nontrivial way. One such frequently used collective communication operation is regular personalized

all-to-all message exchange: Each of p processors has to transmit a personalized message to itself and each

of p� 1 other processors, i. e., for every pair of processor indices i and j a message m

ij

has to be sent from

processor i to processor j. In regular all-to-all exchange, all messages are assumed to have the same length.

Examples of subroutines using all-to-all communication are matrix transposition and FFT.

This paper presents an algorithm for regular all-to-all communication on clusters of processing nodes

where each node may consist of several processors. We assume that only a single processor from each node

can be involved in inter-node communication at a time. Prime examples of such hierarchical systems are

clusters of SMP nodes, where processor groups of 2{16 processors communicate via a shared memory, and

where some medium to large number of nodes are interconnected via a commodity interconnection network.

For example, the Earth Simulator

1

and the NEC SX-6 supercomputer

2

have up to 8 processors per node;

the IBM SP POWER3 allows up to 16 processors per node.

3

The di�cult case is when nodes have di�ering numbers of processors participating in the all-to-all ex-

change. This situation must be handled e�ciently in a high-quality communications library because it arises

naturally if a job is assigned only part of the machine, or if the exchange is only among a subset of the

processors in a job.

We use a simple machine model that allows an e�cient implementation portable over a large spectrum

of platforms. The nodes are assumed to be fully connected. Communication is single ported in the sense

that at most one processor per node can communicate with a processor on another node at a time. The

?

Partially supported by the Future and Emerging Technologies programme of the EU under contract number IST-

1999-14186 (ALCOM-FT).

1

http://www.es.jamstec.go.jp/

2

http://www.ess.nec.de/sx-6.html

3

http://www-1.ibm.com/servers/eserver/pseries/hardware/largescale/sp.html

single-ported assumption is valid for current interconnection technologies like Myrinet, Giganet, the Scalable

Coherent Interface (SCI), or for the crossbar switch used on the NEC machines and the Earth Simulator.

Our algorithm for all-to-all communication extends a well-known algorithm for non-hierarchical systems

based on factoring the complete graph into matchings. The new algorithm is optimal with respect to the

time a processor spends waiting or transmitting data up to an additive term that is bounded by the time

needed for data exchange inside a node. This time is comparatively small if the total number of processors

is large compared to the maximum number of processors in a node. Our algorithm runs in phases, in each

phase getting rid of nodes with the minimum number of processors among the surviving nodes. The main

issue is to balance the communication volume of nodes with many processors over the phases so that the

number of communication steps is minimized.

Related Work

All-to-all communication has been studied intensively, and we mention only a sample of the known results.

Most work focuses on non-hierarchical systems with speci�c interconnection networks [11, 5, 15]. Trade-o�s

between communication volume and number of communication start-ups were studied in [3, 5], which achieve

algorithms that are faster for small messages.

A well-known version of the factor algorithm in which processor j communicates with processor j xor i in

step i works if the number of processors is a power of two. General 1-factorizations of the complete graph [9,

6] can be used for arbitrary numbers of processors (see Section 2). 1-factorizations have also been used for

constructing decompositions of the complete graph into permutations that can be e�ciently executed on

mesh-like networks [11, 5], for gossiping [14], and for all-to-all communication on fully connected networks

[10].

Our variant of the single-ported communication model is similar to the telephone model [2, 1]. Collective

communication on hierarchical systems has recently received some attention [12, 8, 7]. Huse [7] reports ex-

periments with an implementation of a regular all-to-all algorithm which ensures that only one processor per

node is involved in inter-node communication at a time. Algorithmic details and properties are not stated.

2 The non-hierarchical factor algorithm

The basis for our algorithm is a well-known algorithm for the single-ported, non-hierarchical case. We brie
y

give our version of the algorithm here. It exploits the existence of a 1-factorization of the complete graph.

Our formulation of the all-to-all communication problem requires the inclusion of self-loops in the graph,

whereas the usual construction has no self-loops. We give the construction and the proof here. It is perhaps

interesting to note that self-loops simplify the construction.

Lemma 1. Let G be the complete graph with p vertices including self-loops. G is 1-factorizable, i. e., G =

(V;E) can be decomposed into p subgraphs G

i

= (V;E

i

); i = 0; : : : ; p � 1 in which each vertex has degree 1

(1-factors).

Proof. Let V = f0; : : : ; p� 1g.

The ith factor G

i

= (V;E

i

), is constructed as follows. For u 2 V de�ne v

i

(u) = (i � u) mod p. De�ne

E

i

= f(u; v

i

(u))ju 2 V g. Since v

i

(v

i

(u)) = (i�((i�u) mod p)) mod p = u all vertices have degree exactly one.

Furthermore, any edge (u; v) 2 E will �nd itself in some factor, namely in factor G

(u+v)modp

. In particular,

the self-loop (u; u) will �nd itself in G

2umodp

.

The non-hierarchical factor algorithm depicted in Figure 1, and is the basis for our hierarchical algorithm

explained in the next section. It requires p communication rounds for any number of p processors. In the ith

round, processors u and v that are neighbors in G

i

are paired and exchange messages m

uv

and m

vu

.

The factor algorithm is optimal in the sense that in every step, each processor sends data it needs to

send or receives data it needs to receive. It should be noted however, that using a small modi�cation, the

self-loops can all be concentrated in a single factor in the case of even P . Since local data exchange is faster

this is often advantageous. In the nonhierarchical case, we could even drop this factor.

2

for i = 0; : : : ; p� 1 do // round

Let G

i

= (V;E

i

) be the ith \factor"

for (u; v) 2 E

i

pardo exchange(u; v) // step

procedure exchange(u; v):

// use a total processor ordering u < v to order exchange between u and v

if u < v then send m

uv

from u to v and receive m

vu

from v to u else

if u > v then receive m

vu

from v to u and send m

uv

from u to v else

copy m

uu

from source bu�er of u to destination bu�er of u

Fig. 1. The nonhierarchical factor algorithm.

3 All-to-all communication on hierarchical systems

We now generalize the factor algorithm to clustered, hierarchical systems. Let N be the number of processor

nodes, and let G denote the N -node complete graph with self-loops. Let G

A

denote the subgraph of G

induced by a subset of nodes A, and G

i

A

the ith 1-factor of G

A

. We use U and V to denote processor nodes

of the system, and u and v for individual processors. By size(U) we denote the number of processors in

node U , and by l(u) the local index of processor u within its node, 0 � l(u) < size(U) for u 2 U . To specify

what messages should be exchanged when two nodes U and V are paired we impose a node ordering as follows:

U � V if size(U) < size(V); or size(U) = size(V) ^ U � V

where U � V relates to an arbitrary total ordering of the nodes. The algorithm is shown in Fig. 2 using this

notation.

Algorithm ClusteredAllToAll:

A f0; : : : ; N � 1g // set of active nodes

done 0

while A 6= ; do // phase

loop invariant: 8(U;V) 2 G : 8u 2 U; v 2 V :

(U � V ^ 0 � l(u) < done)) m

uv

and m

vu

have been delivered

current minfsize(U) j U 2 Ag

for i = 0; : : : ; jAj � 1 do // round

for all (U; V) 2 G

i

A

where U � V pardo

for each u 2 U; done � l(u) < current do

for each v 2 V do // step

if U = V then send m

uv

from u to v

else exchange m

uv

and m

vu

beween u and v

done current

A A n fU j size(U) = doneg

Fig. 2. The clustered, hierarchical factor algorithm.

The outermost loop iterates over a number of phases, each of which considers a 1-factorization of the set

of active nodes A that have not yet exchanged all their messages. The second loop iterates over the 1-factors

G

i

A

of G

A

. The parallel loop considers all node pairs (U; V) that are neighbors in the given 1-factor G

i

A

. The

node ordering U � V is used to conveniently describe the message exchange between processors on node U

and processors on nodes V necessary for reestablishing the invariant for the outermost loop after `done' has

been increased to `current'. When U = V , the bidirectional exchange is replaced by a unidirectional send

because otherwise, intra-node messages would be transmitted twice. Sending m

uu

from u to u means copying

m

uu

from source bu�er to destination bu�er of u.

3

1

4

7

10

13

15

2
3

5
6

8
9

11
12

14

phase
round

active node

vum receivedprocessor

muv to be sent

0 0 1 0 1 2
012345 012345 012345 012345 012345 012345

0 1 2 3 4 5
A B C

8 7

U
u
l(u)
v

2

3

1

2

3

4

5

6

1 step

Fig. 3. Execution of algorithm ClusteredAllToAll for three nodes with size 1, 2, and 3 respectively. The algorithms

goes through 3 phases, and 3, 2 and 1 rounds respectively are required, for a total of 15 steps. Step 6 of phase 1 in

which no inter-node communication takes place, can easily be moved to the end of the computation.

Figure 3 gives an example of the operation of the ClusteredAllToAll algorithm, and the following theorem

formally states its correctness and in which sense it is close to optimal.

Theorem 1. Algorithm ClusteredAllToAll performs a personalized all-to-all exchange in a number of steps

equal to the maximal number of messages that the processors in a node have to send.

Proof. (Outline) Regarding correctness, let 0 = S

0

< S

1

< : : : < S

k

be the sequence of di�erent node

sizes. The algorithm performs k phases. In phase i nodes U with size(U) � S

i

are active. In particular, the

outer loop terminates. Furthermore, at the end of the algorithm done = max

U2f0;::: ;N�1g

size(U). The loop

invariant implies that all messages have been exchanged.

The bound on the number of steps follows since all nodes with the maximum number of processors are

participating in a communication in every step and because no message is sent twice.

The reason why the algorithm is not optimal in all cases is that a node paired with itself communicates only

unidirectionally in each step. If at the same step two other nodes with maximum number of processors are

paired, they communicate bidirectionally and hence take longer to complete a round. This is not optimal

since at least in some cases there are schedules which avoid such situations. However, there are only few

such ine�cient steps: Consider a node U with maximal number n = size(U) of processors. Our algorithm

performs pn steps. At most n

2

of these steps | a fraction of p=n | can be ine�cient for node U . Hence,

the ine�cient steps are few compared to the e�cient steps for p� n.

Although the algorithm was formulated for single-ported communication using 1-factorizations, general-

izations to multi-ported communications are possible. The same basic scheme applies if the complete graph

is decomposed into graphs with degrees at most k or into permutations (directed cycles). Decomposition into

permutations is particularly interesting since several all-to-all algorithms for non-fully connected networks

are known that are based on this approach [11, 5, 15].

4 Implementation issues

The algorithm is easy to implement, and has been used for an implementation of the MPI_Alltoall function

of the Message Passing Interface (MPI) [13] for clusters of SMP nodes.

4

On most SMP clusters intra-node communication is considerable faster than communication between

processors on di�erent nodes. This can be exploited to reduce the completion time somewhat by doing more

(intra-node) work in rounds where a node is paired with itself, thus possibly saving rounds in subsequent

phases where jAj is either even or one.

A prototype implementation has been done within the framework of the well-known MPICH implemen-

tation [4]. For each process, the data structure representing the set of processes that can communicate with

each other { the communicator construct of MPI { is extended with an array containing the processes sorted

after SMP node id, and an array of node sizes. This information can be computed once and for all when

the communicator is created. Our algorithm thus only performs simple loops, array lookups and message

passing operations.

Since we do not have regular access to a machine with large nodes yet, it is too early to present detailed

performance measures. Preliminary measurements on a large clustered system with crossbar interconnect

show speed-up over a trivial all-to-all algorithm by a factor of two and more. On a small Giganet SMP

cluster with 6 nodes of 4 processors each, we experimented with various distributions of processes among the

nodes (regular, organ pipe, alternating full/small nodes, various random distributions). We made comparisons

with the trivial, native MPICH algorithm for MPI_Alltoall which posts p non-blocking, concurrent send

and receive operations on each processor. The new algorithm never performs worse and achieves at least 10%

and sometimes up to 20% higher bandwidth when the number of active processes per SMP varies.

References

1. Bar-Noy, Kipnis, and Schieber. Optimal multiple message broadcasting in telephone-like communication systems.

DAMATH: Discrete Applied Mathematics and Combinatorial Operations Research and Computer Science, 100:1{

15, 2000.

2. D. Barth and P. Fraigniaud. Approximation algorithms for structured communication problems. In Proceedings

of the 9th Annual ACM Symposium on Parallel Algorithms and Architectures, pages 180{188, Newport, Rhode

Island, June 22{25, 1997. SIGACT/SIGARCH and EATCS.

3. J. Bruck, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby. E�cient algorithms for all-to-all communications in

multiport message-passing systems. IEEE Transactions on Parallel and Distributed Systems, 8(11):1143{1156,

1997.

4. W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable imlementation of the MPI message

passing interface standard. Parallel Computing, 22(6):789{828, 1996.

5. S. E. Hambrusch, F. Hameed, and A. A. Khokar. Communication operations on coarse-grained mesh architectures.

Parallel Computing, 21:731{751, 1995.

6. F. Harary. Graph Theory. Addison-Wesley, 1967.

7. L. P. Huse. MPI optimization for SMP based clusters interconnected with SCI. In 7th European PVM/MPI

User's Group Meeting, volume 1908 of Lecture Notes in Computer Science, pages 56{63, 2000.

8. N. T. Karonis, B. R. de Supinski, I. Foster, W. Gropp, E. Lusk, and J. Bresnahan. Exploiting hierarchy in parallel

computer networks to optimize collective operation performance. In Proceedings of International Parallel and

Distributed Processing Symposium (IPDPS'2000), pages 377{384, 2000.

9. D. K�onig. Theorie der endlichen und unendlichen Graphen. Akademische Verlagsgesellschaft, 1936.

10. P. Sanders and R. Solis-Oba. How helpers hasten h-relations. Journal of Algorithms, 2001. To appear.

11. D. S. Scott. E�cient all-to-all communication patterns in hypercube and mesh topologies. In Sixth Distributed

Memory Computing Conference Proceedings, pages 398{403, 1991.

12. S. Sistare, R. vandeVaart, and E. Loh. Optimization of MPI collectives on clusters of large-scale SMPs. In

Supercomputing, 1999. http://www.supercomp.org/sc99/proceedings/techpap.htm#mpi.

13. M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI { The Complete Reference, volume 1,

The MPI Core. MIT Press, second edition, 1998.

14. X. Wang, E. K. Blum, D. S. Parker, and D. Massey. The dance party problem and its application to collective

communication in computer networks. Parallel Computing, 23(8):1141{1156, 1997.

15. Y. Yang and J. Wang. Optimal all-to-all personalized exchange in self-routable multistage networks. IEEE

Transactions on Parallel and Distributed Systems, 11(3):261{274, 2000.

5

