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Abstract. The cache hierarchy prevalent in todays high performance

processors has to be taken into account in order to design algorithms

which perform well in practice. We advocates the approach to adapt

external memory algorithms to this purpose. We exemplify this approach

and the practical issues involved by engineering a fast priority queue

suited to external memory and cached memory which is based on k-way

merging. It improves previous external memory algorithms by constant

factors crucial for transferring it to cached memory. Running in the cache

hierarchy of a workstation the algorithm is at least two times faster than

an optimized implementation of binary heaps and 4-ary heaps for large

inputs.

1 Introduction

The mainstream model of computation used by algorithm designers in the last

half century [18] assumes a sequential processor with unit memory access cost.

However, the mainstream computers sitting on our desktops have increasingly

deviated from this model in the last decade [10, 11, 13, 17, 19]. In particular, we

usually distinguish at least four levels of memory hierarchy: A �le of multi-ported

registers, can be accessed in parallel in every clock-cycle. The �rst-level cache can

still be accessed every one or two clock-cycles but it has only few parallel ports

and only achieves the high throughput by pipelining. Therefore, the instruction

level parallelism of super-scalar processors works best if most instructions use

registers only. Currently, most �rst-level caches are quite small (8{64KB) in order

to be able to keep them on chip and close to the execution unit. The second-level

cache is considerably larger but also has an order of magnitude higher latency.

If it is o�-chip, its size is mainly constrained by the high cost of fast static RAM.

The main memory is build of high density, low cost dynamic RAM. Including

all overheads for cache miss, memory latency and translation from logical over

virtual to physical memory addresses, a main memory access can be two orders

of magnitude slower than a �rst level cache hit. Most machines have separate

caches for data and code so that we can disregard instruction reads as long as

the programs remain reasonably short.

Although the technological details are likely to change in the future, physical

principles imply that fast memories must be small and are likely to be more



expensive than slower memories so that we will have to live with memory hier-

archies when talking about sequential algorithms for large inputs.

The general approach of this paper is to model one cache level and the main

memory by the single disk single processor variant of the external memory model

[22]. This model assumes an internal memory of size M which can access the

external memory by transferring blocks of size B. We use the word pairs \cache

line" and \memory block", \cache" and \internal memory", \main memory"

and \external memory" and \I/O" and \cache fault" as synonyms if the context

does not indicate otherwise. The only formal limitation compared to external

memory is that caches have a �xed replacement strategy. In another paper, we

show that this has relatively little in
uence on algorithm of the kind we are

considering. Nevertheless, we henceforth use the term cached memory in order

to make clear that we have a di�erent model.

Despite of the far-reaching analogy between external memory and cached

memory, a number of additional di�erences should be noted: Since the speed

gap between caches and main memory is usually smaller than the gap between

main memory and disks, we are careful to also analyze the work performed

internally. The ratio between main memory size and �rst level cache size can be

much larger than that between disk space and internal memory. Therefore, we

will prefer algorithms which use the cache as economically as possible. Finally,

we also discuss the remaining levels of the memory hierarchy but only do that

informally in order to keep the analysis focussed on the most important aspects.

In Section 2 we present the basic algorithm for our sequence heaps data

structure for priority queues

1

. The algorithm is then analyzed in Section 3 using

the external memory model. For some m in �(M), k in �(M=B), any constant


 > 0 and R = dlog

k

I

m

e � O(M=B) it can perform I insertions and up to I

deleteMins using I(2R=B + O(1=k + (log k)=m)) I/Os and I(log I + logR +

logm+O(1)) key comparisons. In another paper, we show that similar bounds

hold for cached memory with a-way associative caches if k is reduced byO(B

1=a

).

In Section 4 we present re�nements which take the other levels of the memory

hierarchy into account, ensure almost optimal memory e�ciency and where the

amortized work performed for an operation depends only on the current queue

size rather than the total number of operations. Section 5 discusses an imple-

mentation of the algorithm on several architectures and compares the results to

other priority queue data structures previously found to be e�cient in practice,

namely binary heaps and 4-ary heaps.

Related Work

External memory algorithms are a well established branch of algorithmics (e.g.

[21, 20]). The external memory heaps of Teuhola and Wegner [23] and the �sh-

spear data structure [9] need �(B) less I/Os than traditional priority queues

like binary heaps. Bu�er search trees [1] were the �rst external memory priority

1

A data structure for representing a totally ordered set which supports insertion of

elements and deletion of the minimal element.



queue to reduce the number of I/Os by another factor of �(log

M

B

) thus meeting

the lower bound of O((I=B) log

M=B

I=M) I/Os for I operations (amortized).

But using a full-
edged search tree for implementing priority queues may be

considered wasteful. The heap-like data structures by Brodal and Katajainen,

Crauser et. al. and Fadel et. al. [3, 7, 8] are more directly geared to priority queues

and achieve the same asymptotic bounds, one [3] even per operation and not in

an amortized sense. Our sequence heap is very similar. In particular, it can be

considered a simpli�cation and reengineering of the \improved array-heap" [7].

However, sequence heaps are more I/O-e�cient by a factor of about three (or

more) than [1, 3, 7, 8] and need about a factor of two less memory than [1, 7, 8].

2 The Algorithm

Merging k sorted sequences into one sorted sequence (k-way merging) is an I/O

e�cient subroutine used for sorting { both for external [14] and cached memory

[16]. The basic idea of sequence heaps is to adapt k-way merging to the related

but more dynamical problem of priority queues.

Let us start with the simple case, that at most km insertions take place where

m is the size of a bu�er which �ts into fast memory. Then the data structure

could consist of k sorted sequences of length up to m. We can use k-way merging

for deleting a batch of the m smallest elements from k sorted sequences. The

next m deletions can then be served from a bu�er in constant time.

To allow an arbitrary mix of insertions and deletions, we maintain a separate

binary heap of size up to m which holds the recently inserted elements. Deletions

have to check whether the smallest element has to come from this insertion

bu�er. When this bu�er is full, it is sorted and the resulting sequence becomes

one of sequences for the k-way merge.

Up to this point, sequence heaps and the earlier data structures [3, 7, 8] are

almost identical. Most di�erences are related to the question how to handle

more than km elements. We cannot increase m beyond M since the insertion

heap would not �t into fast memory. We cannot arbitrarily increase k since

eventually k-way merging would start to incur cache faults. Sequence heaps use

the approach to make room by merging all the k sequences producing a larger

sequence of size up to km [3, 7].

Now the question arises how to handle the larger sequences. We adopt the ap-

proach used for improved array-heaps [7] to employ R merge groups G

1

; : : : ; G

R

where G

i

holds up to k sequences of size up to mk

i�1

. When group G

i

over
ows,

all its sequences are merged and the resulting sequence is put into group G

i+1

.

Each group is equipped with a group bu�er of sizem to allow batched deletion

from the sequences. The smallest elements of these bu�ers are deleted in batches

of size m

0

� m. They are stored in the deletion Bu�er. Fig. 1 summarizes the

data structure. We now have enough information to explain how deletion works:

DeleteMin: The smallest elements of the deletion bu�er and insertion bu�er

are compared and the smaller one is deleted and returned. If this empties the

deletion bu�er, it is re�lled from the group bu�ers using an R-way merge. Before
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Fig. 1. Overview of the data structure for sequence heaps for R = 3 merge groups.

the re�ll, group bu�ers with less thanm

0

elements are re�lled from the sequences

in their group (if the group is nonempty).

DeleteMin works correctly provided the data structure ful�lls the heap prop-

erty, i.e., elements in the group bu�ers are not smaller than elements in the

deletion bu�er, and, in turn, elements in a sorted sequence are not smaller than

the elements in the respective group bu�er. Maintaining this invariant is the

main di�culty for implementing insertion:

Insert: New elements are inserted into the insert heap. When its size reaches m

its elements are sorted (e.g. using merge sort or heap sort). The result is then

merged with the concatenation of the deletion bu�er and the group bu�er 1.

The smallest resulting elements replace the deletion bu�er and group bu�er 1.

The remaining elements form a new sequence of length at most m. The new

sequence is �nally inserted into a free slot of group G

1

. If there is no free slot

initially, G

1

is emptied by merging all its sequences into a single sequence of size

at most km which is then put into G

2

. The same strategy is used recursively to

free higher level groups when necessary. When group G

R

over
ows, R is incre-

mented and a new group is created. When a sequence is moved from one group

to the other, the heap property may be violated. Therefore, when G

1

through G

i

have been emptied, the group bu�ers 1 through i+1 are merged, and put intoG

1

.

The latter measure is one of the few di�erences to the improved array heap

[7] where the invariant is maintained by merging the new sequence and the group

bu�er. This measure almost halves the number of required I/Os.



For cached memory, where the speed of internal computation matters, it s

also crucial how to implement the operation of k-way merging. We propose to

use the \loser tree" variant of the selection tree data structure described by

Knuth [14, Section 5.4.1]: When there are k

0

nonempty sequences, it consists

of a binary tree with k

0

leaves. Leaf i stores a pointer to the current element

of sequence i. The current keys of each sequence perform a tournament. The

winner is passed up the tree and the key of the loser and the index of its leaf

are stored in the inner node. The overall winner is stored in an additional node

above the root. Using this data structure, the smallest element can be identi�ed

and replaced by the next element in its sequence using dlog ke comparisons.

This is less than the heap of size k assumed in [7, 8] would require. The address

calculations and memory references are similar to those needed for binary heaps

with the noteworthy di�erence that the memory locations accessed in the loser

tree are predictable which is not the case when deleting from a binary heap.

The instruction scheduler of the compiler can place these accesses well before

the data is needed thus avoiding pipeline stalls, in particular if combined with

loop unrolling.

3 Analysis

We start with an analysis for of the number of I/Os in terms of B, the parame-

ters k, m and m

0

and an arbitrary sequence of insert and deleteMin operations

with I insertions and up to I deleteMins. We continue with the number of key

comparisons as a measure of internal work and then discuss how k, m and m

0

should be chosen for external memory and cached memory respectively. Adap-

tions for memory e�ciency and many accesses to relatively small queues are

postponed to Section 4.

We need the following observation on the minimum intervals between tree

emptying operations in several places:

Lemma 1. Group G

i

can over
ow at most every m(k

i

� 1) insertions.

Proof. The only complication is the slot in group G

1

used for invalid group

bu�ers. Nevertheless, when groups G

1

through G

i

contain k sequences each, this

can only happen if

P

R

j=1

m(k � 1)k

j�1

So = m(k

i

� 1) insertions have taken

place.

In particular, since there is room for m insertions in the insertion bu�er,

there is a very simple upper bound for the number of groups needed:

Corollary 1. R =

�

log

k

I

m

�

groups su�ce.

We analyze the number of I/Os based on the assumption that the following

information is kept in internal memory: The insert heap; the deletion bu�er; a

merge bu�er of size m; group bu�ers 1 and R; the loser tree data for groups

G

R

, G

R�1

(we assume that k(B+2) units of memory su�ce to store the blocks

of the k sequences which are currently accessed and the loser tree information



itself); a corresponding amount of space shared by the remaining R� 2 groups

and data for merging the R group bu�ers.

2

Theorem 1. If R = dlog

k

(I=m)e, 4m+m

0

+(3k+R)(B+2) < M and k(B+2) �

m�m

0

then

I

�

2R

B

+O

�

1

k

+

log k

m

��

I/Os su�ce to perform any sequence of I inserts and up to I deleteMins on

a sequence heap.

Proof. Let us �rst consider the I/Os performed for an element moving on the

following canonical data path: It is �rst inserted into the insert bu�er and then

written to a sequence in group G

1

in a batched manner, i.e, we charge 1=B I/Os

to the insertion of this element. Then it is involved in emptying groups until it

arrives in group G

R

. For each emptying operation it is involved into one batched

read and one batched write, i.e., we charge 2(R � 1)=B I/Os for tree emptying

operations. Eventually, it is read into group bu�er R. We charge 1=B I/Os for

this. All in all, we get a charge of 2R=B I/Os for each insertion.

What remains to be shown is that the remaining I/Os only contribute lower

order terms or replace I/Os done on the canonical path. When an element travels

through group G

R�1

then 2=B I/Os must be charged for writing it to group

bu�er R� 1 and later reading it when re�lling the deletion bu�er. However, the

2=B I/Os saved because the element is not moved to group G

R

can pay for this

charge. When an element travels through group bu�er i � R� 2, the additional

c � 2=B I/Os saved compared to the canonical path can also pay for the cost

of swapping loser tree data for group G

i

. The latter costs 2k(B + 2)=B I/Os

which can be divided among at least m �m

0

� k(B + 2) elements removed in

one batch.

When group bu�er i � 2 becomes invalid so that it must be merged with

other group bu�ers and put back into group G

1

, this causes a direct cost of

O(m=B) I/Os and we must charge a cost of O(im=B) I/Os because these el-

ements are thrown back O(i) steps on their path to the deletion bu�er. Al-

though an element may move through all the R groups we do not need to charge

O(Rm=B) I/Os for small i since this only means that the shortcut originally

taken by this element compared to the canonical path is missed. The remain-

ing overhead can be charged to the m(k � 1)k

j�2

insertions which have �lled

group G

i�1

. Summing over all groups, each insertions gets an additional charge

of

P

R

i=2

O(im=B)=(m(k � 1)k

j�2

) = O(1=k). Similarly, invalidations of group

bu�er 1 give a charge O(1=k) per insertion.

We need O(log k) I/Os for inserting a new sequence into the loser tree data

structure. When done for tree 1, this can be amortized over m insertions. For

tree i > 1 it can be amortized over m(k

i�1

� 1) elements by Lemma 1. For an

2

If we accept O(1=B) more I/Os per operation it would su�ce to swap between the

insertion bu�er plus a constant number of bu�er blocks and one loser tree with k

sequence bu�ers in internal memory.



element moving on the canonical path, we get an overall charge of O(log k=m)+

P

R

i=2

m(k

i�1

� 1) log k = O((log k)=m) per insertion.

Overall we get a charge of 2R=B+O(1=k+logk=m). per insertion.

We now estimate the number of key comparisons performed. We believe this

is a good measure for the internal work since in e�cient implementations of

priority queues for the comparison model, this number is close to the number

of unpredictable branch instructions (whereas loop control branches are usually

well predictable by the hardware or the compiler) and the number of key com-

parisons is also proportional to the number of memory accesses. These two types

of operations often have the largest impact on the execution time since they are

the most severe limit to instruction parallelism in a super-scalar processor. In

order to avoid notational overhead by rounding, we also assume that k and m

are powers of two and that I is divisible by mk

R�1

. A more general bound would

only be larger by a small additive term.

Theorem 2. With the assumptions from Theorem 1 at most I(log I+dlogRe+

logm+4+m

0

=m+O((log k)=k)) key comparisons are needed. For average case

inputs \logm" can be replaced by O(1).

Proof. Insertion into the insertion bu�er takes logm comparisons at worst and

O(1) comparisons on the average. Every deleteMin operation requires a com-

parison of the minimum of the insertion bu�er and the deletion bu�er. The

remaining comparisons are charged to insertions in an analogous way to the

proof of Theorem 1. Sorting the insertion bu�er (e.g. using merge sort) takes

m logm comparisons and merging the result with the deletion bu�er and group

bu�er 1 takes 2m + m

0

comparisons. Inserting the sequence into a loser tree

takes O(log k) comparisons. Emptying groups takes (R�1) log k+O(R=k) com-

parisons per element. Elements removed from the insertion bu�er take up to

2 logm comparisons. But those need not be counted since we save all further

comparisons on them. Similarly, re�lls of group bu�ers other than R have al-

ready been accounted for by our conservative estimate on group emptying cost.

Group G

R

only has degree I=(mk

R�1

) so dlog I � (R� 1) log k � logme compar-

isons per element su�ce. Using similar arguments as in the proof of Theorem 1

it can be shown that inserting sequences into the loser trees leads to a charge

of O((log k)=m) comparisons per insertion and invalidating group bu�ers costs

O((log k)=k) comparisons per insertion. Summing all the charges made yields

the bound to be proven.

For external memory one would choose m = �(M) and k = �(M=B). In

another paper we show that k should be a factor O(B

1=a

=�) smaller on a-way

associative caches in order to limit the number of cache faults to (1+�) times the

number of I/Os performed by the external memory algorithm. This requirement

together with the small size of many �rst level caches and TLBs

3

explains why

3

T ranslation Look-aside Bu�ers store the physical position of the most recently used

virtual memory pages.



we may have to live with a quite small k. This observation is the main reason

why we did not pursue the simple variant of the array heap described in [7] which

needs only a single merge group for all sequences. This merge group would have

to be about a factor R larger however.

4 Re�nements

Memory Management: A sequence heap can be implemented in a memory e�-

cient way by representing sequences in the groups as singly linked lists of memory

pages. Whenever a page runs empty, it is pushed on a stack of free pages. When

a new page needs to be allocated, it is popped from the stack. If necessary, the

stack can be maintained externally except for a single bu�er block. Using pages of

size p, the external sequences of a sequence heap with R groups and N elements

occupy at most N + kpR memory cells. Together with the measures described

above for keeping the number of groups small, this becomes N +kp log

k

N=m. A

page size of m is particularly easy to implement since this is also the size of the

group bu�ers and the insertion bu�er. As long as N = !(km) this already guar-

antees asymptotically optimal memory e�ciency, i.e., a memory requirement of

N(1 + o(1)).

Many Operations on Small Queues: Let N

i

denote the queue size before the i-th

operation is executed. In the earlier algorithms [3, 7, 8] the number of I/Os is

bounded by O(

P

i�I

log

k

N

i

=m). For certain classes of inputs,

P

i�I

log

k

N

i

=m

can be considerably less than I log

k

I=m. However, we believe that for most appli-

cations which require large queues at all, the di�erence will not be large enough

to warrant signi�cant constant factor overheads or algorithmic complications.

We have therefore chosen to give a detailed analysis of the basic algorithm �rst

and to outline an adaption yielding the re�ned asymptotic bound here: Similar

to [7], when a new sequence is to be inserted into group G

i

and there is no free

slot, we �rst look for two sequences in G

i

whose sizes sum to less than mk

i�1

elements. If found, these sequences are merged, yielding a free slot. The merging

cost can be charged to the deleteMins which caused the sequences to get so

small. Now G

i

is only emptied when it contains at least mk

i

=2 elements and

the I/Os involved can be charged to elements which have been inserted when G

i

had at least size mk

i�1

=4. Similarly, we can \tidy up" a shrinking queue: When

there are R groups and the total size of the queue falls below mk

R�1

=4, empty

group G

R

and insert the resulting sequence into group G

R�1

(if there is no free

slot in group G

R�1

merge any two of its sequences �rst).

Registers and Instruction Cache: In all realistic cases we have R � 4 groups.

Therefore, instruction cache and register �le are likely to be large enough to

e�ciently support a fast R-way merge routine for re�lling the deletion bu�er

which keeps the current keys of each stream in registers.

Second Level Cache: So far, our analysis assumes only a single cache level. Still,

if we assume this level to be the �rst level cache, the second level cache may have

some in
uence. First, note that the group bu�ers and the loser trees with their



group bu�ers are likely to �t in second level cache. The second level cache may

also be large enough to accommodate all of group G

1

reducing the costs for 2=B

I/Os per insert. We get a more interesting use for the second level cache if we

assume its bandwidth to be su�ciently high to be no bottleneck and then look

at inputs where deletions from the insertion bu�er are rare (e.g. sorting). Then

we can choose m = O(M

2

) if M

2

is the size of the second level cache. Insertions

have high locality if the logm cache lines currently accessed by them �t into �rst

level cache and no operations on deletion bu�ers and group bu�ers use random

access.

High Bandwidth Disks: When the sequence heap data structure is viewed as

a classical external memory algorithm we would simply use the main memory

size for M . But our measurements in Section 5 indicate that large binary heaps

as an insertion bu�er may be too slow to match the bandwidth of fast parallel

disk subsystems. In this case, it is better to modify a sequence heap ooptimized

for cache and main memory by using specialized external memory implementa-

tions for the larger groups. This may involve bu�ering of disk blocks, explicit

asynchronous I/O calls and perhaps prefetching code and randomization for sup-

porting parallel disks [2]. Also, the number of I/Os may be reduced by using a

larger k inside these external groups. If this degrades the performance of the

loser tree data structure too much, we can insert another heap level, i.e., split

the high degree group into several low degree groups connected together over

su�ciently large level-2 group bu�ers and another merge data structure.

Deletions of non-minimal elements can be performed by maintaining a separate

sequence heap of deleted elements. When on a deleteMin, the smallest element

of the main queue and the delete-queue coincide, both are discarded. Hereby,

insertions and deletions cost only one comparison more than before, if we charge

a delete for the costs of one insertion and two deleteMins (note that the latter

are much cheaper than an insertion). Memory overhead can be kept in bounds

by completely sorting both queues whenever the size of the queue of deleted

elements exceeds some fraction of the size of the main queue. During this sorting

operation, deleted keys are discarded. The resulting sorted sequence can be put

into group G

R

. All other sequences and and the deletion heap are empty then.

5 Implementation and Experiments

We have implemented sequence heaps as a portable C++ template class for ar-

bitrary key-value-pairs. Currently, sequences are implemented as a single array.

The performance of our sequence heap mainly stems on an e�cient implementa-

tion of the k-way merge using loser trees, special routines for 2-way, 3-way and

4-way merge and binary heaps for the insertion bu�er. The most important opti-

mizations turned out to be (roughly in this order): Making live for the compiler

easy; use of sentinels, i.e., dummy elements at the ends of sequences and heaps

which save special case tests; loop unrolling.



5.1 Choosing Competitors

When an author of a new code wants to demonstrate its usefulness experimen-

tally, great care must be taken to choose a competing code which uses one of

the best known algorithms and is at least equally well tuned. We have chosen

implicit binary heaps and aligned 4-ary heaps. In a recent study [15], these two

algorithms outperform the pointer based data structures splay tree and skew

heap by more than a factor two although the latter two performed best in an

older study [12]. Not least because we need the same code for the insertion

bu�er, binary heaps were coded perhaps even more carefully than the remaining

components { binary heaps are the only part of the code for which we took care

that the assembler code contains no unnecessary memory accesses, redundant

computations and a reasonable instruction schedule. We also use the bottom

up heuristics for deleteMin: Elements are �rst lifted up on a min-path from

the root to a leaf, the leftmost element is then put into the freed leaf and is

�nally bubbled up. Note that binary heaps with this heuristics perform only

logN + O(1) comparisons for an insertions plus a deleteMin on the average

which is close to the lower bound. So in 
at memory it should be hard to �nd a

comparison based algorithm which performs signi�cantly better for average case

inputs. For small queues our binary heaps are about a factor two faster than a

more straightforward non-recursive adaption of the textbook formulation used

by Cormen, Leiserson and Rivest [5].

Aligned 4-ary heaps have been developed at the end using the same basic

approach as for binary heaps, in particular, the bottom up heuristics is also used.

The main di�erence is that the data gets aligned to cache lines and that more

complex index computations are needed.

All source codes are available electronically under http://www.mpi-sb.mpg.

de/~sanders/programs/.

5.2 Basic Experiments

Although the programs were developed and tuned on SPARC processors, se-

quence heaps show similar behavior on all recent architectures that were avail-

able for measurements. We have run the same code on a SPARC, MIPS, Alpha

and Intel processor. It even turned out that a single parameter setting {m

0

= 32,

m = 256 and k = 128 works well for all these machines.

4

Figures 2, 3, 4 and 5

respectively show the results.

All measurements use random 32 bit integer keys and 32 bit values. For a

maximal heap size of N , the operation sequence (insert deleteMin insert)

N

(deleteMin insert deleteMin)

N

is executed. We normalize the amortized exe-

cution time per insert-deleteMin-pair { T=(6N) { by dividing by logN . Since

all algorithms have an \
at memory" execution time of c logN +O(1) for some

constant c, we would expect that the curves have a hyperbolic form and converge

4

By tuning k and m, performance improvements around 10 % are possible, e.g., for

the Ultra and the PentiumII, k = 64 are better.
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Fig. 2. Performance on a Sun Ultra-10 desktop workstation with 300 MHz Ultra-

SparcIIi processor (1st-level cache: M = 16KByte, B = 16Byte; 2nd-level cache: M =

512KByte, B = 32Byte) using Sun Workshop C++ 4.2 with options -fast -O4.
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Fig. 3. Performance on a 180 MHz MIPS R10000 processor. Compiler: CC -r10000

-n32 -mips4 -O3.
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Fig. 4. Performance on a 533 MHz DEC-Alpha-21164 processor. Compiler: g++ -O6.
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Fig. 5. Performance on a 300 MHz Intel Pentium II processor. Compiler: g++ -O6.



to a constant for large N . The values shown are averages over at least 10 trials.

(More for small inputs to avoid problems due to limited clock resolution.) In or-

der to minimize the impact of other processes and virtual memory management,

a warm-up run is made before each measurement and the programs are run on

(almost) unloaded machines.

Sequence heaps show the behavior one would expect for 
at memory { cache

faults are so rare that they do not in
uence the execution time very much. In

Section 5.4, we will see that the decrease in the \time per comparison" is not

quite so strong for other inputs.

On all machines, binary heaps are equally fast or slightly faster than se-

quence heaps for small inputs. While the heap still �ts into second level cache,

the performance remains rather stable. For even larger queues, the performance

degradation accelerates. Why is the \time per comparison" growing about lin-

early in logn? This is easy to explain. Whenever the queue size doubles, there is

another layer of the heap which does not �t into cache, contributing a constant

number of cache faults per deleteMin. For N = 2

23

, sequence heaps are between

2.1 and 3.8 times faster than binary heaps.

We consider this di�erence to be large enough to be of considerable practical

interest. Furthermore, the careful implementation of the algorithms makes it

unlikely that such a performance di�erence can be reversed by tuning or use of

a di�erent compiler.

5

(Both binary heaps and sequence heaps could be slightly

improved by replacing index arithmetics by arithmetics with address o�sets.

This would save a single register-to-register shift instruction per comparison

and is likely to have little e�ect on super-scalar machines.) Furthermore, the

satisfactory performance of binary heaps on small inputs shows that for large

inputs, most of the time is spent on memory access overhead and coding details

have little in
uence on this.

5.3 4-ary Heaps

The measurements in �gures 2 through 5 largely agree with the most important

observation of LaMarca and Ladner [15]: since the number of cache faults is about

halved compared to binary heaps, 4-ary heaps have a more robust behavior for

large queues. Still, sequence heaps are another factor between 2:5 and 2:9 faster

for very large heaps since they reduce the number of cache faults even more.

However, the relative performance of our binary heaps and 4-ary heaps seems to

be a more complicated issue than in [15]. Although this is not the main concern

of this paper we would like to o�er an explanation:

Although the bottom up heuristics improves both binary heaps and 4-ary

heaps, binary heaps pro�t much more. Now, binary heaps need less instead of

more comparisons than 4-ary heaps. Concerning other instruction counts, 4-ary

5

For example, in older studies, heaps and loser trees may have looked bad compared

to pointer based data structures if the compiler generates integer division operations

for halving an index or integer multiplications for array indexing.



heaps only save on memory write instructions while they need more complicated

index computations.

Apparently, on the Alpha which has the highest clock speed of the machines

considered, the saved write instructions shorten the critical path while the index

computations can be done in parallel to slow memory accesses (spill code).

On the other machines, the balance turns into the other direction. In partic-

ular, the Intel architecture lacks the necessary number of registers so that the

compiler has to generate a large number of additional memory accesses. Even

for very large queues, this handicap is never made up for.

The most confusing e�ect is the jump in the execution time of 4-ary heaps on

the SPARC for N > 2

20

. Nothing like this is observed on the other machines and

this e�ect is hard to explain by cache e�ects alone since the input size is already

well beyond the size of the second level cache. We suspect some problems with

virtual address translation which also haunted the binary heaps in an earlier

version.

5.4 Long Operation Sequences

Our worst case analysis predicts a certain performance degradation if the number

of insertions I is much larger than the size of the heap N . However, in Fig. 6 it

can be seen that the contrary can be true for random keys.
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Fig. 6. Performance of sequence heaps using the same setup as in Fig. 2

but using di�erent operation sequences: (insert (deleteMin insert)

s

)

N

(deleteMin (insert deleteMin)

s

)

N

for s 2 f0; 1; 4; 16g. For s = 0 we essen-

tially get heap-sort with some overhead for maintaining useless group and deletion

bu�ers. In Fig. 2 we used s = 1.



For a family of instances with I = 33N where the heap grows and shrinks

very slowly, we are almost two times faster than for I = N . The reason is that

new elements tend to be smaller than most old elements (the smallest of the old

elements have long been removed before). Therefore, many elements never make

it into group G

1

let alone the groups for larger sequences. Since most work is

performed while emptying groups, this work is saved. A similar locality e�ect has

been observed and analyzed for the Fishspear data structure [9]. Binary heaps or

4-ary heaps do not have this property. (They even seem to get slightly slower.)

For s = 0 this locality e�ect cannot work. So that these instances should come

close to the worst case.

6 Discussion

Sequence heaps may currently be the fastest available data structure for large

comparison based priority queues both in cached and external memory. This is

particularly true, if the queue elements are small and if we do not need dele-

tion of arbitrary elements or decreasing keys. Our implementation approach, in

particular k-way merging with loser trees can also be useful to speed up sorting

algorithms in cached memory.

In the other cases, sequence heaps still look promising but we need experi-

ments encompassing a wider range of algorithms and usage patterns to decide

which algorithm is best. For example, for monotonic queues with integer keys,

radix heaps look promising. Either in a simpli�ed, average case e�cient form

known as calendar queues [4] or by adapting external memory radix heaps [6] to

cached memory in order to reduce cache faults.

We have outlined how the algorithm can be adapted to multiple levels of

memory and parallel disks. On a shared memory multiprocessor, it should also be

possible to achieve some moderate speedup by parallelization (e.g. one processor

for the insertion and deletion bu�er and one for each group when re�lling group

bu�ers; all processors collectively work on emptying groups).
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