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Abstract

High performance applications involving large data sets require the e�cient and

exible use of multiple disks. In an external memory machine with D parallel, in-

dependent disks, only one block can be accessed on each disk in one I/O step. This

restriction leads to a load balancing problem that is perhaps the main inhibitor for the

e�cient adaptation of single-disk external memory algorithms to multiple disks. We

solve this problem provably e�ciently using the following approach: A bu�er of O(D)

blocks su�ces to support e�cient writing of arbitrary blocks if blocks are distributed

uniformly at random to the disks (e.g., by hashing). If two randomly allocated copies

of each block exist, N arbitrary blocks can be read within dN=De + 1 I/O steps with

high probability. The redundancy can be further reduced from 2 to 1 + 1=r for any

integer r. From the point of view of external memory models, these results rehabili-

tate Aggarwal and Vitter's \single-disk multi-head" model [1] that allows access to D

arbitrary blocks in each I/O step. This powerful model can be emulated on the physi-

cally more realistic independent disk model [42] with small constant overhead factors.

Parallel disk external memory algorithms can therefore be developed in the multi-head

model �rst. The emulation result can then be applied directly or further re�nements

can be added.

1 Introduction

Despite of ever larger internal memories, even larger data sets arise in important applica-

tions like video-on-demand, data mining, electronic libraries, geographic information sys-

tems, computer graphics, or scienti�c computing. Often, no size limits are in sight. In this

context, it is necessary to e�ciently use multiple disks in parallel in order to achieve high

bandwidth.

This situation can be modelled using the one processor version of Vitter and Shriver's

parallel disk model : A processor with M words of internal memory is connected to D disks.

In one I/O step, each disk can read or write one block of B words. For simplicity, we also

assume that I/O steps are either pure read steps or pure write steps (Section 6.1 gives a

more detailed discussion).
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E�cient single-disk external memory algorithms are available for a wide spectrum of

applications (e.g. [41]), yet parallel disk versions are not always easy to derive. We face two

main tasks: �rstly to expose enough parallelism so that at least D blocks can be processed

concurrently and secondly to ensure that the blocks to be accessed are evenly distributed

over the disks. In the worst case, load imbalance can completely spoil parallelism increasing

the number of I/O steps by a factor of D. This paper solves the load balancing problem by

placing blocks randomly, and, in the case of reading, by using redundancy.

1.1 Summary of Results

In Section 2, we use queuing theory, Cherno� bounds and the concept of negative association

[16] to show that writing can be made e�cient if a pool of W = O(D=�) blocks of internal

memory are reserved to support D write queues. This su�ces to admit (1� �)D new blocks

to the write queues during nearly every write step. Subsequent read requests to blocks that

have not yet been written, can be served from the write queues. Furthermore, experiments

indicate that if we simply admit D blocks every time step only every 2W=D steps we need

to invest an additional wait step on the average.

Since our model assumes separate read and write steps, we can analyze these two issues

separately. Scheduling read accesses is more di�cult since a parallel read has to wait until

all requested blocks have been read. In Section 3, we investigate random duplicate allocation

(RDA). Similar to mirroring which is often used in practice to achieve fault tolerance, RDA

uses two copies of each logical block but these copies are allocated to random disks. Which

of the two copies is to be read is optimally scheduled using maximum ow computations.

We show that N blocks can be retrieved using dN=De + 1 parallel read steps with high

probability (whp). Certain values for N which are not multiples of D yield even higher

e�ciency. Furthermore, in Section 4 we explain why the optimal schedules can be found

faster than the worst-case bounds of maximum ow algorithms would suggest.

In Section 5 we generalize RDA. Instead of writing two copies of each logical block, we

split the logical block into r sub-blocks and produce an additional parity sub-block that is the

exclusive-or of these sub-blocks. These r+1 sub-blocks are then randomly placed as before.

When reading a logical block, it su�ces to retrieve any r out of the r + 1 pieces|a missing

sub-block is always the exclusive-or of the retrieved sub-blocks. We allow mixed workloads

with di�erent degrees of redundancy. Much of the analysis also goes through as before. At

the price of increasing the logical block size by a factor of r, we reduce the redundancy of

RDA from 2 to 1 + 1=r.

Our techniques for reading and writing can be joined to a quite far-reaching result, namely

that Aggarwal and Vitter's multi-head disk model [1] that allows access toD arbitrary blocks

in each I/O step, can be e�ciently emulated on the independent disk model [42]. In Sec-

tion 6, we summarize how this can be exploited and adapted to yield improved parallel disk

algorithms for many \classical" external memory algorithms for sorting, data structures and

computational geometry, as well as for newer applications like video-on-demand or interac-

tive computer graphics. We also outline a further generalization of RDA which allows more

fault tolerance.
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1.2 Related Work

The predominant general technique to deal with parallel disks in practice is striping [34, 31].

In our terminology this means using logical blocks of size DB, which are split into D sub-

blocks of size B|one for each disk. This yields a perfect load balance but is only e�ective if

the application can make use of huge block sizes. For example, at currently realistic values of

D = 64 and B = 256 KByte we would get logical blocks of 16 MByte. Since many external

memory algorithms work best if thousands of I/O streams with separate bu�er blocks are

used, prohibitive internal memory requirements would result. Refer to [24] for a detailed

discussion and simulation results.

Reducing access contention by random placement is a well-known technique. For example,

Barve et al. [6] use it for a simple parallel disk sorting algorithm. However, in order to access

N blocks in (1+ �)N=D steps, N must be at least 
 ((D=�

2

) logD). If N = �(D), some disk

will have to access �(logD= log logD) blocks. Apparently, it has not been proven before

that in the case of writing, a small bu�er solves this problem.

Our results are also interesting from a more abstract point of view independent of the

external memory model. Load balancing when two randomly chosen locations of load units

are available has been studied using several models. Azar et al. [4] show that an optimal

symmetric online strategy commits each arriving request to the least loaded unit. Berenbrink

et al. [7] recently analyzed this algorithm for the general case N 6= D and showed that the

maximum load is L

max

= N=D + log lnD + �(1). V�ocking [43] showed that for N = D,

an asymmetric variant is better by a small constant factor and is optimal among all online

strategies up to an additive constant. An obvious question is how much better we can do if

we allow o�ine scheduling. The best previously known bounds for o�ine algorithms were

L

max

= O(N=D) which is worse than the online strategy for N = !(D log logD). Refer to

Section 4.4 for a discussion of some of these techniques which have the advantage to �nd

schedules in linear time. Our result yields an optimal o�ine strategy and shows that the

gap between the online algorithm and an optimal o�ine strategy is �(log logD).

For PRAM simulation, fast parallel scheduling algorithms have been developed even

earlier [22]. PRAM simulation using a 3-collision protocol achieves maximum load O(1) for

N = D using O(log logD) iterations [27, Section 3]. This already works for O((logD)

3

)-

universal classes of hash functions. Similar results hold for allocation strategies with lower

redundancy such as the ones we describe in Section 5.

Heuristic load balancing algorithms using redundant storage are used by a number of

authors in multimedia applications [38, 39, 24, 28]. Even the idea of a parity sub-block

built out of r data sub-blocks has been used by several researchers [8, 9]. The �rst optimal

scheduling algorithm for RDA was presented in [24]. This and other papers give convincing

experimental evidence that RDA is a good policy yet no closed form results were known

which prove that the same is true for systems of arbitrary size or which explain why RDA

is so good. Our results close this gap. We prove the optimality of the scheduling algorithm,

generalize it to parity encoding, analyze the quality achieved, and speed up the scheduling

algorithm.
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2 Queued Writing

This section shows that a fraction of 1� � of the peak bandwidth for writing can be reached

by making W = O(D=�) blocks of internal memory available to bu�er write requests. This

holds for any access pattern (Theorem 1), assuming that logical blocks are mapped to disks

with a random hash function

1

. The bu�er consists of queues Q

1

; : : : ; Q

D

, one for each disk.

Initially, all queues are empty. Then the application invokes the procedure write shown in

Figure 1 to write up to (1� �)D blocks.

Procedure write((1� �)D blocks):

append blocks to Q

1

; : : : ; Q

D

;

write-to-disks(Q

1

; : : : ; Q

D

);

while jQ

1

j+ � � �+ jQ

D

j > W do

write-to-disks(Q

1

; : : : ; Q

D

).

Figure 1: Queued Writing.

After each invocation of write, the queues consume at most W internal memory.

2

The

procedure write-to-disks stores all �rst blocks of the non-empty queues onto the disks in

parallel. Note that read requests to blocks pending in the queues can be serviced directly

from internal memory.

3

Section 2.1 proves the following statement which represents the main result on writing,

namely that a global bu�er size W which is linear in D su�ces to ensure that on the

average, a call of the write procedure incurs only about one I/O step. The theoretical

treatement is complemented by experimental �ndings in Section 2.2 which suggest even

better performance.

Theorem 1 Consider W = (ln(2) + �)D=� for some � > 0 and let n

(t)

be the number of

calls to write-to-disks during the t-th invocation of write after the new blocks have been

appended. Then En

(t)

� 1 + e

�
(D)

:

1

The hash function h maps block number i, starting at external memory address iB, to disk h(i). The

assumption that the hash function behaves like a true random function is quite similar to the usual assumption

of randomized algorithms that the pseudo-random number generators used in practice produces true random

numbers and the same assumption seems to be quite common in other works relying on hash function like

PRAM emulation. However, in our case we can do even better. We could simply use a RAM resident

directory with random entries for each block. This is possible since we need only a few bytes of RAM for

a disk block with hundreds of kilobytes. The additional hardware cost for this RAM is negligible in many

practical situations.

2

During the execution of write more than W blocks may reside in the queues. The additional memory

is borrowed from the block bu�ers handed over by the calling application program.

3

If one insists on �nding the result of the entire computation in the external memory, then the queues

have to be ushed at the very end of the program. However, this e�ort can be amortized over the en-

tire computation, and using Lemma 2 it is easy to show that max(Q

(t)

1

; : : : ;Q

(t)

D

) = O

�

logD

�

�

with high

probability.
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2.1 Analysis

The idea behind the analysis: By reducing the arrival rate to 1� � we can bound the queues

by the stationary distribution of a queuing system with batched arrivals. This means that

the while-loop is entered infrequently (Lemma 3) for a suitably chosen W . As the �rst step,

we derive the expected queue length and a Cherno�-type tail bound for one queue.

Lemma 2 Let Q

(t)

i

be the length of Q

i

at the t-th invocation of write. Then EQ

(t)

i

� 1=(2�)

and

P

h

Q

(t)

i

> q

i

< 2e

��q

for all q > 0.

Proof: Clearly, the queues can only become shorter if the while-loop is entered. Hence,

it is su�cient for an upper bound on the queue length to consider the case where W is so

large that this never happens.

Let X

(t)

i

denote the number of blocks that are appended to Q

i

at the t-th invocation

of write. Then, X

(1)

i

;X

(2)

i

; : : : are independent B((1 � �)D; 1=D) binomially distributed

random variables. We describe the queue Q

i

together with its input X

(1)

i

;X

(2)

i

; : : : as a

queueing system with batched arrivals. In particular, one block can leave per time unit and

a B((1 � �)D; 1=D)-distributed number of blocks arrives per time unit. We �rst derive the

probability generating function (pgf) of Q

i

for the stationary state by adapting the derivation

from [30, Section 12-2] to the case of batched arrivals. Let G

t

(z) be the pgf of Q

(t)

i

. Then,

G

0

(z) = 1 and for all t 2 f0; 1; : : :g

G

t+1

(z) =

�

z

�1

G

t

(z) + (1� z

�1

)G

t

(0)

�

�H(z)

where H(z) = (z=D + 1� 1=D)

(1��)D

is the binomial pgf of X

(t)

i

. Since the average rate of

arrival is 1 � � and the rate of departure is 1, a stationary state exists. In the stationary

state G

t+1

= G

t

and by normalizing G(1) = 1 we �nd the stationary pgf

G(z) =

(1� z)�

1� zH(z)

�1

:

We now show that the stationary distribution is an upper bound on the distribution of Q

(t)

i

for all t in the sense

P

h

Q

(t)

i

> q

i

� P [Q

1

i

> q] for all q > 0,

where Q

(1)

i

is aG-distributed random variable describing the steady state. To see the bound,

consider two queues processing identical input but with di�erent initial length. Then in any

step, the di�erence in length either remains the same or gets reduced by one. This continues

until (possibly) the lengths become equal for the �rst time and from then on the queues

coincide for all time because they process the same input.

Thus, EQ

(t)

i

� EQ

(1)

i

= G

0

(1) and

G

0

(1) =

1

2�

�

1� � +D�

2

2D�

�

1

2�

:
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For the tail bound, note that ln(1 + x) < x for x > 0 implies lnH(e

�

) < (1� �)(e

�

� 1).

Thus

G(e

�

) <

�(1� e

�

)

1� exp(�� (1� �)(e

�

� 1))

< 2:

The tail bound follows from the general tail inequality P

h

Q

(1)

i

> q

i

< G(e

�

)e

��q

for all q > 0

(from [20, Exercise 8.12a]).

Based on Lemma 2 we give an upper bound on the probability that the while-loop is

entered for a given limit W = qD of internal memory.

Lemma 3 Let Q

(t)

= Q

(t)

1

+ � � �+Q

(t)

D

with Q

(t)

i

as in Lemma 2. Then EQ

(t)

� D=(2�) and

P

�

Q

(t)

> qD

�

< e

�(�q�ln 2)D

for all q > 0.

Proof: The technical problem here is that Q

(t)

1

; : : : ;Q

(t)

D

are not independent. However,

the variables are negatively associated (NA) in the sense of [16, De�nition 3]

4

as we will now

show.

De�ne the indicator variable B

(t)

i;k

= 1 if the k-th request of the t-th invocation of write

is placed in Q

i

and B

(t)

i;k

= 0 otherwise. Then [16, Proposition 12] states that all B

(t)

i;k

are

NA. Furthermore, Q

(t)

i

is a non-decreasing function of all B

(t

0

)

i;k

for all k and all t

0

� t, since

adding a request to Q

i

can only increase the queue length in the future. In this situation,

[16, Proposition 8 (2.)] implies that Q

(t)

1

; : : : ;Q

(t)

D

are NA.

Now we can use Cherno�'s method to derive the tail bound. Consider Markov's inequality

P

�

Q

(t)

> W

�

= P

h

e

�Q

(t)

> e

�W

i

< e

��W

Ee

�Q

(t)

:

Using the negative association

Ee

�Q

(t)

= Ee

�

P

i

Q

(t)

i

�

Y

i

Ee

�Q

(t)

i

=

�

Ee

�Q

(t)

1

�

D

:

Since Ee

�Q

(t)

1

= G(e

�

) < 2 (proof of Lemma 2) the tail bound follows. The bound on

the expected value follows directly from Lemma 2 and the linearity of the expected value.

We are now ready to prove Theorem 1, the main result of this section.

4

For every two disjoint subsets of fQ

(t)

1

; : : : ;Q

(t)

D

g, A and B, and all functions f : R

jAj

! R and

g : R

jBj

! R which are both nondecreasing or both nonincreasing,

E [f(A)g(A)] � E [f(A)]E [g(A)]:
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Proof: Write-to-disks is called at least once during the t-th invocation of write. Lemma 3,

with W=D = q = (ln(2) + �)=�, gives the probability that the body of the while-loop is en-

tered

p = P

�

Q

(t)

> W

�

� e

�(�W=D�ln(2))D

= e

��D

:

Even in the worst case after W +D iterations all queues must be empty. Thus, the expected

number of calls to write-to-disks is

En

(t)

� 1 + p � (W +D) = 1 +O

�

D

�

�

e

��D

which is bounded by 1+e

�
(D)

.

2.2 Experiments

The above closed form results leave open the behavior for small D and W . We now �ll this

gap using simulation. Furthermore, there are a number of practical re�nements which we

want to investigate.

Average Case Performance

For non-real time algorithms we are interested in achieving a large average throughput and

do not care if we sometimes have to wait to get rid of blocks to be written. In this case,

we can set � = 0 and admit all blocks to the queue whenever possible. Figure 2 shows the

overhead for a limited bu�er size W for di�erent values of D and W=D. The overhead is one

minus the e�ciency N=t, i.e., the ratio between the number of blocks DN actually written

and the theoretical peak performance of Dt blocks in t steps. In every iteration, D new

blocks are passed to the routine write above. In order to measure the steady state behavior

of the system, we �rst run it without counting until more than one call to write-to-disks

is needed for the �rst time. Then write is called N = 10

6

times with D more blocks and

the number t of calls to write-to-disks is counted.

These results can be interpreted beyond the qualitative observation that high e�ciency is

reached even for quite small bu�ers like W = 2D. First, it should be noted that for small D,

performance is even better than for large D. Except for smallW , the number of disks hardly

matters. This justi�es our asymptotic approach for analyzing the average performance.

Furthermore, a very simple rule for the relation between bu�er size and e�ciency suggests

itself. Namely, the e�ciency seems to approach 1 �

D

2W

(Note the logarithmic scale in

Figure 2). This formula was not found by curve �tting but using an analogy to our theoretical

analysis. Namely, if we allow (1 �

D

2W

)D blocks per call of write using unlimited bu�ers,

Lemma 2 tells us that we get an expected total queue length of W . So, our eager scheme

that allows D blocks every time and a worst case memory use of W has similar but slighly

better performance than a scheme which admits less blocks, has unlimited worst case bu�er

space, and the same average memory use. To test this hypothesis, we performed further

simulations. Since we were already quite convinced thatD has little inuence except for small

D, we �xed D = 256 and only increased the range of measured bu�er sizes. Between W=D =

7
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Figure 2: Overhead (i.e., 1�e�ciency) of queued writing to D disks using a global queue of

size W and no admission control (� = 0).

12 and W=D = 32 the di�erence between the measured e�ciency and the approximation

1�

D

2W

decreases from 0:001 to 0:0003. The simulations and the heuristic connection to our

theoretical results lead us to formulate the following conjecture:

Conjecture 4 Queued writing with � = 0 and bu�er size W achieves average e�ciency at

least 1�

D

2W

.

Even higher e�ciency can be reached if we additionally exploit that the disks usually

have local caches. The topmost curve in Figure 2 shows the e�ect of an additional cache for

up to 4 blocks. It should be noted however that local cache alone is less e�ective than global

cache. With global cache W = 4D and D = 256 the e�ciency is already 89 % whereas the

same amount of memory completely invested in local caches yields only an e�ciency of 50 %.

High Probability Performance Guarantees

For real time operation, we are less interested in the average throughput than in the prob-

ability to miss deadlines. For example, assume we want to save video data from a camera.

Then on bu�er overow we may loose some picture frames so that we are interested in the

probability that this happens. In this case, our approach to limit the number of blocks

admitted per time step to (1� �)D is also useful in practice.

How should � be choosen? Below � =

D

2W

Lemma 2 predicts that the expected total

queue size approaches W and therefore bu�er overows will be frequent. On the other hand,

there are good reasons to believe that Theorem 1 can be strengthened to prove that the total

8
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Figure 3: The largest value for � such that in 10

6

calls to write, passing (1 � �)D blocks

each, none needs more than one call of write-to-disks.

queue size is sharply concentrated around

D

2�

so that an � close to

D

2W

should do. Whether

this hypothesis is warranted and what \slightly larger" actually means is the subject of the

following experiment. Figure 3 shows the minimum � needed so that 10

6

subsequent calls

to write need only call of write-to-disks each. As before, counting is started when the

bu�er is almost full. Only for small D do we need to choose � signi�cantly smaller than

D=(2W ) to achieve a single-step write with high probability.

3 Random Duplicate Allocation

In this section, we investigate reading a batch of N logical blocks from D disks. There are

copies of block i on disks u

i

and v

i

. The batch is described by the undirected allocation

multigraph G

a

= (f1::Dg; (fu

1

; v

1

g; : : : ; fu

N

; v

N

g)) |there can be multiple edges between

two nodes. As in Section 2, logical blocks are mapped to the disks with a hash function

assumed to be random. The logical block starting at external memory address kB is mapped

to the disks h(2k) and h(2k + 1) using the hash function h.

5

Therefore, G

a

is a random

multigraph with D nodes and N edges chosen independently and uniformly at random.

A schedule for the batch is a directed version G

s

of G

a

. (The directed edge (u

i

; v

i

) means

that block i is read from disk u

i

.) The load L

u

(G

s

) of a node u is the outdegree of u in the

5

We can additionally make sure that the two copies are always mapped to di�erent disks. A re�ned

analysis then yields a probability bound O(1=D)

2b+1

in a strengthened version of Theorem 5. For the sake

of simplicity, we do not go into this.

9



schedule G

s

. (We omit \(G

s

)" when it is clear from the context which schedule is meant.)

The maximum load L

max

(G

s

) := max(L

1

(G

s

); : : : ; L

D

(G

s

)) gives the number of read steps

needed to execute the schedule. A schedule G

s

for G

a

is called optimal if there is no schedule

G

0

s

with L

max

(G

0

s

); L

max

(G

s

). The load of an optimal schedule is denoted L

�

max

.

The main result of this section is the following theorem, which is proven in Section 3.2.

Theorem 5 Consider a batch of N randomly and duplicately allocated blocks to be read from

D disks. Then, abbreviating b = dN=De, L

max

� b+1 with probability at least 1�O(1=D)

b+1

.

Note that Lemma 7 below also provides more accurate bounds for small D and N that can

be evaluated numerically. A corresponding lower bound which shows that L

max

= N=D is

impossible is given in Section 3.4.

A di�culty in establishing Theorem 5 is that optimal schedules are complicated to analyze

directly using probabilistic arguments because their structure is determined by a complicated

scheduling algorithm. Therefore, we �rst give a characterization of optimal schedules in terms

of the allocation graph G

a

. Since this characterization is of completely combinatorial nature,

and has nothing to to with the randomness of the allocation graph we have separated it out

into Section 3.1.

In Section 3.3, we explain how an optimal schedule can be found in polynomial time

using a small number of maximum ow computations. Section 4 will then show why optimal

schedules can be found even faster than the worst case bounds for maximum ow algorithms

might suggest. Section 3.5 evaluates the scheduling quality experimentally.

3.1 Unavoidable Loads

Consider a subset � of disks and de�ne the unavoidable load L

�

as the number of blocks

that have both copies allocated on a disk in � (for a given batch of requests). The following

Theorem characterizes L

�

max

in terms of the unavoidable load.

Theorem 6 ([36]) L

�

max

= max

;6=��f1::Dg

�

L

�

j�j

�

:

The proof has been previously given by Schoenmaker [36, Theorem 1] who used the theorem

for a di�erent application. For self-containedness and as a warm-up for more complicated

arguments yet to come, we nevertheless state a short proof here:

Proof: \�": For any �, a schedule fetches at least L

�

blocks from the disks in �. Hence,

there must be at least one disk u 2 � with load L

u

� dL

�

=j�je.

\�": It remains to show that there is always a subset � with dL

�

= j�je � L

�

max

witnessing

that L

�

max

cannot be improved. Consider an optimal schedule G

s

, which has no directed paths

of the form (v; : : : ; w) with L

v

= L

�

max

and L

w

� L

�

max

� 2. Such a schedule always exists,

since in schedules with such paths, the number of maximally loaded nodes can be decreased

by moving one unit of load from v to w by reversing the direction of all edges on the path.

Choose a node v with load L

�

max

and let � denote the set containing v and all nodes to

which a directed path from v exists. Using this construction, all edges leaving a node in �

also have their target in � so that the unavoidable load L

�

is simply

P

u2�

L

u

. By de�nition

10



of G

s

and v, we get L

�

� 1 + j�j (L

�

max

� 1), i.e., L

�

= j�j � 1= j�j+ L

�

max

� 1. Taking the

ceiling on both sides yields

l

L

�

j�j

m

�

l

1

j�j

+ L

�

max

� 1

m

= L

�

max

as desired.

3.2 Proof of Theorem 5

It should �rst be noted that, without loss of generality, we can assume that N is a multiple

of D, i.e., b = dN=De = N=D, since it only makes the scheduling problem more di�cult if

we add D dN=De �N dummy blocks to the batch.

The starting point of our proof is the following simple probabilistic upper bound on the

maximum load of optimal schedules, which is based on Theorem 6.

Lemma 7 P [L

�

max

> b+ 1] �

D

X

d=1

�

D

d

�

P

d

where P

d

:= P [L

�

� d(b + 1) + 1] for a subset � of size d.

6

Proof: By the principle of inclusion-exclusion and Theorem 6 it su�ces to count the

number of subsets of size d,

�

D

d

�

, multiply this with P

d

and add over all possible set sizes d.

Lemma 7 is useful because L

�

only depends on the allocation graph G

a

and is binomially

B(bD; d

2

=D

2

) distributed for j�j = d.

We use an optimally accurate Cherno� bound for the tail of the binomial distribution in

order to bound P

d

, the probability to overload a given set of disks of size d. Throughout this

section let p := d=D.

Lemma 8 For any x > EL

�

,

P [L

�

� x] �

�

Np

2

x

�

x

�

1� p

2

1� x=N

�

N�x

:

Proof: De�ne the independent identically distributed 0-1 random variables X

i

that take

the value one if both copies of block i are allocated to �. We have L

�

=

P

i

X

i

and

P [X

i

= 1] = p

2

. For this type of sum, Cherno�'s technique can be applied without any

approximations beyond using Markov's inequality [26, Lemma 2.2].

7

P

�

L

�

� (p

2

+ t)N

�

�

 

�

p

2

p

2

+ t

�

p

2

+t

�

1� p

2

1� p

2

� t

�

1�p

2

�t

!

N

:

6

Note that this bound already yields an e�cient way to estimate P [L

�

max

> b+ 1] numerically since the

cumulative distribution function of the binomial distribution can be e�ciently evaluated by using a continued

fraction development of the incomplete Beta-function [33, Section 6.4]. Furthermore, most summands will

be very small so that is su�ces to use simple upper bounds on

�

D

d

�

P

d

for them. Overall, we view it as likely

that P [L

�

max

> b+ 1] can be well approximated in time O(D) yielding a more accurate and faster bound

than our simulation results from [24].

7

Several more well-known simpler forms do not su�ce for our purposes.
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Solving (p

2

+ t)N = x for t yields t = x=N � p

2

. Substituting this value into the above

equations yields the desired bound after straigtforward simpli�cations.

The technically most challenging part is to further bound the resulting expressions to

obtain easy to interpret asymptotic estimates. We do this by splitting the summation over

d into three partial sums for d � D=8 (Lemma 9 with � = 1=8), D=8 < d < Db=(b + 1)

(Lemma 10) and

P

d�Db=(b+1)

�

D

d

�

P

d

which is simply zero.

Lemma 9 For any constant � < e

�2

,

X

d��D

�

D

d

�

P

d

= O(1=D)

b+1

Proof: Lemma 16 proves a bound for small � which we can apply in its simplest form

(setting � = 0) to see that

�

D

d

�

P

d

�

�

d

D

�

db+1

e

d(b+1)+1

:

Viewing this bound as a function f(d) of d, it can be veri�ed that f

00

(d) � 0 (di�erentiate,

remove obviously growing factors and di�erentiate again). Therefore, f assumes its maxi-

mum over any positive interval at one of the borders of that interval. We get

P

d��D

�

D

d

�

P

d

� f(1) + �Dmax ff(2); f(�D)g.

f(1) = D

�b�1

e

b+2

= e(e=D)

b+1

= O(1=D)

b+1

�Df(2) = �D(2=D)

2b+1

e

2b+3

= O(1=D)

2b

�Df(�D) = �D�

�Db+1

e

�D(b+1)+1

= O(D) e

�D(b(1+ln �)+1)

= e

�
(D)

if � < e

�2

.

All these values are in O(1=D)

b+1

.

When j�j is at least a constant fraction of D, P

d

actually decreases exponentially with

D.

Lemma 10

X

D

8

<d<

Db

b+1

�

D

d

�

P

d

= O

�

p

D � 0:9

D

�

:

Proof: Remembering that p = d=D and N = bD we get

d(b+ 1) + 1 � d(b+ 1) = pD(b+ 1)

and using Lemma 8 we get

P

d

�

�

bDp

2

pD(b+1)

�

pD(b+1)

�

1�p

2

1�

pD(b+1)

bD

�

bD�pD(b+1)

=

�

�

bp

b+1

�

p(b+1)

�

1�p

2

1�p�p=b

�

b�p(b+1)

�

D

:

12



0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8
p

0.9
0.45

B1(p)
B2(p)
B3(p)
B4(p)
fp(5)

Figure 4: Behavior of B

b

(p) for small b.

Note that D only appears as an exponent now.

�

D

d

�

=

�

D

pD

�

can be brought into a similar

form. Using the Stirling approximation (e.g. [44]) it can be seen that

�

D

pD

�

= O

�

q

D

pD(D�pD)

�

D

pD

�

pD

�

D

D�pD

�

D�pD

�

= O

�

q

1

Dpq

(p

�p

q

�q

)

D

�

= O

�

q

1

D

(p

�p

q

�q

)

D

�

for 1=8 < p < b=(b + 1).

Since we are summing O(D) terms it remains to show that

B

b

(p) :=

�

bp

b+1

�

p(b+1)

�

1�p

2

1�p�p=b

�

b�p(b+1)

p

p

q

q

� 0:9

for all 1=8 < p < b=(b+1). For �xed b, this is easy. B

b

(p) is a smooth function and the open

right border of the interval is no problem since lim

p!b=(b+1)

B

b

(p) = (b=(b+1))

2b

2

=(b+1)

< 0:9.

Essentially, for �xed b, the proof can be done \by inspection".

Figure 4 shows the plots of the function B

b

(p) for b 2 f1; 2; 3; 4g. One can make such

an argument more rigorous using interval arithmetic computations (e.g. [21]). For b � 5 we

exploit that p

�p

q

�q

� 2 so that it also su�ces to show that

f

p

(b) :=

�

pb

b+1

�

p(b+1)

�

1�p

2

1�p�p=b

�

b�p(b+1)

� 0:45 :

In Figure 4 it can be seen that this relation holds for b = 5 and Lemma 18 (setting � = 0)

implies that for a larger b the maximum of f

p

(b) can only decrease.

3.3 Finding Optimal Schedules

We can e�ciently �nd an optimal schedule by transforming the problem into a sequence of

maximum ow computations: Suppose we have a schedule G

s

= (V;E) for a given batch G

a

,

13



and we try to �nd an improved schedule G

0

s

with L

max

(G

0

s

) = L

0

< L

max

(G

s

). Then, consider

the ow network N = ((V [ fs; tg ; E

+

); c; s; t) where E

+

= E [ f(s; v) : L

v

(G

s

) > L

0

g [

f(u; t) : L

u

(G

s

) < L

0

g. Edges (u; v) stemming from E have unit ow capacity c(u; v) = 1;

c(s; v) = L

v

(G

s

) � L

0

for (s; v) 2 E

+

; c(u; t) = L

0

� L

u

(G

s

) for (u; t) 2 E

+

. s and t are

arti�cial source and sink nodes, respectively. The edges leaving the source indicate how

much load should ow away from an overloaded node. Edges into the sink indicate how

much additional load can be accepted by underloaded nodes.

If an integral maximum ow through N saturates the edges leaving s, we can construct a

new schedule G

0

s

with L

max

(G

0

s

) = L

0

by ipping all edges inG

s

that carry ow. Furthermore,

if the edges leaving s are not saturated, L

max

cannot be reduced to L

0

:

Lemma 11 If a maximum ow in N does not saturate all edges leaving s, then L

�

max

> L

0

.

Proof: It su�ces to identify a subset � with unavoidable load L

�

> L

0

j�j. Consider a

minimal s-t-cut (S; T ). De�ne � := S � fsg. Since not all edges leaving s are saturated,

� is nonempty. Let c

s

:=

P

(s;v)2E

0

c(s; v) denote the capacity of the edges leaving s and

let c

ST

:=

P

f(u;v):u2S;v2Tg

c(u; v) denote the capacity of the cut. The unavoidable load of

� is L

�

= L

0

j�j + c

s

� c

ST

(by de�nition of the ow network). By the max-ow min-cut

Theorem, c

ST

is identical to the maximum ow. By construction we get c

s

> c

ST

. Therefore,

L

�

> L

0

j�j and by Theorem 6, L

�

max

> L

0

.

An optimal schedule can now be found using binary search in at most logN steps and

much less if a good heuristic initialization scheme is used [24]. Moreover, Theorem 5 shows

that the optimal solution is almost always dN=De or dN=De+1 so that we only need to try

these two values for L

0

most of the time.

3.4 A Lower Bound

We have seen that maximum load L

max

= dN=De + 1 is almost always possible. A natural

question is whether perfect balance L

max

= dN=De can also be achieved perhaps using a

di�erent strategy. The following Theorem answers this question negatively for small integer

N=D even for average case problems and if we allow more redundancy.

Theorem 12 Assume that w copies of each of U logical blocks have been placed on D disks.

De�ne a positive integer b �

lnD

3w

Then for su�ciently large U , an access to a subset of bD

logical blocks choosen uniformly at random needs L

�

max

� b + 1 read steps with probability

1�O(1=D) regardless of how the blocks have been placed.

Proof: (Outline) Let w

i

=D denote the fraction of the logical blocks which are present on

disk i with at least one copy and note that

P

i

w

i

� wD. Now consider a set of requested

logical blocks choosen uniformly at random without replacement. We show that with high

probability at least one disk i

0

holds no copy of any of the requested blocks so that the set

� = f1; : : : ; Dg n fi

0

g is overloaded.

14



Let X

i

denote the number of blocks which could be served by disk i. We have

P [X

i

= 0] =

Y

j<bD

�

1�

w

i

U=D

U � j

�

�

Y

j<bD

�

1�

w

i

U

D(U � bD)

�

=

�

1�

w

i

U

D(U � bD)

�

bD

� e

�w

i

b

as U ! 1 and for su�ciently large D. Let X denote the number of disks without usable

blocks. We have

EX :=

X

i

P [X

i

= 0] �

X

i

e

�w

i

b

� De

�wb

Where the latter estimate can be obtained by minimizing the function g(w

1

; : : : ; w

D

) =

P

i

e

�w

i

b

under the constraint

P

i

w

i

� wD using calculus.

Now we use the method of bounded di�erences [17, Theorem 4.18] to show that X is

su�ciently sharply concentrated around its mean to make it improbable that all X

i

are

nonzero. We view X as a function f of the bD random variables denoting the requested

blocks. Fixing one of these variables changes EX by at most w. We get

P [X < 1] = P

�

X < EX � (De

�wb

� 1)

�

� exp

�

�

(De

�wb

� 1)

2

2bDw

2

�

� exp

�

�

e

�wb

(De

�wb

� 2)

2bw

2

�

� exp

 

�

D

1

3

� 2D

�

1

3

2

3

w lnD

!

= O(1=D) :

The last \�" uses e

�wb

� e

�w ln(D)=(3w)

= D

�1=3

and De

�wb

� 2 � 0 for D � 5 and b �

ln(D)=(3w). The last \=" makes use of the fact that 1 � b � ln(D)=(3w) and hence

w � ln(D)=3.

3.5 Experiments

Similar to the case of queued writing, it is of practical interest to augment the asymptotic

analysis for RDA with concrete numbers for small D. We can do that using a combination

of simulation and numerical evaluation of the tail bound from Lemma 7. Simulation quickly

yields approximations for the average performance and estimates for not-so-small failure

probabilities. On the other hand, the tail bound makes it possible to estimate large deviations

which would be very expensive to approximate using simulation. Figure 5 shows the overhead

(one minus e�ciency) of RDA for D = 16 and D = 64 based on expected performance and

high probability performance.

It can be seen that average performance does not grow monotonically with N=D but

achieves local optima shortly before N becomes divisible by D. So, if an application has

some freedom regarding the number of blocks to be submitted for a parallel read request,

it can be wise to submit less blocks than maximally possible. The curves for the average

performance exhibit little dependence on D.

8

To get high probability guarantees for good

8

For smallD the average performance is slightly better mainly because we use the practically more logical

strategy to place blocks on di�erent disks. High probability guarentees are easier to obtain for large D. This

is not astonishing since the failure probability depends on D.

15



0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8

ov
er

he
ad

D=16, b=N/D

failure rate 10-6

average

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8

ov
er

he
ad

D=64, b=N/D

failure rate 10-6

average
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of RDA with N blocks to be retrieved.
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Figure 6: Failure probabilities of RDA with N blocks to be retrieved. Probabilities exceeding

0.01 are estimated using simulation. Smaller probabilities use the tail bound from Lemma 7.
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performance other choices for N=D can be useful. In particular, bad average performance

means that there will usually be just a few disks with load L

max

. But this also means that

it is quite improbable that there are any disks with even more load. Using Figure 6 this

behavior can be studied in more detail. For D = 64 the failure rates are already so low that

in most cases a hardware failure is much more probable than a request set which is di�cult

to schedule. For D = 16, we can achieve similarly low failure rates if N=D is large enough

or if we are willing to accept a load of dN=De+ 2.

We have also made experiments regarding the question when perfect balance L

max

= N=D

for integer N=D is achievable. It looks like for N � D d2:3 logDe perfect balance can be

achieved in 90 % of all cases.

4 Fast Scheduling

For very large D, the worst-case bounds for maximum ow computations (


�

D

3=2

�

, [18])

might become too expensive, since eventually, the scheduling time exceeds the access time.

9

Therefore, we will now explain, why slightly modi�ed maximum ow algorithms can actually

�nd a schedule with L

max

= dN=De+1 e�ciently with high probability. In Section 4.4 even

faster linear time approximations are discussed.

Theorem 13 Given a batch of N = �(D) blocks.

10

Let b = dN=De and de�ne a constant

0 < � � 1=5. A schedule with L

max

= b + 1 can then be found in time O(D logD) with

probability 1�O(1=D)

b+1��

.

11

The proof is executed similarly to Section 3 and starts with graph theoretic arguments

in Section 4.1, continues with a probabilistic analysis in Section 4.2 and only then considers

algorithmic questions in Section 4.3.

The general idea is based on the observation that maximum ow algorithms essentially

compute optimal schedules by removing all paths from overloaded to underloaded nodes.

We call such paths augmenting paths following the tradition in ow computations. The key

observation is that it is actually su�cient to perform ow augmentations that remove all

augmenting paths of logarithmic length. Why is this su�cient? Consider a schedule without

augmenting paths of length � c logD. Assume L

max

> b + 1 and let v denote a disk with

load L

v

� b+2. Section 4.1 establishes that then there must also exist a set of disks � with

L

�

> j�j (b + 1 � �). We then prove that such a subset is unlikely to exist for a random

allocation graphG

a

. This requires a slightly strengthened version of the probabilistic analysis

done in Section 3.2. Finally, in Section 4.3 we explain how maximum ow algorithms can be

adapted to �nd augmenting paths of logarithmic length very e�ciently. In particular, even

a simple preow-push algorithm solves the task in O(D logD) steps.

9

In our small prototype server with eight disks scheduling time is still negligible however.

10

The assumption N = �(D) is for technical convenience only. Note that it encompasses the most

interesting case.

11

Using more careful rounding in lemmata 14 and 16, even sharper probabilistic bounds can be obtained

because it turns out that we do not need to take small overloaded sets into account.
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4.1 Unavoidable Loads

Our key argument is a counterpart to Theorem 6:

Lemma 14 Consider a schedule graph G

s

= (f1::Dg ; E), any disk v with load L

v

and a

parameter  2 (0; 1). If there is no directed path (v; : : : ; u) from v to a disk u with L

u

� L

v

�2

and a path length j(v; : : : ; u)j � log

1+

D + 1, then there must be a subset � of disks with

unavoidable load L

�

> j�j (1� )(L

v

� 1).

Proof: Consider the neighborhoods of v reached by i steps of breadth �rst search: �

0

:= fvg

and �

i+1

:= �

i

[fu : 9w 2 �

i

j 9(w; u) 2 Eg. Let j := min fi : j�

i+1

j < (1 + ) j�

i

jg denote

the �rst neighborhood that grows by a factor less then 1+. We have D � j�j � (1+)

j

and

hence j � log

1+

D. Let �

0

:= �

j+1

��

j

and let

�

� denote the set of disks in �

0

that have at

least L

v

incoming edges from �

j

. We argue that � := �

j

[

�

� has L

�

> j�j (1� )(L

v

� 1).

By assumption, the disks in �

j

have total load exceeding j�

j

j (L

v

� 1). Load can only be

moved out of � over at most

�

�

�

0

�

�

�

�

�

(L

v

�1) edges leaving �, i.e., � has unavoidable load

L

�

> j�

j

j (L

v

� 1)�

�

�

�

0

�

�

�

�

�

(L

v

� 1)

= (j�

j

j+

�

� �

�

�

�

� j�

0

j)(L

v

� 1)

= (j�j � j�

0

j)(L

v

� 1)

� (j�j �  j�

j

j)(L

v

� 1)

� j�j (1� )(L

v

� 1)

We proceed as follows: Set  =

�

b+1

. Set up a maximum ow problem for the algorithm

from Section 3.3 with target maximum load L

0

= b+ 1. Now run a modi�ed maximum ow

algorithm, which stops when no augmenting paths of length log

1+

D+1 � 1+(b+1) log(D)=�

exist.

When the ow is computed, a schedule G

s

is derived from it as described in Section 3.3.

If the ow saturates the source node, we have a maximum ow and L

0

= b + 1 as desired.

Otherwise, there must be a node with load at least b + 2 and Lemma 14 tells us that there

must also be set of disks � with unavoidable load L

�

> j�j (b + 1� �).

4.2 Proof of Theorem 13

Let us introduce the abbreviations b

�

:= b+1�� and P

�

d

:= P [L

�

� db

�

+ 1] for a subset � of

size d. Analogous to Lemma 7 and its proof, we have to prove that

P

D

d=1

�

D

d

�

P

�

d

= O(1=D)

b

�

.

In principle, we could replace Section 3.2 by the simple remark that it is the special case

� = 0 of the present analysis. However, this would reduce the accessibility of the basic

result for � = 0, which is perhaps more important than the re�nement presented here. We

therefore choose the following compromise between understandability and low redundancy:

The less interesting technical lemmata are proven for the general case. The main line of

argument for the proof is done in detail for the case � = 0 in Section 3.2. This has the
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additional advantage to yield more favourable constant factors inside the analysis. Here, we

only outline the necessary modi�cations.

As before, the sum

P

�

D

d

�

P

�

d

is split into three parts. Now, small � are between 0 and

bD=16c. P

�

d

disappears for very large � with at least

b

b

�

disks.

4.2.1 Small �

Lemma 15

P

d�D=16

�

D

d

�

P

d

= O(1=D)

b

�

The proof is very similar to the proof of Lemma 9 and can be found in Appendix A.1. It is

based on the following bound which we prove here in detail since it is also needed for the

proof of Lemma 9.

Lemma 16 For any 0 � � < 1, and b

�

= (b + 1� �)

�

D

d

�

P [L

�

� db

�

+ 1] �

�

d

D

�

d(b��)+1

e

d(b+1)+1

:

Proof: First, we estimate

�

D

d

�

�

�

De

d

�

d

=

�

D

d

�

d

e

d

using the Stirling approximation. Now, setting x = db

�

+ 1, p = d=D, N = bD in Lemma 8,

we get P [L

�

� db

�

+ 1] � f � g where

f =

�

bd

2

=D

db

�

+ 1

�

db

�

+1

and g =

 

1� d

2

=D

2

1�

db

�

+1

bD

!

bD�db

�

�1

:

We have

f �

�

bd

Db

�

�

db

�

+1

=

�

d

D

�

db

�

+1

�

b

b

�

�

db

�

+1

�

�

d

D

�

db

�

+1

�

b

b

�

�

db

�

�

�

d

D

�

db

�

+1

e

�d(1��)

where the last estimate stems from the relation

�

b

b

�

�

b

�

=

�

1�

1� �

b

�

�

b

�

� e

�(1��)

:

Since 1� d

2

=D

2

= (1 + d=D)(1� d=D), we can write the second factor, g, as g = g

1

� g

2

where

g

1

=

�

1 +

d

D

�

bD�db

�

�1

�

�

1 +

d

D

�

bD

� e

bd

and

g

2

=

 

1�

d

D

1�

db

�

+1

bD

!

bD�db

�

�1

=

�

1 +

db

�

� db+ 1

bD � db

�

� 1

�

bD�db

�

�1

� e

db

�

�db+1

:
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Multiplying the bounds for

�

D

d

�

, f , g

1

, and g

2

yields

�

D

d

�

P [L

�

� d(b+ 1� �) + 1] �

�

D

d

�

d

e

d

�

d

D

�

db

�

+1

e

�d(1��)

e

bd

e

db

�

�db+1

=

�

d

D

�

d(b+1��)�d

e

d�d(1��)+bd+d(b+1��)�db+1

=

�

d

D

�

d(b��)+1

e

d(b+1)+1

:

4.2.2 Larger �

Lemma 17 For � � 1=5,

X

D=16<d<Db=b

�

�

D

d

�

P

�

d

= e

�
(D)

.

Proof: Using an analogous argument as in the proof of Lemma 10 we can see that it su�ces

to evaluate

B

b

(p) :=

�

bp

b

�

�

pb

�

�

1�p

2

1�p�

p(1��)

b

�

b�pb

�

p

�p

q

�q

< 1 :

on the interval [

1

16

;

b

b

�

). Since

@

@�

B

b

(p) � 0 it su�ces to consider the case � = 1=5. Figure 9

shows the plots for b � 4. For b = 5, we even have

f

p

(b) :=

�

bp

b

�

�

pb

�

 

1� p

2

1� p�

p(1��)

b

!

b�pb

�

< 0:5;

and Lemma 18 shows that the maximum of f

p

(b) can only decrease for larger b.

Lemma 18 Given constants 0 < � � 1=2 and 0 � � < 1 and the abbreviation b

�

= (b+1��),

consider the function

f

p

(b) :=

�

bp

b

�

�

pb

�

 

1� p

2

1� p�

p(1��)

b

!

b�pb

�

:

Then, sup

��p<b=b

�

f

p

(b) is decreasing for integer b � 5.

Proof: Consider any b > 5 and any p where f

p

(b) is maximized. Such a value must exist

in the interior of [�p; b=b

�

) since lim

p!b=b

�

@

@p

f

p

(b) = �1.

Case p � (b�2)=b: In Lemma 24 it is shown that f

p

(b) is non-increasing for p � (b�1)=(b+1).

In particular, it can only decrease on the interval [b� 1; b].

Case p > (b� 2)=b: We make the substitution p :=

b��

b

�

, i.e., � = b� pb

�

and the condition

p > (b� 2)=b becomes � < 1 + �+

2(1+�)

b

� 4. In Lemma 25 it is shown that

g

�

(b) := f

p

(b)

�

p 

b� �

b

�

�
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is non-increasing for its range of de�nition b � �. In particular, for b � 5 and � � 5, g

�

(b) is

de�ned and non-increasing on the interval [b� 1; b]. We get

f

p

(b) = g

b�p(b+1��)

(b) � g

b�p(b+1��)

(b� 1)

= f

(b�1)�(b�p(b+1��))

(b�1)+1��

(b� 1) = f

p�(1�p)=(b��)

(b� 1)

since p�(1�p)=(b��) � 1=2 for b � 5, � � 1, and p > (b�2)=b � 3=5.

The technical lemmata 24 and 25 are proven in Appendix A.2.

4.3 Maximum Flow with Short Augmenting Paths

What remains to be done to establish Theorem 13 is to explain how all augmenting paths of

logarithmic length can be removed in time O(N logD) time where N = O(D) is the number

of edges of the allocation graph.

To explain why ow computations can be easier if only augmenting paths of logarithmic

length need to be considered we start with a simple example. Dinic' algorithm [15] removes

all augmenting paths of length i in the i-th iteration. Each iteration computes a blocking

ow. Even a simple backtracking implementation of the blocking ow routine can do that

in time O(iN) so that the time for the O(logD) �rst iterations is O

�

N log

2

D

�

. Note that

the same simplistic implementation needs O(D

3

) steps for unconstrained maximum ows.

We can prove an even better bound for preow-push algorithms by additionally exploiting

that we are essentially dealing with a unit capacity ow problem. This `essentially' can be

made precise by transforming the ow problem as formulated in Section 3.3 into a problem

with only unit capacity edges: Replacing an edge (s; v) or (u; t) with integer capacity c by c

parallel unit capacity edges. For target load L

0

= O(N=D), the number of additional edges

will be in O(N).

Since detailed treatments of the preow push algorithm are standard textbook mate-

rial [12, 2], we only sketch the changes needed for our analysis: A preow push algorithm

maintains a preow, which respects the capacity constraints of the ow network but relaxes

the ow conservation constraints. Nodes with excess ow are called active. The di�erence

between the original ow network and the preow is the residual network that de�nes which

edges are still able to carry ow. The algorithm also maintains a height H(v) which is a

lower bound for the distance of a node v to the sink node t, i.e. the minimum number of

residual edges needed to connect v to t. Units of ow can be pushed downward from active

nodes. Active nodes that lack downward residual edges can be lifted.

In the standard preow push algorithm, H(s) is initialized to D to make sure that ow

can only return to the source if no path to the sink is left. If we are only interested in

augmenting paths of length at most H

max

, we can initialize H(s) to H

max

. The standard

analysis of preow-push is straightforward to adapt so that it takes the additional parameter

H

max

into account. It turns out that the number of lift operations is bounded by 2DH

max

and

the number of saturating push operations is bounded by NH

max

. Furthermore, the algorithm

can be implemented to spend only constant time per push operation and a total ofO(NH

max

)

operations in other operations. The most di�cult part in the analysis of general preow-

push algorithms, namely bounding the number of nonsaturating push operations, is simple
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here. Since there are only unit capacity edges, no nonsaturating pushes occur. Alltogether,

preow push can be implemented to run in time O(NH

max

) for unit capacity ow networks.

Since N = O(D) and H

max

= O(logD) in our case, we get the desired O(D logD) bound.

4.4 Linear Time Approximation.

Azar et al. [5] give a construction that achieves maximum load 10 for N = D. This is

mainly of theoretical interest but they attribute a method that achieves maximum load 2 for

N � 1:6D to Frieze. A similar result is described in more detail by Czumaj and Stemann

in the full paper [13, Section 7] using a result by Pittel, Spencer, and Wormald on \k-

cores" [32]. For N � 1:67D it is unlikely that there is any 3-core, i.e., a subset of nodes

of G

a

which induces a subgraph with minimum degree 3. Therefore, an algorithm which

repeatedly removes nodes v with minimal degree by committing all its incident requests to

v will yield a schedule with maximum load 2 whp.

By splitting the input into dN=1:67e subbatches one gets a schedule with maximum load

2 dN=1:67e in linear time. A further improvement is possible by using subbatches of size up

to 2:57D. Using similar arguments as before it can be shown that those can be scheduled

with maximum load 3, yielding a slightly better load balance. One should not apply the

algorithm to larger subbatches however since it then deteriorates, approaching a maximum

load of 2N=D for N � D logD.

5 Reducing Redundancy

We model this more general storage scheme already outlined in the introduction in analogy

to RDA: The allocation of r+1 sub-blocks of a logical block is coded into a hyperedge e 2 E

of a hypergraph H

a

= (f1::Dg; E) connecting the r + 1 nodes (disks), to which sub-blocks

have been allocated. Both e and E are multisets. A schedule is a directed version of this

hypergraph H

s

, where each hyperedge points to the disk which need not access the sub-block.

RDA is the special case where all hyperedges connect exactly two nodes. Note that not all

edges need to connect the same number of nodes. On a general purpose server, di�erent

�les might use di�erent trade-o�s between storage overhead and logical block size. A logical

block without redundancy can be modeled by an edge without an outgoing connection.

The unavoidable load of a subset of disks � is the di�erence between the number of

times an element of � appears in an edge and the number of incident edges. Formally,

L

�

:=

P

e2E

j� \ fegj � jfe 2 E : � \ E 6= ;gj. With these de�nitions, Theorem 6 can

be adapted to hypergraphs and the proof can be copied almost verbatim. Maximum ow

algorithms for ordinary graphs can be applied by coding the hypergraph into a bipartite

graph in the obvious way. Lemma 11 is also easy to generalize.

The most di�cult part is again the probabilistic analysis. We would like to generalize

Theorem 5 for arbitrary r. Indeed, we have no analysis yet which holds for all values of r

and N=D. Yet, in Section 5.1, we outline an analysis which can be applied for any �xed

r (we do that for r � 10) and yields the desired bound for su�ciently large N=D but still

for all D. This already su�ces to analyze a concrete application in a scalable way, and to
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Figure 7: Behavior of B

b2

(p) for b � 2 and B

b4

(p) for b � 14.

establish a general emulation result between the multi-head model and independent disks.

This result is summarized by the following lemma:

Lemma 19 For given b = N=D and r, let

B

br

(p) : [

1

14r

;

rb

rb+ 1

)! R; B

br

(p) =

(q

R

+

(pT+q)

R

�q

R

T

)

b

T

p(br+1)

p

p

q

q

where R := r + 1, q = 1 � p, and T =

q

p

�

1+Rp

qr�p=b

. If B

br

< 1 in its range of de�nition, then

L

max

� dbre + 1 with probability at least 1�O(1=D)

br+1

.

Using a simple trick, we can study the behavior of B

br

(p) for �xed r and arbitrarily large

b. We simply substitute y  1=b and plot the resulting twodimensional function g

r

(y; p).

Using this approach, Figure 7 shows the behavior of B

b2

(p) and B

b4

(p) for values of b which

are large enough to ensure a value less than one. The following table gives the smallest b

which ensures that B

br

< 1 for r 2 f2; : : : ; 10g.

r 2 3 4 5 6 7 8 9 10

b 2 6 14 24 38 56 77 101 130

Section 5.2 provides simulation result which indicate that even smaller N=D work well.

5.1 Proof of Lemma 19

Let �, d = j�j, p = d=D be de�ned as in Section 3 and introduce the abbreviations q := 1�p,

R := r + 1 and P

d

:= P [L

�

� d(rb+ 1) + 1] for a subset � of size d. The structure of the
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analysis is analogous to the proof of Theorem 5. Lemma 7 still applies. As before, if X

i

denotes the unavoidable load incurred by logical block i, we have L

�

=

P

N

i=1

X

i

. However,

for r � 2, the X

i

are not 0-1 random variables and L

�

is not binomially distributed. Instead

X

i

has the shifted binomial distribution max f0;B(R; d=D)� 1g. Fortunately, the X

i

are

independent and we can use Cherno�'s technique to develop a tail bound for L

�

:

Lemma 20 For any x � E [L

�

] and any T � 1, P [L

�

> x] �

(q

R

+

(pT+q)

R

�q

R

T

)

N

T

x

:

Proof: We have P [L

�

> x] = P

�

T

L

�

> T

x

�

and hence, using Markov's inequality, P [L

�

> x] �

E [T

L

�

]=T

x

. By de�nition of L

�

, E [T

L

�

] = E [T

P

i

X

i

] = E [

Q

i

T

X

i

] = E [T

X

1

]

N

. Using the

binomial theorem, it is easy to evaluate E [T

X

i

] = q

R

+((pT+q)

R

�q

R

)=T .

For greater exibility, we have left the parameter T unspeci�ed. (There seems to be no

closed form optimal choice for T and general r.) Still, by picking an appropriate T , we can

use Lemma 20 in a similar way as we used Lemma 8 in the proof for r = 1.

We split the sum from Lemma 7 into the intervals

�

0::

D

14r

	

, f

D

14r

::

Drb

rb+1

g and

�

Drb

rb+1

::D

	

where the last interval contributes only zero summands.

Appendix A.3 proves the following generalization of Lemma 9 by setting T = 1 +

1

rp

in

the Cherno� bound from Lemma 20.

Lemma 21 For r � 2,

X

d�D=(14r)

�

D

d

�

P

d

= O(1=D)

br+1

.

Concerning larger � we argue similarly to Lemma 10 that for r � 2,

X

D=(14r)<d<Db=(rb+1)

�

D

d

�

P

d

= e

�
(D)

: (1)

However, this only holds for su�cienly large b depending on r. Furthermore, we only know

how to show this analytically if r and b are �xed. Still, the result holds for all D, and by

evaluating a two-dimensional function we will come very close to a proof for arbitrarily large

b and �xed r.

We start the computation by setting

T =

q

p

�

N + x

rN � x

=

q

p

�

1 +Rp

qr � p=b

where N = bD and x = pD(rb+ 1) < pD(rb+ 1) + 1. Lemma 20 then yields

P

d

< P [L

�

> x] <

 

(q

R

+

(pT+q)

R

�q

R

T

)

b

T

p(br+1)

!

D

:

Since T does not depend on D, Relation (1) can be established by showing that

B

br

(p) :=

(q

R

+

(pT+q)

R

�q

R

T

)

b

T

p(br+1)

p

p

q

q
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is bounded by some constant

^

B < 1 for 1=(14r) � p <

rb

rb+1

. The factor 1=(p

p

q

q

) stems from

the Stirling approximation of the binomial coe�cient (refer to the proof of Lemma 10 for

details).

5.2 Experiments

Figure 8 compares the e�ciency of the r out of r+ 1 coding scheme for r = 1 (RDA), r = 4

and r = 8, always using D = 64. The abscissa uses the scale rN=D so that all the points

with the same abscissa involve the the same number of subblocks per disk. For r = 4 and N

divisible by D the performance is quite close to the performance of RDA. However, choosing

a \clever" value for N shows less dramatic performance improvement than for RDA. For

r = 8, we always need somewhat larger batches of inputs for good performance.

The measured performance of the r out of r+1 scheme is signi�cantly better than can be

proven using the upper bounds. For example, we have performed simulations with D = 64

and di�erent values for r and b = N=D to �nd out when the average L

�

max

goes down to

rb + 1 in order to compare this to the analytical performance guarantees. For r = 4, b = 4

su�ces whereas the theoretical bound requires b = 14. For r = 8, b = 16 su�ces and the

theoretical bound requires b = 77.
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Figure 8: Average overhead (logarithmic scale) 1 � rN=L

�

max

of the r out for r + 1 scheme

with N blocks to be retrieved.
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6 Applications and Re�nements

Whereas sections 2 and 3 treat queued writing and reading with RDA as two independent

techniques, we combine them into a general result on emulating multi-headed disks in Sec-

tion 6.1. Further re�nements that combine advantages of randomization and striping are

outlined in Section 6.2. Then we give some examples of how our results can be used to

improve the known bounds for external memory problems. Applications for multimedia are

singled out in Section 6.4, since they served as a \breeding ground" for the algorithms de-

scribed here. In Section 6.5 we explain how the coding scheme can be further generalized to

allow reconstruction of a logical block from r out of w � r subblocks using Maximum Dis-

tance Separable codes [25, 19]. This allows more exible tradeo�s between low redundancy

and high fault tolerance.

6.1 Emulating Multi-Headed Disks

Let us compare the independent disk model and the concurrent access multi-headed disk

model under the simplifying assumption that I/O steps are either read steps or write steps.

De�nition 22 Let MHDM-I-O

D;B;M

(i; o) denote the set of problems

12

solvable on a D-

head disk with block size B and internal memory of size M using i parallel read steps and

o parallel write steps. Let IPDM-I-O

D;B;M

(i; o) denote the corresponding set of problems

solvable with D independent single headed disks with expected complexity i and o assuming

the availability of a random hash function.

Using queued writing (Theorem 1) and RDA (Theorem 5), we can immediately conclude:

Corollary 23 For any 0 < � < 1 and b 2 N,

MHDM-I-O

bD;B;M

(i; o) � IPDM-I-O

D;B;M+O(D=�+bD)

(i

0

; o

0

)

where i

0

= i � (b + 1) +O(i=D) and o

0

= o � 2(b=(1� �) + e

�
(D)

).

Aggarwal and Vitter's original multi-head model [1] allows read and write operation to

be mixed in one I/O step. By bu�ering write operations this more general model could

be emulated on the above MHDM-model with an additional slowdown factor of at most

two. However, nobody prevents us from mixing reads and writes in the emulation. The

write queues can even be used to saturate underloaded disks during reading. We have only

avoided considering mixed reading and writing to keep the analysis simple.

The parity encoding from Section 5 can be used to reduce the overhead for write oper-

ations from two to 1 + 1=r at the price of increasing the logical (emulated) block size by a

factor of r.

12

In a complexity theoretic sense.
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6.2 Re�ned Allocation Strategies

It may be argued that striping, i.e., allocating logical block i to disk i mod D is more e�cient

than random placement for applications accessing only few, long data streams, since striping

achieves perfect load balance in this case. We can get the best of both worlds by generalizing

randomized striping [6, 23, 38], where long sequences of blocks are striped using a random

disk for the �rst block.

We propose to allocate short strips of D consecutive blocks in a round robin fashion.

A hash function h is only applied to the start of the strip: Block i is allocated to disk

(h(i div D) + i mod D) + 1. This placement policy has the property that two arbitrary

physical blocks i

0

and j

0

are either placed on random independent disks or on di�erent disks,

and similar properties hold for any subset of blocks. In the case of redundant allocation,

each copy is striped independently.

Writing can be made more e�cient if we replace the hash function by a directory that

maps logical blocks to disks. We can then dynamically remap blocks. In particular, we can

write exactly D blocks in a single parallel write step by generating a random permutation of

the disk indices, and mapping the blocks to be written to these disks. Note that, in practice,

the additional hardware cost for a directory is relatively small, because a block on a disk is

much more expensive than a directory entry in RAM.

6.3 External Memory Algorithms

We �rst consider the classical problem of sorting N keys, since many problems can be

solved externally using sorting as a subroutine [41]. Perhaps the best algorithm for both

a single disk and a parallel multi-head disk is multi-way merge sort. This algorithm can

be implemented using about 2

N

DB

log

M=B

N

M

I/Os [23]. Ingenious deterministic algorithms

have been developed that adapt multi-way merging to independent disks [29]. Since the

known deterministic algorithms increase the number of I/Os by a considerable factor, Barve

et al. [6] have developed a more practical algorithm based on randomized striping, which

also achieves O

�

N

DB

log

M=B

N

M

�

I/Os if M = 
 (D logD). Our general emulation result does

not have this restriction and achieves 2(1 +

1

r

+ �)

N

DB

log


(M=B)

N

M

for � > DB=M . Further

practical improvements are possible using prefetching, randomized striping and mixing of

input and output steps.

Using randomized striping and the fact that queued writing does not require redundant

allocation, we can even avoid redundant storage. We use distribution sort [41, Section 2.1]

and select k = min(�

M

B

; �

N

M

) partitioning elements fs

0

, s

1

, : : : , s

k�1

, s

k

g for appropriate

constants � and �. The partitioning elements are found by sorting a random sample of size

K = �(k log(N=M)) and then choosing s

i

as the element with rank iK=k in the sample.

The input sequence is read using striping and all elements are classi�ed into k buckets such

that bucket j contains all elements x with s

j�1

� x < s

j

. The buckets are �les organized

by randomized striping without redundancy. This can be done using

N

BD

read steps and

N

BD(1��)

write steps using queued writing for some small positive constant � determined by

the memory available for the write bu�er. Since the buckets are again striped, we can apply

the algorithm recursively to each bucket. Using Cherno� bounds it can be shown that all

buckets will have about the same size (e.g. [10]) and hence log


(M=B)

N

M

levels of recursion are
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su�cient. Overall, we get

2N

DB(1��)

log


(M=B)

N

M

I/Os plus the overhead for retrieving samples.

Our choice of k makes sure that for log

M

B

�

M

B

the latter overhead is small compared to

the I/Os needed for classi�cation. This is the case whenever M � B.

E�cient external memory algorithms for more complicated problems than sorting, have

so far mainly been developed for the single disk case. However, many of them are easily

adapted to the multi-head model so that our emulation result yields randomized algorithms

for parallel independent disks, which need a factor �(D) fewer I/O steps than using one disk.

The batched geometric problems mentioned in [41] (orthogonal range queries, line segment

intersection, 3D convex hulls, triangulation of point sets, point location, etc.) can even be

handled without redundancy using randomized striping and queued writing. The same is

true for many data structure problems, e.g., bu�er trees [3].

Despite some overhead for redundancy, algorithms based on reading from multiple sources

can still be the best choice. For example, although bu�er trees yield an asymptotically

optimal algorithm for priority queues, specialized algorithms based on multi-way merging

can be a large constant factor faster [35]. A �fty percent overhead for duplicate writing is

not an issue in this case.

Parallel algorithms are a productive source of external memory algorithms. Several re-

searchers give frameworks for emulating PRAM algorithms [11] or BSP algorithms [37, 14] on

the external memory. Using Corollary 23 these result extends to parallel disks. Some graph

problems like list ranking can be solved e�ciently using emulation of parallel algorithms.

6.4 Interactive Multimedia

In video-on-demand applications, almost all I/O steps concern reading. Hence, the disad-

vantage of RDA of having to write two copies of each block is of little signi�cance to these

applications. In addition, if many users have to be serviced simultaneously by a video-on-

demand server, then disk bandwidth, rather than disk storage space tends to be the limiting

resource. In that case, the duplicate storage of RDA need not imply that more disks are

required for storage. Otherwise, the redundancy can be reduced as shown in Section 5. Also

bear in mind, that similar kinds of redundancy (mirroring, parity blocks) are even needed

in current systems to ensure fault tolerance.

Similar properties hold for interactive graphics applications [28]. In these applications

it is very important to be able to handle arbitrary access patterns while at the same time

to realize small response times. In this respect, RDA clearly outperforms striping and also

random allocation without redundancy.

6.5 More General Encodings

The parallel disk system (the redundant storage strategy together with the protocol to read

and write) can be seen as a communication system in the sense of Shannon. The channel is

represented by the read-protocol which deliberately introduces erasures in order to be able

to balance the load on the disks. Another possible source of erasures is disk failure.

Consider the following mechanism: Each block is split into k equally sized parts to which

another n � k redundant parts are added as linear combinations of the �rst k parts. The
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linear combinations are described by an [n; k; d] error correcting block code with minimum

distance d = n� k + 1. Such a code is called maximum distance separable (MDS).

13

MDS

codes are optimal in the sense that the original block can be reconstructed from any set of

at least k parts. The use of MDS-codes for fault tolerance has been investigated for example

in [19].

All storage strategies mentioned in this article are special cases of binary MDS encoding:

Striping uses the [D;D; 1] trivial code where D is the number of disks, RDA uses the [2; 1; 2]

repetition code and \r-out-of-(r + 1)" uses the [r + 1; r; 2] parity check code. In fact, it is

known that the only existing binary MDS codes are the [n; n; 1] trivial, [n; n � 1; 2] parity

and [n; 1; n] repetition codes (from [40, Corollary 1]). Over larger alphabets, however, other

MDS codes exists such as Reed-Solomon codes. By the choice of an appropriate MDS code

one can protect against disk failure (as in [19]), even against failure of multiple disks, and

guarantee e�cient load balancing at the same time.
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A Proof Details

A.1 Proof of Lemma 15

Proof: Lemma 16 is now applied in its full generality. Setting

f(d) :=

�

d

D

�

d(b��)+1

e

d(b+1)+1

;

we can see that f

00

(d) is positive as before if d � 3 and � � 1=2, so that it su�ces to consider

values at the boundary of the interval [3; D=16]. We get

P

d��D

�

D

d

�

P

�

d

� f(1) + f(2) +

�Dmax ff(3); f(�D)g.

f(1) = (1=D)

b

�

e

b+2

= e

1+�

(e=D)

b

�

= O(1=D)

b

�

. Similarly,

f(2) = (2=D)

2(b��)+1

e

2b+3

= O(1=D)

2(b��)+1

�Df(3) = �D(3=D)

3(b��)

e

3b+4

= O(1=D)

3(b��)

�Df(�D) = �D�

�D(b��)+1

e

�D(b+1)+1

= O(D) e

�D((b��) ln�+b+1)

= e

�
(D)

if � < e

�2=(1��)

.

All these values are in O(1=D)

b

�

for � < 1=5 and � < 1=16.
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A.2 Auxiliary Lemmata for the Proof of Lemma 17
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Figure 9: Behavior of B

b

(p) for � =

1

5

and small b.

Lemma 24 For p <

b�1

b+1

and any 0 � � < 1,

f

b

(p) =

�

bp

b

�

�

pb

�

 

1� p

2

1� p�

p(1��)

b

!

b�pb

�

is non-increasing.

Proof: Consider the derivative of f

p

(b),

f

0

p

(b) = f

p

(b)

�

p ln

�

bp

b

�

�

+ (1�p) ln

�

1�p

2

1�p�

p(1��)

b

��

:

Since f

p

(b) is positive, we have to verify that

l

b

(p) := p ln

�

bp

b

�

�

+ (1�p) ln

�

1�p

2

1�p�

p(1��)

b

�

� 0

for p �

b�1

b+1

. However, since

@

@�

l

b

(p) � 0 for p < b=b

�

, it su�ces to consider the case � = 0

within the rest of this proof.

Lets �rst consider extreme values of p: We have l

b

(0) = 0 and

l

b

�

b�1

b+1

�

=

4

b+1

ln

�

2b

b+1

�

+

b�1

b+1

ln

�

b(b�1)

(b+1)

2

�

:

By inspection, it can be seen that this is indeed negative for b � 34. For larger b, we use

2b=(b + 1) � 2 and estimate

ln

�

b(b� 1)

(b + 1)

2

�

= ln

�

1�

3b + 1

(b+ 1)

2

�

� �

3b + 1

(b + 1)

2
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using series development. We get

l

b

�

b� 1

b+ 1

�

�

4 ln(2)

b + 1

�

(b� 1)(3b+ 1)

(b + 1)

3

:

This can be shown to be negative for b � 34 by solving a simple quadratic equation.

To complete the proof, we show that l

b

(p) cannot assume larger values for 0 < p <

b�1

b+1

because l

b

(p) is concave, i.e., l

00

b

(p) > 0. l

00

b

(p) is a rational function and has the positive

denominator (p+1)

2

(1�p)(b� bp�p)

2

p so that its sign only depends on the numerator, the

polynomial P

b

(p) := (p

4

� 4p

3

+ 6p

2

� 4p+ 1)b

2

+ (2p

3

� 6p

2

+ 6p� 2)pb+ p

4

� p

3

+ 3p

2

+ p.

Since the b-independent summand p

4

� p

3

+ 3p

2

+ p is nonnegative for p 2 [0; 1], it su�ces

to show that

Q

b

(p) := (P

b

(p)� p

4

� p

3

+ 3p

2

+ p)=b

= (p

4

�4p

3

+6p

2

�4p+1)b+(2p

3

�6p

2

+6p

1

�2)p

= (1� p)

3

(b� p(b + 2))

is nonnegative. This is the case for p � b=(b+2), i.e., even beyond (b�1)=(b+1). Rolling up

our chain of arguments, we conclude that P

b

(p) � 0 and l

00

b

(p) � 0 for p 2 [0;

b�1

b+1

], i.e., l

b

(p)

is concave. Therefore, it was su�cient to prove that l

b

(0) � 0 and l

b

(

b�1

b+1

) � 0 to establish

that f

p

(b) is non-increasing.

Lemma 25 g

�

(b) :=

�

b(b��)

b

2

�

�

b��

�

b

�

�

1�

(b��)

2

b

2

�

��

�

is non-increasing for b � �.

Proof: Consider

g

0

�

(b) =

g

�

(b)u

b

(�)

b

�

(b + b

�

� �)

where u

b

(�) := b(2�+4(1� �))+ 2� 4�+((1� �)

2

+3b(1� �)� db

�

+2b

2

) ln

b(b��)

b

2

�

is the only

term that can become negative for b � �. We have

u

b

(0) = 2(b + b

�

)(1� � + b

�

ln

b

b

�

) :

Using series development, we get ln(b=b

�

) � �

1��

b

�

and hence u

b

(0) � 0. Furthermore, using

series development again yields

u

0

b

(0) = 2b

�

ln(1 +

1� �

b

)� 3(1� �)�

(1� �)

2

b

� 2b

�

1� �

b

� 3(1� �)�

(1� �)

2

b

= �

(1� �)b

�

b

� 0

Finally

u

00

b

(�) = �

(1 + � � �)b

�

(b� �)

2

� 0;
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i.e., u

b

(�) is convex. Together with u

0

b

(0) � 0 and u

b

(0) � 0 this implies that u

b

(�) � 0 for

all 0 � � < b and the same holds for g

0

�

(b).

A.3 Proof of Lemma 21

First, we further simplify the Cherno� bound from Lemma 20 for N = bD, p = d=D and

x = d(br + 1) + 1.

Lemma 26 For N = bD, j�j = d and p =

d

D

,

P [L

�

� x] � e

bd(r+1)(e�1)

�

dr

D

�

x

:

Proof: Choosing T = 1 +

1

rp

in Lemma 20 yields

P [L

�

> x] �

�

q

R

+

(p(1+

1

rp

)+q)

R

�q

R

1+

1

rp

�

N

(1 +

1

rp

)

x

=

�

(R=r)

R

+

q

R

rp

�

N

(1 +

1

rp

)

N+x

since 1 +

1

rp

�

1

rp

�

�

(R=r)

R

+

q

R

rp

�

N

(rp)

N+x

= (Rp(R=r)

r

+ q

R

)

N

(rp)

x

� e

bdR((R=r)

r

�1))

(rp)

x

� e

bd(r+1)(e�1)

�

dr

D

�

x

The latter two estimates are based on Lemma 27 and the fact that (R=r)

r

= (1+ 1=r)

r

� e.

We now set x = d(rb + 1) + 1 and use the Stirling approximation

�

D

d

�

� (De=d)

d

to get

an overall bound

�

D

d

�

P

d

� (De=d)

d

e

bd(r+1)(e�1)

�

dr

D

�

d(rb+1)+1

= (er)

d

e

bd(r+1)(e�1)

�

dr

D

�

dbr+1

Completing the proof of Lemma 21 is only slightly more complicated than it was in

Lemma 9. Let f(d) = (er)

d

e

bd(r+1)(e�1)

�

dr

D

�

dbr+1

. It is easy to check that f

000

(d) � 0 and

f

0

(1) � 0 for D > re

e+e=r+ln(r)=r

. Therefore, for su�ciently large D, f assumes its maximum

over an interval [d

min

� 1; d

max

] at one of the borders of that interval if d

min

� 1. For any

constant 0 < � < 1, we get

P

d��D

�

D

d

�

P

d

� f(1) + �Dmax ff(2); f(�D)g.

f(1) = ere

b(r+1)(e�1)

�

r

D

�

br+1

= O(1=D)

br+1

�Df(2) = �D(er)

2

e

2b(r+1)(e�1)

�

2r

D

�

2br+1

= O(1=D)

2br

�Df(�D) = (er)

�D

e

b�D(r+1)(e�1)

(�r)

�Dbr+1

= O(D) e

�D(1+ln(r)+b(r+1)(e�1)+ln(�r)br)

= e

�
(D)
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if � <

1

r

e

�

1+ln r

br

�(e�1)(1+

1

r

)

or, if we prefer to choose � independently of b and proportional to

1=r, � � 1=(14r) <

1

r

e

�(e�1)

3

2

for r � 2.

It remains to prove the following technical lemma:

Lemma 27 (Rp(R=r)

r

+ q

R

)

bD

� e

bdR((R=r)

r

�1)

.

Proof: (Outline)

Let f(D) = (Rp(R=r)

r

+ q

R

)

bD

� e

bdR((R=r)

r

�1)

. First observe, that lim

D!1

f(D) =

e

bdR((R=r)

r

�1)

. Therefore, it su�ces to show that f grows monotonically. We have f

0

(D) =

f(D)bg(p) where g(p) = ln(pR(R=r)

r

+ q

R

) +

Rpq

R

�pR(R=r)

r

pR(R=r)

r

+q

R

, and it su�ces to show that

g(p) � 0. Note that g only depends on r and p = d=D. In particular, for �xed r, it suf-

�ces to discuss a onedimensional function. Showing the g(p) � 0 for arbitrary r is tedious

but possible. One way is to show that g

0

(p) � 0 in order to argue g(p) � g(0) = 0. The

derivative g

0

(p) is a rational function and its numerator can be further simpli�ed by us-

ing 1� rp � q

r

� 1 in the appropriate way. The denominator of the resulting function is a

quadratic polynomial in p and can be minimized analytically.
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