
Parallel Game Tree Search on SIMD Machines

Holger Hopp and Peter Sanders

University of Karlsruhe, 76128 Karlsruhe, Germany

Tel: (49) 721 6084336

Fax: (49) 721 698675

E-mail: fhhopp,sandersg@ira.uka.de

Abstract. We describe an approach to the parallelization of game tree search on

SIMD machines. It turns out that the single-instruction restriction of SIMD-machines

is not a big obstacle for achieving e�ciency. We achieve speedups up to 5850 on a

16K processor MasPar MP-1 if the search trees are su�ciently large and if there are

no strong move ordering heuristics. To our best knowledge, the largest speedups pre-

viously reported (usually on MIMD machines) are more than an order of magnitude

smaller.

Keywords: Parallel game tree search, load balancing, program transformations for SIMD.



H. Hopp, P. Sanders: Parallel Game Tree Search On SIMD Machines 1

1 Introduction

Two-player games with complete information like chess have always been an active area of

reasearch in arti�cial intelligence because they constitute a nontrivial but easy to specify

problem area. Since the game tree search algorithms used for most game implementations

are very computation intensive, games are also an interesting \benchmark" problem for

parallel computing.

The main challenge for parallelization is that the strong tree pruning heuristics like

��-search used in the sequential case produce very irregular search trees with little or no

immediately available parallelism. Early work on parallel game tree search was therefore not

able to achieve speedups above 5{10 (e.g. [6]). More recent work is able to exploit todays

MIMD machines with processor (PE) numbers up to 1024 [4, 9]. However, a lot of special

tuning appears to be necessary such that it is not clear how far the current techniques will

lead. Using even larger scale parallelism as available on SIMD-machines has largely failed

so far [2].

A principal objective of the work described here is to investigate how game tree search can

be parallelized on even larger numbers of PEs. In addition, we use ��-search as a case study

how algorithms with relatively complex control 
ow can be implemented by an e�cient data

parallel program. Since the performance of real games like chess or Othello depends on many

application speci�c details not directly related to the ��-algorithm we restrict ourselves to

synthetic game-trees. By changing the parameters of the tree generating process, we are able

to model a wide spectrum of possible scenarios.

The structure of this paper is as follows: We �rst line out in section 2 how sequential

��-search can be implemented on a SIMD machine without incurring a large overhead to the

synchronous control 
ow. Section 3 describes the key parts of the parallel implementation

with a strong emphasis on load balancing. Then, we experimentally evaluate some of the

more important aspects of our algorithm in section 4. Finally, section 5 summarizes and

discusses the key results.

2 Sequential ��-Search on SIMD Machines

We now decribe how a recursive function with a highly data dependent control 
ow such

as ��-search can be decomposed into simple operations which can e�ectively be executed

on a SIMD machine like the MasPar MP-1. The MP-1 consists of a central control unit

for computing global values and broadcasting instructions and a large number of simple

4-bit processing elements (PEs) with a local memory. (As opposed to some other SIMD

machines, each PE is able to use locally generated addresses). The PEs are interconnected

by a router which is able to route arbitrary permutations, a 2D-mesh and a broadcast bus.

In addition, the system programming language MPL (an extension of ANSI-C) o�ers micro-

coded primitives for collective operations like reductions and (segmented) pre�x operations

[13, 14]. We use a con�guration with 16384 PEs with 16 KB of memory each.

Figure 1 shows pseudocode for the negamax-variant of recursive ��-search (closely fol-

lowing [16]). Inputs are a position in the game and a range of results (�; �) (search window)

which can still in
uence the overall result (Initially (�1;1)). Output is the quality of the

position (Its value). The value of a leaf (a �nal position or a position at some maximal search



2 H. Hopp, P. Sanders: Parallel Game Tree Search On SIMD Machines

FUNCTION �� (position J; integer �,�): integer;

VAR j,w,value: integer;

BEGIN

determine successors J.1 ... J.w;

IF w = 0

THEN RETURN g(J); (* leaf evaluation *)

END ;

value := �;

FOR j:=1 TO w DO

value := max (value, -��(J.j, -�, -value));

IF value � �

THEN RETURN value; (* cut *)

END ;

END ;

RETURN value;

END ;

Fig. 1. ��-algorithm (negamax-variant)

depth) is its heuristic evaluation. The value of an interior node is the value of the position

after making the \best" move which can be found by evaluating the successors from the

point of view of the opponent. Once this value exceeds the upper bound �, no additional

search can in
uence the overall result and we can prune the remaining subtrees by returning

immediately. The search windows of the recursive calls are set according to the old search

window and the best move found so far.

It makes no sense to use this function directly on a SIMD machine. We �rst eliminate

recursion by explicitly managing a search stack. Then, we must make sure that the program

contains only a single loop nest. Else, PEs which have �nished executing an interior loop

would always have to wait for the last PE to �nish { resulting in a very high SIMD overhead.

This can be done by decomposing the control 
ow into elementary operations containing no

loops which depend on local data. For ��, we have chosen the following operations:

Leaf evaluation (LE): Make a heuristic evaluation of a leaf.

Node Generation (NG): Generate successors of an interior node.

Tree Movement (��): Move up and down the tree by popping and pushing the stack and

perform maximization.

The top level control 
ow is now managed by a state variable indicating which operation

has to be performed next. If every operation properly sets state at its end, the control 
ow

can be implemented by a single synchronous test loop.

WHILE not �nished DO

IF state = LE THEN Leaf evaluation

IF state = NG THEN Node generation

IF state = �� THEN Move in tree

END



H. Hopp, P. Sanders: Parallel Game Tree Search On SIMD Machines 3

There is still some SIMD overhead left but a PE waiting for a particular operation must

wait for at most two tests.

Additionally, we are free to choose any sequence of tests and we can test cheap or

important operations more frequently. It turns out that carefully scheduling the test loop

makes it possible to considerably reduce SIMD overhead. For a general discussion of this

technique refer to [18]. Additional implementation details are reported in section 3.5 after

we have introduced the remaining operations used for load balancing and other purposes.

3 The Parallel Algorithm

The basis of our approach to parallelize game tree search is that every PE runs a sequential

��-algorithm. Then, the main task of parallelization is to �nd a load balancing strategy

which is able to supply the PEs with subtrees which are relevant for �nding the overall

result.

In the load balancing procedure a set of PEs (masters) send work to other PEs (slaves)

always using point to point communication. In order to follow the philosophy of creating

elementary operations, the load balancing procedure is small and so each master sends only

a single subtree to a slave. To distribute two or more subtrees to slaves, the elementary

operation \load balancing" must be performed twice or more.

Distributing every possible subtree immediately to other PEs in order to exploit as

much parallelism as possible expands lots of nodes, which are pruned by the sequential ��-

algorithm. The ratio N

par

=N

seq

where N

par

; N

seq

denote the number of nodes expanded

by the parallel respectively the sequential algorithm de�nes the search overhead. The main

problem of parallel game tree search is to keep the search overhead small and achieve good

processor utilization. So in this paper we �rst describe methods how to decrease the search

overhead while achieving high parallelism (section 3.1 and 3.2) and then discuss the choice

of connections between masters and slaves (section 3.3).

If the parallel expansion of right subtrees begins too early, they are searched with the

completely open search window (�1;1). In the sequential ��-algorithm these subtrees

are searched with a smaller �-value, which allows more cuto�s. This can be explained with

Knuth and Moore's node types [11]:

De�nition1. The node type of a node J in a game tree is de�ned as:

type(�) := 1

type(J:i) :=

8

>

>

>

>

<

>

>

>

>

:

1 if type(J) = 1 and i = 1

2 if type(J) = 1 and i > 1

3 if type(J) = 2 and i = 1

2 if type(J) = 3

unde�ned else

The nodes with de�ned node types are the nodes of the minimal tree. This tree con-

tains those nodes that must always be visited by the sequential ��-algorithm. Type-1-nodes

are searched with the open search window (�1;1), type-2-nodes with a search window

(�1;�v), and type-3-nodes with a search window (v;1). The nodes with unde�ned node

type are searched with a search window (v; w), which leads to cuto�s if v � w (v; w 6= �1).



4 H. Hopp, P. Sanders: Parallel Game Tree Search On SIMD Machines

Expanding a node in parallel before knowing �,�-bounds will make this subtree much

larger than in the sequential case, because there are less opportunities for cuto�s. For exam-

ple, expanding a right successor of the root (a type-2 node) in parallel with a search window

(�1;1) will e�ectively change this node to a type-1-node, and it also changes all (indirect)

successor node types accordingly.

3.1 The Young Brothers Wait Concept

In order to decrease the search overhead, we adopt the Young Brothers Wait Concept

(YBWC) introduced in [4, 5]: A successor v:J of a node v must not be expanded before the

leftmost brother v:1 is completely evaluated. The YBWC signi�cantly reduces the search

overhead, but it decreases the available parallelism.

1024
2048

4096

8192

16384

0 2000 4000 6000 8000 10000 12000 14000

A
ct

iv
e 

pr
oc

es
so

rs

Iterations of leaf evaluation

a) original YBWC

1024
2048

4096

8192

16384

0 2000 4000 6000 8000 10000 12000 14000

A
ct

iv
e 

pr
oc

es
so

rs

Iterations of leaf evaluation

b) with faster distribution

Fig. 2. Active processors

For example, �gure 2 a) shows the number of active PEs while expanding a width 7,

depth 15 synthetic game tree. In this example, YBWC reduces the search overhead from

236.4 to 2.9, but it also reduces the average processor utilization from 95.2% to 18.8%. The

reason is that the YBWC only generates su�cient parallelism in the last phases of the search.

When the minimax value of a type-1-node is evaluated, only one PE is active. These nodes

are called synchronization nodes. Other nodes produce weaker synchronizations, resulting in

an overall utilization curve like �gure 2 a).

The second approach in [4], the YBWC-1-2, slightly relaxes YBWC. It only delays the

parallel expansion at type-1, type-2 and some type-unde�ned nodes. This increases the

average processor utilization, but it also increases search overhead. YBWC-1-2 does not avoid

synchronization nodes. The synchronizations are necessary to expand the right successors of

a type-1 node with a de�ned �-value.



H. Hopp, P. Sanders: Parallel Game Tree Search On SIMD Machines 5

3.2 Faster Distribution at Synchronization Nodes

It is important to reactivate all inactive PEs immediately after a synchronization node. A

good choice is to distribute all branches of the right minimal tree, the unsearched subtree

of the minimal tree rooted at the synchronization node. The right minimal tree can be

distributed quickly, without communication. Each PE generates the subtree for which it is

responsible using only the root node and its PE number [3].

The root's negamax value is evaluated in several sequential phases, one phase for each

synchronization node (bottom-up, shown in �gure 3). Parallelism is only used within the

phases. A preceding phase has evaluated the negamax value of the preceding synchronization

node. The current phase evaluates the negamax value of the current synchronization node as

follows: The right minimal tree of the synchronization node is distributed to the PEs without

communication. After this initialization, the main loop with the dynamic load balancing

routine takes over until the negamax value of the synchronization node is known.












































































J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

q

q

q

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

d

q

q

q

2

1

0

complete tree

(static LB)

complete minimal tree + dyn. LB

top part of minimal trees

+ dyn. LB

S

S

S

Sw

A

A

A

A

A

A

AK

A

A

A

A

A

A

AK

A

A

A

A

A

A

AK

�

�

�=

�

�

�

�

�=

| {z }

� P

| {z }

� P

| {z }

� P

| {z }

� P

| {z }

� P

| {z }

� P

1:

2:

3:

4:

�

�

�

�>

�

�

�

B

B

B

J

J

J

J

J

J

J

J

J

\

\

\

\

\

\

\

\

\

J

J

J

J

J

J

J

J

J

A

A

A

A

A

A

A

A

A

p

p

p

�

�

�

B

B

B

J

J

J

J

J

J

J

J

J

\

\

\

\

\

\

\

\

\

J

J

J

J

J

J

J

J

J

A

A

A

A

A

A

A

A

A

p

p

p

Fig. 3. Phases of the parallel algorithm with faster distribution



6 H. Hopp, P. Sanders: Parallel Game Tree Search On SIMD Machines

In the �rst phases the right minimal trees (symbolized by the trapezoids in �gure 3) are

very small.We can distribute the complete minimax tree for the �rst few phases at once (the

triangle in �gure 3) and compute its value using a sequence of segmented pre�x-min/max-

operations. In intermediate phases we can at least distribute the right minimal tree. Later,

we distribute the right minimal tree up to a certain depth. The complete algorithm is more

complex, for a more detailed description of this algorithm refer to [8].

The faster distribution at synchronization nodes has reduced the number of iterations

in the example in �gure 2 from 14144 to 8487. The average processor utilization increased

from 18.8% to 34.7%. The search time was 39% shorter compared to the pure YBWC.

3.3 Random Polling and Rendezvous Distribution

We made experiments with two algorithms to select communication partners:

Random Polling Every load balancing step determines a new permutation. A master-slave

connection is established, if the master has work available for the slave, and the slave is

idle.

As shown in [17], a random shift, i. e. connecting PE i with PE i+ k mod P guarantees

a very e�ective load distribution. Shifts can be routed more e�ciently than general

permutations on the MasPar.

Rendezvous Distribution The masters and slaves are matched using the rendezvous

method introduced in [7] and improved in [15, 10]. The slaves (= idle PEs) are enu-

merated, yielding an index i, then each slave sends its processor ID to PE i. These

IDs are read by the masters to get a de�nite slave. All potential masters are sorted by

\urgency" of the subtrees which can be delivered to slaves. To decrease the cost of the

sorting procedure it is useful to sort in a small range, such that a bucket sort algorithm

can be used [8].

Random Polling is consuming less time than rendezvous distribution, because it rarely

achieves a processor utilization of 100% and it is not sensitive to the urgency of the trans-

mitted subtree. Overall, random polling is faster for small game trees, but rendezvous distri-

bution is faster for large trees, where the processor utilization is high. The division in phases

makes it possible to use random polling in the �rst phases, and rendezvous distribution for

the last phases.

We have not de�ned \urgent" subtrees yet.Urgency is relevant for selecting a unexpanded

subtree on the master PE, and for sorting in the rendezvous distribution. A good subtree

selection strategy is to select the highest unexpanded subtree in the game tree. If several

subtrees on the same tree level are available, take the leftmost one. This method achieves

good load sharing, but it expands a lot of nodes which are not expanded by the sequential

��-algorithm. YBWC distinctly decreases this speculative computation, but does not even

come close to eliminating it.

Other simple urgency functions besides \top-down, left-right" failed in our experiments.

The selection strategy \bottom-up, left-right" reduces the number of expanded nodes by

30{40%, but it is slower by about 50% since it generates too little, and only very �ne

grained parallelism. The selection strategy \left-right, top-down", which prefers left subtrees

regardless of their tree level, incurs more node expansions (7%) as well as a higher run time

(50%).



H. Hopp, P. Sanders: Parallel Game Tree Search On SIMD Machines 7

3.4 Further Improvements

This subsection brie
y explains additional elementary operations used for improving the

performance. For a more detailed description of these algorithms refer to [8].

The elementary operation \passing �,�-values" sends new �,�-values to slave PEs. This

makes more cuto�s possible and frees PEs working on pruned subtrees. For all but very

small game trees this operation decreases the runtime.

The second improvement is only rarely useful. The stack merging operation is used to

decrease the number of waiting PEs. A PE has the state waiting, if it has fully expanded its

subtree and must wait for other PEs which expand other subtrees. The operation merges

stacks of waiting PEs to the PEs they are waiting for and frees the waiting PEs for new work.

This operation is very expensive, so a low testing frequency in the main loop is necessary.

In very large game trees this operation decreases the run time by 0{2%, for smaller and

normal-sized game trees stack merging is useless. In experiments the maximum number of

waiting PEs was only 700 (of 16384) { too small a number to make this operation useful.

3.5 Scheduling of elementary operations

What elementary operations are necessary for a SIMD game tree search? We need operations

to implement the sequential ��-algorithm (search operations) and operations to implement

the parallel parts (management operations), which use communication between PEs.

We splitted the sequential parts into three elementary operations (section 2): node gen-

eration (NG), leaf evaluation (LE), and moving within the game tree (��). For management

we mentioned the elementary operations load balancing (LB), passing �,�-values (PV), and

stack merging (SM). The forth management operation report result (RR) sends results from

the slaves to their masters.

The relative frequency of NG and LE strongly depends on the kind of the game tree

to be searched. Narrow and well ordered game trees need more node generations, others

need more leaf evaluations. It is also important whether the search depth is even or odd,

particularly for wide game trees. The third criterion is the ratio of execution times of NG

and LE. The more expensive operation should be tested less frequently.

The tree moving operation �� is very short, so it is a good choice to increase its testing

frequency. For example, for some classes of wide trees the sequence

NG; ��; ��; LE; ��; ��; LE; ��; ��;

was a good choice, but for a narrower tree a sequence with two times more NGs than LEs

was good. For very wide trees it was favorable to test LE up to four times more often than

NG.

A testing sequence with NG, LE, and �� is called basic sequence. Finding an optimal

basic sequence is an important part of SIMD game tree search. Its choice can change the

run time by a factor of 2{3. Fortunately, for real game trees it is usually known how wide

or how well ordered they are. A good basic sequence can be found with a few experiments.

The in
uence of the tree depth on performance is very small, the in
uence of the tree width

and the NG/LE execution time ratio is larger.

Now a complete testing sequence is created by combining the basic sequence with the

management operations. The RR operation is cheap and should be tested often. The YBWC-

blocking and deblocking demands a frequent load balancing. In our experiments it was a



8 H. Hopp, P. Sanders: Parallel Game Tree Search On SIMD Machines

good choice to call the LB operation every 1-5 basic sequences (BS), depending on the

game tree size and shape. This is such a high frequency, that more adaptive strategies for

triggering [15, 10] are not worth the additional expense for counting active PEs. The PV

and SM operations should be tested more rarely. A complete testing sequence looks like

LOOP BS; RR; BS; RR; LB; BS; RR; BS; RR; PV; LB; END .

4 Experimental Results

In this section we present some experimental results with synthetic game trees. We look at

regular trees with �xed depth d and width w for every node. This model is frequently used

in the literature [16].

The leaf value distribution should simulate successor ordering heuristics with di�erent

strength. Two leaf value distributions are used here: Uniformly distributed trees simulate

game trees without heuristics for ordering successor nodes. The probability that successor

J:k is the best is the same for all successors, f(k) =

1

w

. Geometrically distributed trees

simulate game trees with node ordering heuristics. The probability that successor J:k is the

best is

f(k) =

(

p(1� p)

k�1

if 1 � k < w,

(1� p)

k�1

if k = w,

where p is a value in the range [0..1]. The higher p, the higher the quality of ordering.

Minimal trees are generated with p = 1:0. We used algorithms similar to those in [16] to

generate these synthetic game trees.

Speedup and e�ciency are measured in relation to the sequential ��-algorithm on the

MasPar. The sequential execution times for larger trees are extrapolated from sequential

times on a fast sequential machine. If not otherwise mentioned, all 16K PEs are used.

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20

sp
ee

du
p

depth

optimized testing sequence
unoptimized testing sequence

0

2

4

6

8

10

12

14

0 5 10 15 20

se
ar

ch
 o

ve
rh

ea
d

depth

Fig. 4. Uniformly distributed trees (width 7)



H. Hopp, P. Sanders: Parallel Game Tree Search On SIMD Machines 9

Figure 4 shows speedups for uniformly distributed trees of width 7. To achieve high

speedups, very large trees must be searched. Some data about a w7d22 tree (width 7, depth

22): The MasPar expands 7:4 � 10

10

nodes in parallel in 1:45 hours, a SPARC 5 (85 MHz)

needs 47:24 hours for 6:6 � 10

10

. nodes. The MasPar was 27 times faster than the SPARC,

but a single PE of the MasPar was 220 times slower than the SPARC. The right curve in

�gure 4 shows the reasons for the relatively good (for SIMD game tree search) e�ciency of

36%. The search overhead is small for the large trees (w7d22: 1.12). The main reason for the

small speedups for small trees is the low processor utilization (�gure 2), but also the high

search overhead of up to 13 (�gure 4).

The second speedup curve in �gure 4 shows the detrimental e�ect of suboptimal testing

sequences. The low curve is optimized for 0.9-geometrically distributed trees with a more

complex leaf evaluation function.

1

4

16

64

256

1024

0 2 4 6 8 10 12 14 16 18

sp
ee

du
p

depth

with YBWC, with FDS
with YBWC, no FDS

with YBWC-1-2, with FDS
no YBWC, no FDS

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18

se
ar

ch
 o

ve
rh

ea
d

depth

with YBWC-1-2, with FDS
with YBWC, no FDS

with YBWC, with FDS

Fig. 5. 0.9-geometrically distributed trees (width 7)

Figure 5 shows speedups for 0.9-geometrically distributed trees of width 7 using di�erent

load balancing techniques (logarithmic scale!!). The curves can be divided into four classes

of tree sizes:

1. For very small search depths (up to depth 5) it is possible to distribute all leafs to the

PEs and evaluate the negamax value with scans, which is done by the faster distribution

at synchronization nodes (FDS) from section 3.2. This is an order of magnitude faster

than the purely dynamic algorithms.

2. For small search depths (depth 6 to 10) the distribution procedure cannot exhaust the

search tree without dynamic load balancing. The speedups are lower than with depth

5, but higher than for pure dynamic algorithms. The algorithm without YBWC still

achieves good performance.

A problem is the drop of speedup at depth 6, because dynamic load balancing is too

expensive here. The gap could be �lled by using an additional specialized method.



10 H. Hopp, P. Sanders: Parallel Game Tree Search On SIMD Machines

3. For intermediate depths (up to depth 14) YBWC-1-2 with FDS was most successful. The

improved PE utilization compared to YBWC makes up for the higher search overhead.

The algorithm without YBWC reaches its performance limit.

4. In large trees (depth 15 and more) the pure YBWC algorithms are best. The trees are

large enough now to achieve a high processor utilization.

Unfortunately, the speedups for geometrically distributed trees are considerable lower

than the speedups for uniformly distributed trees. The reason is the high search overhead

of 5{6 shown in �gure 5. YBWC cannot decrease the search overhead as e�ectively as for

uniformly distributed trees. Without YBWC the search overhead is up to 160!

We adopt the performance measures introduced in [15] to split the losses of performance

into four ratios, which multiplied together yield the e�ciency (details in [8]). The four per-

formance ratios (in a range [0..1]) are

fraction of time working The PEs must suspend searching while doing load balancing

and other management operations. The fraction of time working is the ratio of search

time to the total execution time.

processor utilization The average ratio of working PEs (which have a subtree for expan-

sion) to the total number of PEs.

raw speed ratio The raw speed ratio re
ects the ine�ciencies of SIMD calculations. Some

PEs are inactive in conditional statements, but they are still called working.

work ratio This is the reciprocal of search overhead. It describes performance losses in-

curred by the expansion of nodes which are not expanded by the sequential algorithm.

Table 1. Ratios and measures

leaf value distribution uniform 0.9-geometrical

tree size w7d16 w7d22 w7d13 w7d17

processor utilization 0.762 0.902 0.577 0.851

fraction of time working 0.825 0:88

�

0.790 0:90

�

work ratio 0.253 0.893 0.137 0.169

raw speed ratio 0.441 0:50

�

0.743 0:78

�

e�ciency 0.070 0.357 0.046 0.101

speedup 1150 5852 761 1650

Table 1 shows the four performance ratios of four example trees (

�

= estimated). The

losses due to search overhead (work ratio) are the main problem, the SIMD overhead (raw

speed ratio) is smaller than one might expected.

Using less than 16K PEs leads to speedups comparable with speedups achieved on MIMD

machines. Even for the di�cult geometrically distributed trees (w7d13, p = 0:9) we achieved

a speedup of 141 on 1024 PEs, ignoring the SIMD e�ects this is comparable with MIMD

results [4].



H. Hopp, P. Sanders: Parallel Game Tree Search On SIMD Machines 11

5 Conclusions

The YBWC as an approach to parallel game tree search does have the potential for large scale

parallelism. But the game trees have to be very large if redundant work shall not limit the

e�ciency too much. This problem is particularly severe if the game tree is strongly ordered.

Therefore, �nding good heuristics for keeping the balance between su�cient parallelism and

low search overhead will be a key issue in future research. For real games, additional problems

are likely to occur due to hard to parallelize heuristics. For example, transposition tables

are so communication intensive that they can only be used in the upper levels of the search

trees [4, 9].

A not so severe problem is keeping the PEs busy. The �rst phases of the search which con-

tain little parallelism due to synchronization nodes can be accelerated using the specialized

distribution methods described in section 3.2. This optimization is even more important if

a real game is implemented using iterative deepening techniques. The later phases of search

contain enough parallelism to be load balanced using standard methods like random polling

which are also used in other circumstances [17, 1, 12].

Using SIMD machines for parallel game tree search turned out to be not so much di�erent

from using MIMD machines. The negamax variant of ��-search can be broken down into

few simple operations. By carefully scheduling these operations together with the required

communication operations, the SIMD overhead can be kept quite small. As long as the node

evaluation function does not have a very complex structure, we expect this experience to

transfer to real games. However, a philosophy behind SIMD, namely to achieve maximal raw

performance by employing massive amounts of slow but cheap PEs is not very successful

for game tree search. For di�cult to parallelize problems, it is more cost e�ective to employ

fewer but faster PEs even if the theoretical peak performance is lower.

References

1. R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work stealing.

In FOCS, 1994.

2. V. Cung and L. Gotte. A �rst step towards the massively parallel game-tree search. In Inter-

national Workshop on Parallel Processing for Arti�cial Intelligence, pages 88{93, Chambery,

1993. Elsevier.

3. O. I. El-Dessouki and W. H. Huen. Distributed enumeration on between computers. IEEE

Transactions on Computers, C-29(9):818{825, September 1980.

4. R. Feldmann. Game Tree Search on Massively Parallel Systems. PhD thesis, Universit�at Pader-

born, August 1993.

5. R. Feldmann, P. Mysliwietz, and B. Monien. Studying overheads in massively parallel

min/max-tree. In ACM Symposium on Parallel Architectures and Algorithms. ACM, 1994.

6. R. Finkel and J. Fishburn. Parallelism in alpha-beta search. Arti�cial Intelligence, 19:89{106,

1982.

7. W. D. Hillis. The Connection Machine. Series in Arti�cial Inteligence. MIT Press, Cambridge,

MA, 1985.

8. H. Hopp. Parallele Spielbaumsuche auf SIMD-Rechnern. Diplomarbeit, Universit�at Karlsruhe,

Feb. 1995.

9. C. F. Joerg and B. C. Kuszmaul. Massively parallel chess. In Third DIMACS parallel imple-

mentation challenge workshop, pages 299{308. Rutgers University, 1994.



12 H. Hopp, P. Sanders: Parallel Game Tree Search On SIMD Machines

10. G. Karypis and V. Kumar. Unstructured tree search on SIMD parallel computers. IEEE

Transactions on Parallel and Distributed Systems, 5(10):1057{1072, 1994.

11. D. Knuth and W. Moore. An analysis of alpha-beta pruning. Arti�cial Intelligence, 6(4):293{

326, 1975.

12. V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel Computing. Design

and Analysis of Algorithms. Benjamin/Cummings, 1994.

13. MasPar Corporation. MasPar System Overview, July 1992.

14. MasPar Corporation. MPL Reference Manual, May 1993.

15. C. Powley, C. Ferguson, and R. E. Korf. Depth-�st heuristic search on a SIMD machine. Ar-

ti�cial Intelligence, 60:199{242, 1993.

16. A. Reinefeld. Spielbaum-Suchverfahren. Informatik-Fachberichte, Band 200. Springer-Verlag,

1989.

17. P. Sanders. A detailed analysis of random polling dynamic load balancing. In Internation-

al Symposium on Parallel Architectures Algorithms and Networks, pages 382{389, Kanazawa,

Japan, 1994. IEEE.

18. P. Sanders. Emulating MIMD behavior on SIMD machines. In International Conference Mas-

sively Parallel Processing Applications and Development. Elsevier, 1994.


