
High Performance Integer Optimization for

Crew Scheduling

?

Peter Sanders

1

, Tuomo Takkula

2

, Dag Wedelin

2

1

Max-Planck-Institute for Computer Science, Saarbr�ucken, Germany

2

Chalmers University of Technology, Computing Science, G�oteborg, Sweden

Abstract. Performance aspects of a Lagrangian relaxation based heuris-

tic for solving large 0-1 integer linear programs are discussed. In partic-

ular, we look at its application to airline and railway crew scheduling

problems. We present a scalable parallelization of the original algorithm

used in production at Carmen Systems AB, G�oteborg, Sweden, based on

distributing the variables and a new sequential active set strategy which

requires less work and is better adapted to the memory hierachy prop-

erties of modern RISC processors. The active set strategy can even be

parallelized on networks of workstations.

1 Introduction

In this paper we describe our work on improving the performance of the integer

optimizer of the Carmen system [2, 5, 18], which is in use at most major airlines

in Europe. The optimizer can solve a wide class of integer linear programming

problems (ILP), but here we focus on pairing optimization, which is a crucial

step in the scheduling process. The optimization problems are then of the set

partitioning or set covering type [2]

min c

T

x

s.t. Ax � 1

x 2 f0; 1g

n

(1)

where A 2 f0; 1g

m�n

; c 2 Q

n

+

and 1 is a vector of all ones. The relation � is

either '=' in the set partitioning case or '�' in the set covering case. The rows

of A correspond to non-stop 
ights (legs) which are operated by the carrier and

which need to be sta�ed with crews. The columns of A correspond to so-called

pairings. A pairing corresponds to a crew schedule in terms of a sequence of legs,

starting at a home base, and returning (sometimes after a few days) to the home

base. Thus A

ij

= 1 if and only if leg i is operated by pairing j. The pairings

and their associated cost coe�cients are usually computed in a complicated

process taking crew utilization, regulations, union agreements, overnight cost,

work plan robustness, credit time and many other factors into account. The

?

This work has been supported by the ESPRIT HPCN program, project PAROS.



process of generating the matrix A is called pairing generation. It is very time-

consuming and discussed in [11]. In addition, there are usually a few additional

base constraints which have a more general form and model the availability of

personnel at di�erent home bases of the company.

Let N denote the number of nonzero entries in the m � n-matrix A. The

large problems we are most interested in have up to several hundred thousand

variables and typically between a few hundred to a few thousand constraints.

They are very sparse, usually having only 5 to 10 nonzeros per column. These

problems are among the largest 0-1 problems solved in commercial applications,

and generally available commercial solvers such as CPLEX cannot handle prob-

lems of this size. Our algorithm does not use branch & bound, but can be viewed

as a Lagrangian based heuristic, which can e�ciently �nd solutions to most of

these problems in a few hours to within a thousandth of the optimal solution.

For other Lagrangian relaxation methods applied to pairing problems in railway

industry see for instance [4, 6], which also address problems of similar size using

specialized heuristics. Recent work in airline crew scheduling include [3, 8, 12{14,

17]. Usually, the ILPs considered there are smaller than those considered in this

paper.

For our machine model we assume P processing elements (PEs) intercon-

nected by some network. Each PE is a high performance RISC processor with

at least two levels of cache and its own local memory. It will turn out that the

communication cost of our algorithms can be modeled quite abstractly by the

cost of a global broadcast or reduction for operands of length m. Let T

coll

(m) be

a common bound for this time. This communication cost is compared with the

cost for internal computations. We use T

nz

, the time spent per iteration divided

by N , for this comparison.

In Sect. 2 we brie
y describe the existing optimizer and then discuss per-

formance improvements and a new variant of the algorithm which needs less

work and is additionally better adapted to the memory hierarchy. Sect. 3 intro-

duces two promising approaches to parallelization. The implementation and �rst

measurements are presented in Sect. 4. The last two sections are dedicated to

conclusions and future work.

2 Sequential Algorithms

2.1 The basic algorithm

Our approach has been described in detail in [18], to which we refer for full detail

and for quality comparisons with other algorithms. A simple way to understand

the algorithm is to view it as a heuristic based on Lagrangian relaxation (see

[9]). Consider problem (1) with a general non-negative integer right hand side b.

Then the corresponding Lagrangian relaxation subproblem with equality

1

is

min

x2f0;1g

n

c

T

x+ y

T

(b�Ax); y 2 IR

m

: (2)

1

The \�" variant di�ers from (2) only by requiring y to be nonnegative.



A general property of the relaxation is that if we can �nd a vector y so that

the solution to (2) is feasible for (1), then we have an optimal solution to (1)

(This is related to the dual problem of maximizing (2) with respect to y). The

relaxed unconstrained problem (2) can easily be solved optimally by considering

�c

T

:= c

T

� y

T

A and setting x

j

:= 1 if and only if �c

j

is negative. In most

cases however it is not possible to �nd a relaxation (de�ned by y) that has this

desirable property. The algorithm therefore introduces a heuristic scheme that

makes this possible.

The algorithm proceeds by modifying �c by considering one constraint. We

call this process iterating a constraint. For constraint i we de�ne a row index set

z

i

:= fj jA

ij

= 1g and a sparse vector s

i

representing its contribution to �c, i.e.,

�c = c +

P

m

i=1

s

i

. The algorithm di�ers from pure Lagrangian relaxation in the

way in which s

i

is computed, and the fact that these vectors are kept between

iterations.

First, the change in �c from the last update is cancelled out by computing r :=

�c�s

i

: We then determine critical values r

�

and r

+

as the b-smallest and the (b+

1)-smallest elements of r (considering only indices in z

i

). The variables associated

with these values are called critical variables. We compute the Lagrangian dual

corresponding to constraint i as y

i

:=

r

�

+r

+

2

and shifted values

y

�

:= y

i

�

�

1� �

(r

+

� r

�

); y

+

:= y

i

+

�

1� �

(r

+

� r

�

)

where � is a control parameter in [0; 1). The new contribution s

i

to �c is updated

to

s

i

j

:=

�

�y

�

if �r

j

� r

�

;

�y

+

if �r

j

� r

+

;

for j 2 z

i

:

and �c is set to its new value �c := r + s

i

:

On the top level, this constraint iteration is done for every constraint over and

over again. During these iterations � is slowly increased from 0, until a feasible

solution is obtained from �c. Here is a high-level description of the algorithm:

�c := c, � := 0, x := 0

while there are infeasible constraints do

increase �

for each constraint in some random order do iterate constraint

for 1 � j � n do if �c

j

< 0 then x

j

:= 1 else x

j

:= 0

The algorithm above is repeated with re�ned schedules for the increase of �.

Usually, four to �ve trials are enough to yield excellent solutions for large scale

problems. An extension to constraint matrices in f�1; 0;+1g

m�n

is easy [18].

2.2 Basic Performance Issues

The original implementation used a structured programming approach with a

uniform representation of all constraint types which included an explicit (sparse)



representation of the s-vectors. This performed well on machines where 
oating

point operations dominated the execution time. But on today's machines mem-

ory accesses have almost completely taken over this role. Therefore our new

code is object oriented with specialized representations for important constraint

types.

A specialized pseudo-code for a set partitioning constraint (set covering is

very similar) is given below. Only the set of nonzero indices z and the previous

shifted duals y

+

, y

�

together with their indices of occurrence, j

+

, j

�

are stored

for each constraint { but no s-vector. By patching �c

j

�
we can compute �c� s in

constant time up to a collective shift by the old y

+

, and we can then avoid the

explicit use of the intermediate r vector. The new critical elements can be found

by locating the two minimal elements of �c restricted to indices in z plus a constant

number of scalar operations. Finding the two minimal elements and their indices

(in the function \minIndex2Indirect") is almost as easy as �nding one minimum

alone and can be done using jzj+ O(log jzj) comparisons and an equal number

of double indirect memory accesses on the average (refer to [7, Problem 6.2] for

some discussion). All other operations have negligible cost. Computing the new

(shifted) duals needs only some scalar operations now. Finally, �c can be updated

by subtracting a constant o�set for all indices in z and patching �c

j

�

new

. E�ectively,

we have fused the two vector additions from the abstract iteration scheme into

a single o�set computation. The cost for this is dominated by jzj double indirect

memory read and write operations.

Specialized code for a set partitioning constraint:

method SetPartitioningConstraint::iterate(var �c : IR

n

, � : [0; 1), z : array of ZZ )

�c

j

�
:= �c

j

�
� y

�

+ y

+

-- make �c

j

�
comparable with other elements

(r

�

; r

+

; j

�

new

; j

+

new

) := minIndex2Indirect(�c, z, k)

(r

�

; r

+

) := (r

�

� y

+

; r

+

� y

+

) -- undo o�set

y

i

=

1

2

(r

+

+ r

�

)

(y

�

new

; y

+

new

) := (y

i

; y

i

) +

�

1��

(r

+

� r

�

)(1;�1)

for 1 � i � jzj do �c

z[i]

:= �c

z[i]

� (y

+

new

� y

+

)

�c

j

�

new

:= �c

j

�
� (y

+

� y

�

new

) -- patch

(y

�

; y

+

; j

�

; j

+

) := (y

�

new

; y

+

new

; j

�

new

; j

+

new

)

2.3 An Active Set Strategy

Since n � m, it seems to be wasteful to go through all the variables all the

time. Observations show that the set of variables which has recently been used

for critical variables { we will call this the active set { remains quite stable

most of the time. Since only critical variables a�ect the numerical progress of

the algorithm, one would be tempted to forget about the rest of the variables

and only work in the active set. However, closer inspection shows that from time

to time variables never considered before make their way into the active set. In

particular, towards the end, just before the iteration converges, a number of new

variables is pulled in to create a feasible solution.



Out of several logically useful ways to exploit this idea consider the following

one: Most iterations of the algorithm from Sect. 2.1 work on a copy of the

problem containing only the information relevant for the active set. Note that

often this reduced problem or at least its �c-vector will �t into the (second level)

cache. From time to time we make a global scan to inspect all variables: First,

we update the global �c-vector. Then we allow a number of previously inactive

variables to become active. More precisely, we consider all those variables which

would be critical for some constraint if a true global iteration were performed { in

a sense we make a dry run of a global iteration. In order to avoid an uncontrolled

growth of the active set for long running ill-behaved problems, we periodically

deactivate all variables which have not been critical for a long time.

So far we have already harvested two advantages: We perform less work per

iteration and most iterations are more cache friendly. However, going through

all the constraints to update �c and then again checking all the constraints in

order to �nd critical inactive variables would be as expensive as an iteration

of the old algorithm. But we can do better now. For the global scan we store

the nonzero entries of all variables in a column wise fashion and also traverse

the data in this order. We now work one variable at a time, update its �c entry

and then immediately check whether it is a new (second) minimum for some

constraint. Before, accessing �c implied a cache miss { now the current entry is

held in a register. We pay for this by having to hold the Lagrangian duals and

the minima for all constraints in a frequently accessed array now. These arrays

are so small however that they are likely to �t into the (�rst level) cache. The

nonzeros of the current column will always �t into �rst level cache and often our

code can even hold them in registers. Compared to a global iteration of the basic

algorithm we are down from 2N+O(n) cache faults to N=C+O(n=C) where C is

number of ints �tting into a cache line.

2

The remaining cache faults stem from

sequentially reading indices of nonzero elements and �c. These faults can therefore

be hidden by prefetching. Experiments show that column wise traversal is about

three times faster than row wise traversal for large problems on a 140MHz Sun

Ultra-1. On newer machines with faster clock even higher di�erences should be

expected.

3 Parallelization

Parallelizing the basic algorithm is not trivial because its iterative nature only

allows parallelization within an iteration. As discussed above, a single iteration

is so fast that we have only rather �ne grained parallelism available. Even worse,

parallelizing the outer loop is very di�cult since many constraints are coupled

by common entries of �c. So, we mostly have to rely on the very �ne grained

parallelism in the innermost loops. In Sect. 3.1 we show how we can achieve

useful speed-ups nevertheless and in Sect. 3.2 we extend this approach for the

global scan.

2

Exploiting that a column index �ts into 2 bytes we could even cut that in half.



3.1 Parallelizing by Distributing Variables

We make PE k responsible for some subset V

k

of variables, i.e., PE k stores those

entries of �c and those nonzeros which refer to the variables in V

k

. We parallelize

the innermost loops, i.e., �nding minima and adding a constant o�set: The latter

is easy { just broadcast the o�set and perform the remaining operations locally.

Finding the critical elements is only slightly more di�cult. First determine the

two locally minimal elements r

�

, r

+

and their positions j

�

, j

+

and then compute

the global critical elements using a global reduction with the associative operator

(r

�

1

; r

+

1

; j

�

1

; j

+

1

)
 (r

�

2

; r

+

2

; j

�

2

; j

+

2

) :=

8

>

>

>

<

>

>

>

:

(r

�

1

; r

+

1

; j

�

1

; j

+

1

) if r

+

1

� r

�

2

(r

�

1

; r

�

2

; j

�

1

; j

�

2

) if r

�

1

� r

�

2

< r

+

1

(r

�

2

; r

�

1

; j

�

2

; j

�

1

) if r

�

2

< r

�

1

� r

+

2

(r

�

2

; r

+

2

; j

�

2

; j

+

2

) if r

+

2

< r

�

1

:

Analysis: We also have to specify how the variables should be partitioned. Let

l

ik

denote the number of nonzeros on PE k for constraint i. W :=

P

i

max

k

l

ik

should be close to N=P in order to achieve good load balancing. This looks

like a nontrivial problem since a single partitioning should exhibit good load

balancing for all constraints. Fortunately, randomization saves the situation. We

simply distribute the variables randomly. Using Cherno� bounds (e.g., [15]) it

can be shown that W = N=P +O(

p

N=P logN) with high probability. As long

as N=m� P logP this implies good load balance. This condition is ful�lled for

all problem instances under consideration.

A more severe condition on the problem size is that the local computations

should dominate the communication time, i.e., we need T

nz

N

P

� mT

coll

if we

iterate one constraint at a time. Unfortunately, this will only be the case for

very large problems even on tightly coupled parallel machines.

Parallelizing over both constraints and variables: We do not really need a

separate collective operation for each constraint. Constraints which do not share

nonzeros can be iterated independently. If we consider the constraint dependence

graph where the nodes are constraint numbers and edges connect constraints

which share variables, we can identify subsets of independent constraints using

a graph coloring algorithm. All the constraints colored with the same color are

independent and can therefore be iterated using only one vector valued reduction

and broadcast operation.

We have made an experimental implementation of this algorithm for the SGI

Origin 2000 using its native compiler #pragmas for parallelization. For color-

ing we used a simple O

�

N +m

2

�

time implementation of the �rst �t heuristic.

For the set covering constraints of the (large but not huge) problem instance

lh dl26 09 with m = 176, n = 464222 and N = 4048428 the graph coloring

heuristic colored the constraints using 83 colors. We obtained a speedup of 7 on

8 PEs but 16 PEs were no faster. This could be further improved by tuning the

reduction operation.



Several lessons can be learned from this simple experiment: Good perfor-

mance can be achieved for large problem instances on machines which allow low

latency interaction between PEs. Bandwidth is of secondary importance in this

case. Graph coloring reduces the synchronization overhead by a dearly needed

constant factor but more should not be expected since large problem instances

have a quite dense dependence graph. In a future version we plan to investi-

gate the possibility to achieve coarser granularity by multi-coloring : Color each

constraint with k colors. This su�ces to iterate each constraint k times in un-

speci�ed order. This should yield more constraint parallelism since we relax the

requirement to iterate each constraint in each iteration.

3.2 Parallel Active Set

The active set heuristic opens the way to a more coarse grained parallelization

{ at least for the global scan. We perform the same operations { adding o�sets

and �nding minima { as the basic algorithm. But we do it in a batched way for

all constraints at once. Therefore we can broadcast all m duals together and we

only need to perform a reduction operation for a vector valued input of length

m.

This implies message lengths of several kilobytes so that the startup over-

head for communication is no longer the limiting factor, even on networks of

workstations. The bandwidth of the network now becomes an issue but is un-

problematic for our case where the work per PE, T

nz

N=P , is large compared

to the communication volume O(m). Using a pipelined implementation of the

collective communication operations we will have T

coll

(m) 2 O(m) on most net-

works.

Even on a slow shared medium like a 1MByte=s Ethernet the situation is not

too bad. For example, on 4 PEs the instance lh dl26 09 used above needs about

30ms for communication and about 160ms for computations on a Sun Ultra-1.

In its simplest form, all variables are (randomly) distributed to the PEs

and PE 0 is additionally responsible for the active set. So during the active set

iterations the other PEs remain idle. This works well if the active set is so small

that the global scan dominates the execution time.

Currently, we are working on variants with a dedicated fast PE for the active

set (possibly even a multiprocessor). Concurrently, the other PEs scan their

variables using slightly outdated duals or generate new pairings [10].

4 Implementation and Experiments

For the implementation, all parts of the parallel active set code depending on a

particular parallel environment were isolated in a small module. By avoiding any

global or static variables, care was taken to be compatible with thread libraries

like POSIX threads. However, MPI [16] was chosen as the �rst parallelization

platform. The functions MPI Barrier and MPI Reduce proved to be a perfect

match for the operations required by the global scan of the parallel active set



algorithm. These operations are not only simpler to use than shared memory

primitives but a good MPI implementation can also come close to the peak

performance of the hardware for the long inputs we use. Only setting up the

problem is more cumbersome than in our previous experiments using a shared

memory machine. It proved to be unproblematic to port the code to LAM, mpich

and the native implementations from SGI and SUN. The code works on machines

from Sun, SGI and HP.

As expected, the global scan scales well now even on slow networks but this

can only be exploited if this task dominates the computation time. Fig. 1 shows

how much larger n is compared to the active set. We see that for constraint

matrices with large aspect ratio n=m the active set is very small.

1

10

100

1000

1 10 100 1000

n 
/ a

ct
iv

e 
se

t s
iz

e

n/m
Fig. 1. Double-logarithmic plot of ratio between total number of variables and active

set size (averaged over a run). The problem suite used mainly consists of problems from

Lufthansa and Swedish Railways. The outliers for n=m = 10 are arti�cial problems

which are much denser than typical crew scheduling problems [19].

How exactly the parallel active set can be used in practice depends on the

character of the problem. For some problems all variables have to be inspected

very rarely and the sequential active set algorithm will do much less work than

the original algorithm. Otherwise, we have a signi�cant parallelization potential

for the global scan. For our crew scheduling problems, and for our preferred

parameter settings, the truth lies somewhere in the middle. Sixteen active set

iterations per global scan work well. This value is not very sensitive. This gives

us a signi�cant sequential improvement plus a moderate parallelism.

Table 4 shows some typical running time results on a Sun Ultra-1 network

connected by a shared Fast Ethernet for a cross-section of our problem suite. We

note that several problems are so large that a code like CPLEX is not able to

�nd a solution even to the LP-relaxation. The code \prob1" is currently used in

production at Carmen. Times in seconds are given for the optimized sequential

code without active set, and then for the active set strategy running on 1, 2

and 4 workstations. Objective function values are also given for the new code

with and without the active set. Since the active set code works in a di�erent

way it is here not possible just to compare time per iteration as before. This



also means that the number of required iterations in individual runs can vary

considerably, so that very large and very small overall speedups are possible.

Even if all variables are forced to be active, our sequential tuning e�orts roughly

double the speed for instances where �c �ts in the cache. We also see that we

achieve a performance improvement by a factor of 3{10 due to the improved

sequential code and an additional speedup of three for large problems using four

networked workstations. We �nally note that there is no signi�cant decrease in

the quality due to the active set strategy.

Table 1. Solution quality and optimization time comparison for the code without

active set and the parallel active set code.

problem prob1 no active set active set, no. of PEs best

name m n time time obj 1 2 4 obj known obj

sj daily04sc 429 38148 296 94 261358 37 31 24 261358 261358

sj daily34sc 419 156197 1510 885 259896 139 106 50 259896 259896

lh dl26 02 682 642613 9962 4071 733110 843 412 294 733110 733110

lh dl26 04 154 121714 1256 373 339220 216 105 60 339220 339220

lh dt1 11 5287 266966 1560 765 16758592 298 78 66 16758625 16758592

lh dt58 02 5339 409350 2655 2305 16538051 924 406 207 16537995 16537995

5 Conclusions

Based on the \industrial strength" Lagrangian heuristic for solving large sparse

0/1 integer programs in the Carmen system, we have achieved a number of sig-

ni�cant performance improvements. On the sequential side we have not only

reformulated the necessary mathematics to better �t modern CPUs with multi-

level caches, but with the active set strategy we also have a new algorithm which

can handle problems with many variables much more e�ciently.

Both the original and the active set approach have been parallelized in di�er-

ent ways. The former scales well on tightly coupled machines and using the lazy

update strategy it also achieves some speedup even on networks of workstations.

The parallel active set code is even better suited for loosely coupled machines.

The new and much faster implementation is an important step towards sig-

ni�cantly reducing one of the main time critical parts of the crew scheduling

process, where shorter and more 
exible planning cycles can be directly trans-

lated into economic bene�ts for the airlines. The fast and reliable solution of very

large problems also opens up for new modelling possibilities, both in scheduling,

as well as in other applications where large integer optimization problems have

to be solved.

Within the PAROS project, the optimizer is not the bottleneck in the system

any more, and the immediate task for Carmen and its partners will be an e�cient

integration of the parallel optimizer with the parallel pairing generator [11, 1]

which also runs on a network of workstations. Other open questions have to do

with parallelization strategies for the more general non set covering constraints,



which is not a problem with the active set strategy, but more di�cult for the

variable based parallelizations.

References

1. P. Alefragis, C. Goumopoulos, E. Housos, P. Sanders, T. Takkula, and D. Wedelin.

Parallel crew scheduling in PAROS. In EUROPAR'98, Lecture Notes in Computer

Science, 1998. to appear.

2. E. Andersson, E. Housos, N. Kohl, and D. Wedelin. OR in the Airline Industry,

chapter Crew Pairing Optimization. Kluwer Academic Publishers, Boston, London,

Dordrecht, 1997.

3. C. Barnhart and R. G. Shenoi. An alternate model and solution approach for the

long-haul crew pairing problem. Jul 1996.

4. A. Caprara, M. Fischetti, and P. Toth. A heuristic algorithm for the set covering

problem. In Lecture Notes in Computer Science, pages 72{84, 1996.

5. The Carmen System, version 5.1. Carmen Systems AB, G�oteborg, Sweden.

6. S. Ceria, P. Nobili, and A. Sassano. A Lagrangian-based heuristic for large-scale set

covering problems. Technical report, Dipartimento di Informatica e Sistemistica,

Universit�a di Roma, La Sapienza, Italy, 1995.

7. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.

McGraw-Hill, 1990.

8. G. Desaulniers, J. Desrosiers, Y. Dumas, S. Marc, B. Rioux, M. Solomon, and

F. Soumis. Crew pairing at Air France. European Journal of Operational Research,

97:245{259, 1997.

9. M. L. Fisher. The Lagrangian relaxation method for solving integer programming

problems. Management Science, 27(1):1{18, 1981.

10. C. Goumopoulos, P. Alefragis, and E. Housos. Parallel algorithms for airline crew

planning on networks of workstations. In International Conference on Parallel

Processing, Minneapolis, 1998.

11. C. Goumopoulos, E. Housos, and O. Liljenzin. Parallel crew scheduling on work-

station networks using PVM. In EuroPVM-MPI, number 1332 in LNCS, Cracow,

Poland, 1997.

12. K. L. Ho�man and M. Padberg. Solving airline crew scheduling problems by

branch-and-cut. Management Science, 39(6):657{682, 1993.

13. S. Lavoie, M. Minoux, and E. Odier. A new approach for crew pairing problems

by column generation with an application to air transportation. European Journal

of Operations Research, 35:45{58, 1988.

14. R. Marsten. RALPH: Crew Planning at Delta Air Lines. Technical Report. Cutting

Edge Optimization, 1997.

15. J. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University

Press, 1995.

16. M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra. MPI {

the Complete Reference. MIT Press, 1996.

17. P. H. Vance. Crew Scheduling, Cutting Stock, and Column Generation: Solving

Huge Integer Programs. PhD thesis, Georgia Institute of Technology, August 1993.

18. D. Wedelin. An algorithm for large scale 0-1 integer programming with application

to airline crew scheduling. Annals of Operations Research, 57:283{301, 1995.

19. A. Wool and T. Grossman. Computational experience with approxima- tion algo-

rithms for the set covering problem. Technical Report CS94-25, Weizmann Institute

of Science, Faculty of Mathematical Sciences, Jan. 1, 1994.


