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Abstract

Performance aspects of a Lagrangian relaxation based heuristic for solving large

0-1 integer linear programs are discussed. In particular, we look at its application

to airline and railway crew scheduling problems. We present a scalable paralleliza-

tion of the original algorithm used in production at Carmen Systems AB, G�oteborg,

Sweden, based on distributing the variables. A lazy variant of this approach which

decouples communication and computation is even useful on networks of workstations.

Furthermore, we develop a new sequential active set strategy which requires less work

and is better adapted to the memory hierarchy properties of modern RISC processors.

This algorithm is also suited for parallelization on a moderate number of networked

workstations.

Keywords: airline crew scheduling, combinatorial optimization, Lagrangian relaxation,

memory hierarchy, parallel 0/1 integer linear programming.

1 Introduction

In this paper we describe our work on improving the performance of the 0-1 integer optimizer

[48] developed at Chalmers, and used in the Carmen crew scheduling system [4, 16], which is

in use at most major European airlines. The main contribution of this paper is to develop this

optimizer further with respect to performance. For the sequential algorithm this includes

improvements both on the algorithmic level and on the implementation level. We also

present several approaches to parallelization useful for di�erent architectures, emphasizing

approaches that can be parallelized on networks of workstations. For the Carmen system,

this allows an airline to use its existing hardware more e�ciently, but is also challenging

since the inter-node communication is much slower than on dedicated parallel machines.

The work has been done within the ESPRIT project PAROS (Parallel large scale automatic

scheduling) which deals with crew scheduling in the airline and railway industry.

The main source of our problems is crew pairing optimization, see [2, 4, 27, 29] for surveys.

Crew pairing is a crucial step in the chain of scheduling problems solved by an airline or

railway. For an airline, the problem input is a set of legs, which are non-stop 
ights (from a

speci�ed time period), and a set of rules implicitly de�ning how legs may be combined. The

output is a set of pairings, which are sequences of legs over one or several days that begin and

�
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end at a crew base. Each pairing has a well de�ned cost, and the desired solution is a set of

pairings that covers all legs at minimal cost. The rules to which each pairing has to comply

to, can be very complicated and consist of international and national regulations, union

agreements, company rules, quality of life and soft fairness rules etc. Due to the complicated

rules and the large problem sizes (up to 50000 legs for some airlines), pairing problems as

such are not modelled directly as mathematical programming problems. Often there is some

top level heuristic that selects a part of the entire crew pairing problem to be solved by

pairing generation, where a number of legal pairings are generated, and pairing selection,

where a cost e�ective subset of these pairings is selected. Many approaches formulate the

pairing selection problem as a set partitioning or set covering problem

min c

T

x

s.t. Ax � 1

x 2 f0; 1g

n

(1)

where A 2 f0; 1g

m�n

; c 2 Q

n

and 1 is a vector of all ones. The relation � is either '=' in

the set partitioning case or '�' in the set covering case (used when also deadheads, i.e. passive

transfers of crew are allowed). The rows of A correspond to the 
ight legs and the columns

of A correspond to the pairings, with A

ij

= 1 if and only if leg i is operated by pairing j.

In addition, there are usually a few additional base capacity constraints which have a more

general form and model the availability of crews at di�erent home bases. Throughout the

paper we will use N to denote the number of nonzeros in A.

An important modelling feature of the Carmen system [4, 16] is that rules are entered

in a rule language and handled by an independent rule system. This avoids hard coding

of rules into the model, which is particularly useful in Europe where the rules can be very

di�erent for di�erent airlines and change frequently. The rule system is used by the pairing

generator which is based on a pruned tree search generating a subset of all possible pairings.

For a comparison with other approaches to pairing generation see Section 1.1.

Our optimizer is used for the selection problem and can be viewed as a Lagrangian based

heuristic, which e�ciently �nds very good integer solutions to most problem instances. These

problems can become very large, and commonly exceed the capability of currently available

LP-codes even when it comes to solving the LP-relaxation in a reasonable time. Problems

can have up to 10

6

variables (pairings) and 100 to 10

4

constraints (legs). They are very

sparse, usually having about 5 to 10 nonzeros per column.

The basic algorithms and most of the implementation work of this paper are applicable

also to other kinds of large scale integer optimization problems. This gives an additional

motivation of our work which is independent of the speci�c crew scheduling application,

which we prefer to see as an important case study. In this wider perspective it is also

relevant to note that whether a heuristic or exact optimization method is preferred can only

be answered in a given application context.

We conclude this introduction with a review of related work. In Section 2 we brie
y

describe the original algorithm on which our optimizer is based. In Section 3 we consider

several performance improvements of the sequential optimizer, including a new active set

strategy which directs the work e�ort to the most important part of the problem. In Section 4

we develop a family of parallelizations of the original algorithm and Section 5 does the same
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for the active set strategy. The last section is devoted to conclusions and future work.

1.1 Related Work

To overcome the computational di�culties of pairing generation and selection, a variety of

techniques have been developed, especially concerning the way in which pairing generation

and pairing selection interact. The reason for separating the solution process in the two steps

of generation and optimization is due to the di�culty of handling the rules directly in an

optimizer. At the same time this creates problems, mainly that one usually cannot generate

all legal pairings and that the integer optimization problems become intractably large.

One way to overcome these problems is the idea of column generation, see [19, 21, 23].

This is usually done by relaxing the selection problem into an LP problem, and then gen-

erating pairings with negative reduced cost, which therefore may improve the current LP

solution. This signi�cantly reduces the number of pairings generated, keeps the optimization

problem small and potentially makes it possible to solve also large problems to proven opti-

mality. On the other hand, it also creates other di�culties of how to generate the best legal

pairings, and how to �nd a �nal integer solution, and in practice some heuristic shortcuts are

necessary for large real problems. Many variations exist, and we can give only a few pointers

to the literature. The generation problem is usually based on shortest path calculations

in a network, where short paths correspond to pairings with low reduced cost, see Lavoie,

Minoux and Odier [38] and the in-depth treatment in Desrosiers et al. [23]. Desaulniers et

al. [22] describe an approach to handling rules within the network, and also describe how to

obtain integer solutions using a branch and bound scheme. Barnhart et al. [8] describe how

to obtain integer solutions within a column generation scheme, called branch and price.

Other aspects are explored by Vance [47] who describes an approach where duty periods

(legal one-day sequences of legs) are pre-generated and considered as primitive elements in

the generation, by Barnhart and Shenoi [9] who exploit the special structure of long haul

problems and by Barnhart et al. [7] who describe an approach for deadhead selection. Chu

et al. [18] present a successful implementation.

The Carmen system was not based on column generation since this approach is more dif-

�cult to combine with its main modelling feature, the rule language. In contrast to existing

column-generation systems where the end user is restricted to a �xed set of prede�ned pa-

rameterized rules, the rule language enables users to formulate their rules themselves. While

this approach requires some education on the user side, it greatly enhances the modelling

possibilities and allows for very sophisticated scenario testing, features which have been

critical for the commercial success of the Carmen system. With this design, the ability of

our optimizer to solve very large integer optimization problems has been important, since it

eliminates the optimization bottleneck and allows the system to generate the large number

of pairings needed for obtaining good �nal solutions in the selection step. The design is

heuristic, but extensive airline benchmarking has shown that for real problems the Carmen

system provides solution quality comparable with the best column generation systems. This

is possible since di�erent systems make heuristic shortcuts in di�erent ways, either in the

modelling stage to be able to solve the resulting problem optimally, or in the solution proce-

dure of a more carefully modelled problem. For a more extensive description and discussion
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of the Carmen modelling approach see [4].

Turning to the selection problem we �rst note that even the plain set covering problem is

NP-hard, and it is unlikely that there are polynomial algorithms which �nd approximations

within a factor lnn from an optimal solution [25]. Lagrangian relaxation approaches for set

covering [10] have been investigated for railway problems of similar size to the problems in

our test set, see e.g. [14, 15, 17]. Ho�man and Padberg [34] apply branch and cut techniques

to smaller set partitioning problems with base constraints. Marsten et al. [39] apply the

interior point solver of the linear programming package CPLEX [35] for set partitioning and

covering and experience that for the problems they address, the barrier code outperforms

both the primal and the dual simplex, even regarding the time for reoptimization. Beasley

and Cao [11] use a generic integer programming formulation to the crew scheduling problem.

With respect to parallelization we point out that compared to conventional integer linear

programming codes based on branch and bound, parallelization of our optimizer is more

di�cult since our algorithm is an iterative numerical method. We contrast this with the

quite straightforward parallelization of the branch and bound search (or search in general), as

described in [24], where the tree shape of the computations implies some very coarse grained

parallelism. Our situation is much closer to parallel approaches to linear programming

[3, 12, 13, 32].

2 The original algorithm and its implementation

Since our approach has been described in detail in [48] we give only a brief summary for the

purposes of this paper.

One way to understand the algorithm is to view it as a heuristic based on Lagrangian

relaxation [26]. Consider problem (1) with a general non-negative integer right hand side b

and equality relation (inequalities are handled by implicitly adding binary slack variables,

see [48]). The unconstrained optimization problem

min

x2f0;1g

n

�

c

T

x+ y

T

(b� Ax)

	

(2)

is a Lagrangian relaxation of (1) for any value of y. It can be written as

y

T

b+ min

x2f0;1g

n

�c

T

x (3)

where �c

T

= c

T

� y

T

A is the reduced cost with respect to y. This relaxation is useful to us

since

� For any y, (3) is trivial to solve. For every variable, it is su�cient to look at the sign

of �c

j

, setting x

j

:= 1 if �c

j

< 0, and x

j

:= 0 if �c

j

> 0 (for �c

j

= 0 any value of x

j

is

optimal)

1

. We will be interested in relaxations where �c does not contain any zeros

and for which the solution is therefore unique.

1

Note that we do not assume that y is chosen so that �c � 0, which is the case when it corresponds to an

optimal basic feasible solution in the linear programming sense.

4



� If an optimal solution to (2) happens to be feasible also for (1), then it is also an

optimal solution to (1).

As a �rst step towards understanding the algorithm, we consider a simple iterative algo-

rithm attempting to �nd a vector y for which these properties hold. We observe that with a

single component y

i

of y, we can control all the values (and signs) of the components �c

j

of

�c, for which a

ij

= 1. This a�ects the solution x to (2) and thereby also the value of the left

hand side of constraint i. The idea of the algorithm is to iteratively consider one constraint

at at time and update y

i

so that the solution x to (2) is feasible for constraint i. We refer

to this as a constraint update. Usually there is an interval in which y

i

can be chosen, and

we then choose y

i

in the middle of this interval. This can be shown to correspond to a

coordinate search in y

i

for the piecewise linear dual problem

max

y

min

x2f0;1g

n

�

c

T

x + y

T

(b� Ax)

	

: (4)

The simple algorithm introduced in the previous paragraph works only for some easier

problems. The most fundamental reason is that a vector y with the desired properties can

be shown to exist only if there is a unique integer solution to the LP-relaxation of (1). For

nontrivial problems, many components of �c instead converge towards 0 and a solution feasible

for (1) cannot easily be found.

To remedy this, we introduce a heuristic element in the constraint update, which disturbs

the costs in order to make the algorithm converge to a feasible solution of (1). The basic

structure of updating �c considering one constraint at a time remains, but the constraint

update is modi�ed to force �c away from 0. The strength of the heuristic element of the

algorithm is controlled by the parameter �, where 0 means no heuristic and 1 gives maximum

e�ect. To obtain convergence with a minimal disturbance of the costs, the heuristic element

�c := c, � := 0, x := 0

while there are infeasible constraints do

increase � to some value in [0,1]

for each constraint in some random order do

update that constraint

for 1 � j � n do

if �c

j

< 0 then x

j

:= 1 else x

j

:= 0

Figure 1: Top-level description of the algorithm

is slowly increased during iteration (the � schedule) until a sign pattern corresponding to

a feasible integer solution appears in �c, see Figure 1. For best results, the entire algorithm

is repeated with re�ned schedules such that the increase is very slow where previous trials

have indicated that convergence is possible. Usually, four to �ve trials are enough to yield

good solutions for our problems.
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2.1 The heuristic constraint update

We now explain in detail the constraint update of constraint i. For the update we must

remember the additive contribution of the constraint to �c, which we can do in the sparse

vector s

i

2 Q

n

. This allows us to generalize the de�nition of �c to

�c = c+

X

i

s

i

(5)

where s

i

can now be of a more general form than �y

i

A

i�

. Although s

i

is of the same length as

�c, only indices corresponding to variables of constraint i are of interest (all other components

are 0), so it can be implemented as a short dense vector together with a separate short vector

Z

i

which is an ordered set of indices to the variables of the constraint. Prior to the �rst

update all components of s

i

are initialized to 0.

The �rst step of the constraint update is to cancel out the e�ect of the last update of

constraint i from �c. The result is the sparse vector r

i

, computed as

r

i

:= �c� s

i

: (6)

In the actual implementation this operation requires the use of the index vector Z

i

to select

the right components of �c. We then determine the critical values r

�

and r

+

as the b-smallest

and the (b + 1)-smallest components of r

i

, considering only indices in Z

i

(we consider r

�

and r

+

as local variables and drop the index i for notational convenience). The variables

associated with these values are called critical. We compute the Lagrangian dual which

makes constraint i feasible as

y

i

:=

r

�

+ r

+

2

: (7)

Note that the interval r

�

� y

i

� r

+

is where (4) is maximized along the y

i

coordinate, so

simply using this y

i

gives us our �rst simple algorithm. Now, the heuristic instead uses two

di�erent values y

�

i

and y

+

i

, de�ned as

y

�

i

:= y

i

+

�

1� �

(r

+

� r

�

) and y

+

i

:= y

i

�

�

1� �

(r

+

� r

�

): (8)

For � = 0, y

�

i

= y

+

i

= y

i

, and for 0 < � � 1, y

+

i

< y

�

i

. The intention is to replace y

i

with

y

�

i

for variables that would get a negative reduced cost after an update using y

i

only, and

y

+

i

for variables that would get a positive reduced cost. So the new contribution s

i

to �c is

computed to

s

i

j

:=

�

�y

�

i

if r

i

j

� r

�

;

�y

+

i

if r

i

j

� r

+

;

j 2 Z

i

: (9)

Finally, �c is updated to its new value

�c := r

i

+ s

i

: (10)
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The net e�ect is that the components of �c (considering only indices in Z

i

) which are negative

after an update with the simple algorithm are lowered, and all components that are positive

are raised (values of 0 are avoided by adding noise, see Section 2.2).

A full motivation of the heuristic constraint update would lead too far for the purposes

of this paper, but we mention a few central points. Usually, a feasible solution is found for

a value of � larger than 0, but much less than 1. For � = 0 the heuristic is not active, and

the algorithm can be analyzed within the framework of linear programming. For � = 1=3 it

can be shown that the algorithm becomes equivalent to a distributed dynamic programming

algorithm, which solves the problem optimally if the node/constraint hypergraph (one node

per variable, hyperedges de�ned by the variable sets of the constraints) is acyclic. For � = 1

the algorithm can be shown to be a simple greedy algorithm. The parameter therefore

e�ectively creates an interpolation between these di�erent solution principles. Also, from

an LP perspective the heuristic improves the speed of convergence of the otherwise slow

coordinate search for solving the dual problem.

Some of the test problems used in Sections 3.2 and 5.2 have additional base constraints.

These constraints have been handled in a simple way by a straightforward generalization of

(7) which maximizes (4) along this coordinate. No heuristic element was used for these con-

straints. More advanced generalizations of the algorithm involving the solution of knapsack

problems are possible, but fall outside the scope of this paper.

2.2 Numerical details

In order to enable reproducible results we give some additional technical details which are

useful to obtain the best quality from the algorithm.

There are several di�erent ways to test for convergence. One of the safer ways is to

monitor all sign changes in �c that occur during one pass over all constraints. If there are no

sign changes, a feasible solution has been found. This is not a de�nite convergence criterion

however, since it is possible to continue iteration and after additional sign changes a possibly

better solution may be found. A mathematically exact termination criterion appears to be

di�cult to establish.

For the � schedule we have the following remarks. For the best quality we begin with a

number (typically 100) of initial iterations with � = 0 or close to zero. The algorithm then

moves close to the optimum of the dual before the heuristic mode is entered. Similarly, it is

important that the increase of � is slow when the solution approaches feasibility, especially

immediately before a feasible solution is found. A pragmatic way of doing this is to have

several trials, with a linear increase of � in the �rst trial, and then another schedule for

the following trials, where the increase is slower when � approaches the value for which

convergence was previously obtained. If there are ties, such that there are several solutions

of equal cost, or if the choice of critical variables is not unique, it may be necessary to break

the symmetry by adding some noise to the costs. Adding noise at the beginning is not

su�cient since ties due to values in �c near zero tend to turn up after a number of iterations.

A way to solve this is to check �c regularly, and if some cost is su�ciently close to zero, noise

is added. Note that this replaces the use of the � parameter in [48] which was used for the

same purpose.
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For some problems, a signi�cantly better quality can be obtained with a slower � schedule.

For others this has little e�ect, and then it can help to increase the noise or simply to increase

the number of trials. We also note that the quality is usually better if the problems are

preprocessed so that duplicate rows and columns (where appropriate) are avoided.

2.3 Complexity and solution quality

In this paper we are primarily concerned with improving the performance of the algorithm for

the very large problems that we have encountered in the Carmen context. The main bene�t

of our algorithm, compared to many other methods, is that under the assumption that the

number of iterations can be kept constant, the complexity of the algorithm becomes linear

in the size of the problem. It therefore scales very well for large problems with up to several

million variables, where other methods typically fail. For the quality of the solutions, it has

been shown in [48] that the algorithm with default parameter settings gives the same quality

as CPLEX [36] for typical crew scheduling problems of interest to us (for sizes solvable by

CPLEX). For larger problems this is also supported by the extensive experience with the

algorithm within the Carmen system. In the same paper we also �nd or even improve on

the best known solutions for some di�cult arti�cial problems from [5]. Some comparisons

made in [14] also support this.

3 Sequential performance improvements

We now turn to a number of sequential improvements that signi�cantly increase the perfor-

mance of the original algorithm. This forms the basis for the parallel versions we develop

in the following sections. In Section 3.1 we consider improvements in the implementation

of the original algorithm. In Section 3.2 we present an active set strategy that most of the

time works only with the most important part of the problem.

3.1 Basic performance issues

The original implementation is quite straightforward, with the inner loop of the constraint

calculation proceeding according to the steps (6) to (10), and with an explicit (sparse) repre-

sentation of the s-vectors. This performed well on machines where 
oating point operations

dominated the execution time. On modern hardware, memory accesses have almost com-

pletely taken over this role. On a typical RISC machine, the main memory is very slow

compared to the processor, and smaller and faster �rst and second level cache memory is

common. Therefore, unnecessary random accesses to the main memory should be avoided

and preferably be overlapped with useful computations. Another issue is to write the inner

loops in such a way that the instruction scheduler can generate code which exploits the

superscalarity of the processor and avoids pipeline stalls.

The most obvious di�culty with cache e�ciency for our algorithm is the random access

pattern to the �c values which is due to the basic property that the variable costs are updated

constraintwise, and for every constraint all the costs for the variables in the constraint must

be accessed and updated. This aspect of the algorithm appears to be fundamental, but we
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method SetPartitioningConstraint::update(var �c : Q

n

, � : [0; 1))

�c

j

�

:= �c

j

�

� y

�

+ y

+

-- patch

(r

�

; r

+

;

^

j

�

;

^

j

+

) := minIndex2Indirect(�c, Z)

r

�

:= r

�

� y

+

-- undo o�set

r

+

:= r

+

� y

+

-- undo o�set

y :=

1

2

(r

+

+ r

�

)

ŷ

�

:= y +

�

1��

(r

+

� r

�

)

ŷ

+

:= y �

�

1��

(r

+

� r

�

)

for 1 � l � jZj do

�c

Z[l]

:= �c

Z[l]

� (ŷ

+

� y

+

)

�c

^

j

�

:= �c

j

�

� (y

+

� ŷ

�

) -- patch

(y

�

; y

+

; j

�

; j

+

) := (ŷ

�

; ŷ

+

;

^

j

�

;

^

j

+

)

Figure 2: Pseudo-code for set partitioning constraint update.

have found improvements to the constraint update, that roughly increase the speed of the

constraint update by a factor of three.

In the new implementation, frequently used constraint types have specialized versions for

memory (and memory bandwidth) e�ciency in order to exploit arithmetic simpli�cations.

As an example, a specialized pseudo-code for a set partitioning constraint (set covering is

very similar) is given in Figure 2. This code is written as a method of a set partitioning

constraint class. All variables in the code except for the input parameters are local to the

corresponding constraint. So compared to the mathematical description of Section 2.1, the

constraint index i is implicitly present for all variables, implying that e.g. y is a scalar in

this code.

Only the nonzero indices Z and the previously shifted duals y

+

, y

�

together with their

indices of occurrence, j

+

, j

�

are stored for each constraint, and the s-vector is not needed.

By patching �c

j

�

we can for indices in Z access �c�s+(y

+

; : : : ; y

+

) directly in the �c vector and

we use this shifted vector instead of an explicit representation of r = �c� s. The new critical

elements (ŷ

�

; ŷ

+

) can be found by locating the two minimal elements of �c restricted to indices

in Z plus a constant number of scalar operations. Finding the two minimal elements and

their indices (in the function \minIndex2Indirect") is almost as easy as �nding one minimum

alone and can be done using jZj + O(log jZj) comparisons and an equal number of double

indirect memory accesses on the average (refer to [20, Problem 6.2] for some discussion). All

other operations have negligible cost. Computing the new (shifted) duals needs only some

scalar operations now. Finally, �c can be updated by subtracting a constant o�set (ŷ

+

� y

+

)

for all indices in Z and by patching �c

^

j

�

. E�ectively, we have fused the two vector additions

from equations (6) and (10) into a single o�set computation. The cost for this is dominated

by jZj double indirect memory read and write operations.
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3.2 The active set strategy

The general motivation behind the active set strategy comes from the observation that in our

optimization algorithm only a small number of variables become critical during a complete

run of the algorithm. Since these are the only variables that a�ect the numerical progress of

the algorithm, it would in principle be possible to ignore all other variables and receive the

same result much faster. Unfortunately, we see no e�cient way to predict which variables will

be needed. New variables become critical during the entire run of the algorithm. Especially

towards the end, just before the iteration converges, a relatively large number of new variables

become critical. Often, the pairings represented by these new variables would be considered

quite ine�cient if looked upon in isolation.

While a-priori knowledge of critical variables does not appear to be possible, these obser-

vations give intuitive support for the idea of letting the algorithm work only with a smaller

number of variables within an active set, in order to exclude those variables that are unlikely

to become critical. After a number of active set iterations, we regularly do a global iteration

over all variables to see if more variables should become active. To avoid an uncontrolled

growth of the active set for long running ill-behaved problems, we also deactivate variables

that have not been critical for a long time. We also note the similarity with the revised

simplex method, and with column generation.

The most obvious performance bene�t of the active set is that we do less work per

iteration. Additionally, if we let the active set be in a separate data structure, its vector �c

will often �t into the (second level) cache, thus eliminating the slow random access in main

memory to �c discussed in Section 3.1.

Exactly how the global iteration should be implemented depends on a number of quality

and e�ciency considerations. One way would be to simply run some iterations with all

variables. Another approach is to let the algorithm of Section 2 work only on the active set,

and use a separate code for doing a global scan inspecting all variables in order to update

the active set.

The selection heuristic can then work as follows: Hypothetically consider all variables as

active. Then look at every constraint and decide which variables would be critical if this

constraint were to be iterated �rst in the next iteration. These variables are then moved

into the active set. To enable this test, �c and all s

i

must be implicitly de�ned also for the

variables outside the active set. Since these variables are assumed to have value 0 and clearly

were not critical in the previous active set iteration, the new components of s

i

are considered

to have the value y

+

i

for all i 2 Z

i

, which also de�nes �c for all variables through (5). The test

for every constraint can then be performed simply by computing r

i

from (6) and checking

which variables would be critical.

This heuristic works almost as if one would temporarily enter variables into the active set.

It results in very simple computations and works well in practice. Also, it turns out that the

exact way in which variables are activated is not so critical as long as it is not too restrictive

and enters too few variables. For example, the selection heuristic above uses y

+

values in

the global scan, but it also works reasonably well to base the selection on low reduced cost,

using y-values from a recent iteration of the active set (for base constraints we simply use

y). Note however, that the selection criterion is more complicated than just selecting the

10



for i := 1 to m do m0[i] := m1[i] := 1

for j := 1 to n do

v := �c

j

foreach i such that A

ij

= 1 do x := v + y

+

i

-- unroll, remember nonzeros

foreach i such that A

ij

= 1 do -- unroll, reuse nonzeros

if v < m1[i] then -- happens rarely if N � m

if v < m0[i] then -- v < m0[i] � m1[i]

(m0[i]; j0[i]; m1[i]; j1[i]) := (v; j;m0[i]; j0[i])

else -- m0[i] � v < m1[i]

(m0[i]; j0[i]) := (v; j)

(* The new critical variables are fj0[i] j 1 � i � mg *)

Figure 3: Finding critical variables by columnwise traversal.

columns with negative cost in �c, since r

i

is computed separately for every constraint.

The global scan can be implemented in several di�erent ways. However, going through

all the constraints to update �c and then again checking all the constraints in order to �nd

critical inactive variables would be as expensive as an iteration of the old algorithm. But we

can do better now. We store the nonzero entries of the variables in a columnwise fashion and

also traverse the data in this order. For the more general base constraints not only indices

but also the A coe�cients have to be stored, but the idea is otherwise similar. Figure 3 gives

some pseudocode for the pure set partitioning/covering case: We now work one variable at

a time, update its �c entry and then immediately check whether it is a new minimum m0[i]

or second minimum m1[i] for some constraint i. Before, accessing �c implied a cache miss {

now the current entry is held in a register. We pay for this by having to hold the y

+

vector,

and the minima for all constraints in a frequently accessed array now. These arrays are so

small however, that they are likely to �t into the (�rst level) cache. The nonzeros of the

current column will always �t into �rst level cache and often our code can even hold them

in registers. Compared to a global iteration of the basic algorithm we are down from about

two cache faults per nonzero (2N +O(n)) to N=C +O(n=C) where C is number of integers

�tting into a cache line.

2

The remaining cache faults stem from sequentially reading indices

of nonzero elements and �c. These faults can therefore be hidden by prefetching (e.g., [44]).

This di�erence can also be observed in practice. Table 1 compares the speeds of rowwise

and columnwise codes on a Sun Ultra-1/140. Both versions of the algorithm are highly

tuned. The speeds are given for three instances of increasing size. For a small problem, the

columnwise traversal is just a little bit faster. In contrast, for a large problem which does

not �t into cache, it yields a three times higher raw speed. An analytic expression catching

most of these e�ects can be found in Theorem 3.

Table 2 gives some information about the test data we are using in the central experi-

ments. Throughout the paper, m, n and N denote the number of variables, constraints and

nonzeros in the problem, respectively. Column m

bc

gives the number of base constraints in

2

Exploiting that a column index �ts into 2 bytes we could at least cut that in half.
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Table 1: Speed of traversing the problem rowwise and columnwise.

Name m n N nz/s rowwise nz/s columnwise

sj daily 04sc 429 38 148 272 254 6 656 088 6 821 938

sj daily 34sc 419 156 197 1 243 387 4 666 720 7 692 274

r1kx1M 1 000 1 000 000 4 915 901 1 435 391 4 684 531

Table 2: Test data set.

Name m m

bc

n N N

sc

N

bc

lh dl26 02 682 6 642613 6384539 6270518 114021

lh dl26 04 154 6 121714 1081745 1007435 74310

lh dt1 11 5287 9 266966 1239454 1216661 22793

lh dt58 02 5339 9 409350 1892437 1815675 76762

rail2536 2536 0 1081841 10993311 10993311 0

rail2586 2586 0 920683 8008776 8008776 0

rail4284 4284 0 1092610 11279748 11279748 0

rail4872 4872 0 968672 9244093 9244093 0

rail507 507 0 63009 409349 409349 0

rail516 516 0 47311 314896 314896 0

rail582 582 0 55515 401708 401708 0

set3000 500 0 3000 8123 8123 0

sj daily 00sc 438 0 61084 498359 498359 0

sj daily 01sc 434 0 45397 337000 337000 0

sj daily 02sc 429 0 38391 274460 274460 0

sj daily 03sc 434 0 44837 332764 332764 0

sj daily 04sc 429 0 38148 272254 272254 0

sj daily 34 425 6 156197 1354785 1243387 111398

sj daily 34sc 419 0 156197 1243387 1243387 0

12



Table 3: Computational results with optimized active set code.

prob1 no active set active set

Name CPU [s] obj CPU [s] obj CPU [s] obj best

lh dl26 02 24595 733110 421 733110 733110

lh dl26 04 4741 339220 60 339220 339215

lh dt1 11 9075 16758592 470 16758625 16758506

lh dt58 02 12514 16538051 722 16537995 16537967

sj daily 00sc 857 267094 1111 266935 93 267014 266924

sj daily 01sc 463 266236 522 266226 34 266204 266199

sj daily 02sc 371 261303 381 261272 32 261272 261272

sj daily 03sc 505 266047 570 266037 33 266037 266016

sj daily 04sc 201 261385 115 261358 30 261358 261358

sj daily 34 7871 260530 460 261907 260386

sj daily 34sc 1895 259988 2408 259896 102 259896 259896

rail507 737 174 773 175 54 175 174

rail516 336 182 301 182 93 182 182

rail582 1138 211 800 211 73 211 211

rail2536 38541 693 31747 697 1654 700 691

rail2586 27118 948 24082 956 1230 955 947

rail4284 43202 1068 35133 1077 3036 1081 1065

rail4872 32199 1536 32515 1542 2269 1543 1534

set3000 17 313 10 314 7 313 312

the problem and the columns N

sc

and N

bc

break down N in the number of nonzeros in the

set covering constraints and in the base constraints, respectively.

The problems lh? and sj? are real world airline crew scheduling and railway crew schedul-

ing problems, respectively, and these have base constraints. Note, that although the number

of base constraints is small compared to the total number of constraints, these are quite dense.

The rail? problems have been used in the FASTER competition organized by Ferrovie dello

Stato and the Italian Operational Research Society, AIRO, [15, 17]. These problems have

only three di�erent cost coe�cients. The problem set3000 is a small but di�cult problem

which CPLEX [36] does not solve well. All problems are available from the authors. Several

problems are so large that a code like CPLEX is not able to �nd a solution even to the

LP-relaxation.

In Table 3 we give a comparison of typical results between the old prob1 code which is

in use at Carmen Systems, and the new paqs code without and with the active set strategy,

on one processor of a Sun Ultra Enterprise 10000/249. The runtimes are given as user time,

that is, the CPU time in seconds dedicated to the computing process. We also give the best

known results, some from our algorithm with other parameter settings, others from other

sources [6, 31]. Note that base constraints are implemented only in the new code.

We observe a signi�cant performance improvement of about a factor of 10, without any

obvious change in the solution quality. Per iteration the new code is faster already without
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the active set, but this is not seen in the total runtimes since the parameters of the new

code have been optimized for runs with the active set. All problems have been run with

the same parameter settings, which are tuned primarily for our problems. It is possible to

obtain slightly better results on the rail? problems with some tuning (and more time). In

order to further determine the solution quality of the new code we have also run the active

set code for more problems in the literature, such as all set covering problems from Beasleys

OR-library [42] and the NW? problems of Ho�man and Padberg [34]. Most of these are quite

small, so the scalability bene�t of our algorithm is not important, but we obtain optimal or

best known solutions for most problems with the same standard parameter settings as used

above.

4 Parallelizing the original algorithm

In Section 4.1 we �rst investigate how coarse grained parallelism between di�erent con-

straints can be identi�ed. While this does not yield a useful parallelization by itself, it is

useful for re�ning the �ne grained parallel approach based on distributing variables intro-

duced in Section 4.2. The combination of both approaches is described in Section 4.3. The

communication costs are further reduced in Section 4.4.

In order to make our results applicable for di�erent kinds of parallel hardware we will

model the processors and the communication costs as abstractly as possible. For our machine

model, we assume P processing elements (PEs) interconnected by some network. Each PE

is a high performance RISC processor with at least two levels of cache and its own local

memory. There may or may not be hardware support for remote memory access. For the

communication cost, let T

start

+ lT

byte

denote the time needed to communicate a message

of size l and let T

coll

(l) be a common bound for the cost of a global broadcast or reduction

for operands of length l. Note that on many high performance networks these collective

operations can be implemented such that T

coll

(l) = O(T

start

logP + T

byte

l). Communication

cost is compared with the cost for internal computations. For this comparison, we use T

nz

,

the time needed by the sequential algorithm per nonzero element of the constraint matrix,

i.e., the time spent per iteration divided by the number of nonzeros, N , for this comparison.

In reality, the time per iteration is a function of n, m and N which is nonlinear due to cache

e�ects. However, for large problems of roughly similar size and density, the sequential time

per iteration will grow almost linearly in N .

4.1 Parallelism between constraints

Parallelizing the basic algorithm is not trivial because its iterative nature only allows par-

allelization within an iteration. Conventional wisdom suggests to look for the most coarse

grained source of parallelism available. In our case this means the loop updating constraints.

Indeed, constraints which do not share nonzeros can be updated in parallel. If we consider

the constraint dependence graph where the nodes are constraint numbers and edges connect

constraints which share variables, we can identify subsets of independent constraints using

a graph coloring algorithm. All the constraints colored with the same color are independent

and can therefore be iterated in parallel.
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The NP-completeness of the graph coloring problem forces us to use heuristics to �nd the

coloring. We have implemented a simple �rst �t coloring heuristic and also an algorithm by

Mehrotra and Trick [40] and the latter turns out to need a few percent less colors, sometimes

up to 25 % less.

Coloring might be further improved using the following observation: Our optimization

algorithm does not really require all constraints to be updated every global iteration. Rather,

we can achieve the same e�ect if all constraints are considered equally often on the average.

Therefore in order to perform k updates of all constraints we are free to make k iterations

using the same coloring or to use one \multi-coloring" where each node is colored by k

di�erent colors which must not coincide with any of the colors of adjacent nodes.

For crew scheduling, constraint parallelism alone is not useful. Since n � m there are

many constraint dependencies and, even worse, we have to update a huge �c vector after

every iteration of a color. Since the update of the reduced cost vector is replicated over

all processors and takes about 50% of the iteration update time, the best possible speedup

cannot be greater than 2 in the general case. For special structured problems, for which a fast

suboptimal graph partitioning algorithm can yield a reasonable partition of the variables, we

expect better results as each processor would only have to update a part of the reduced cost

vector. The communication costs can also be mitigated by updating �c less frequently but

our experiments showed that this harms convergence before the communication costs get low

enough to be useful. However, constraint parallelism can be a good choice for instances with

m� n on shared memory hardware. In Section 4.3 we explain how independent constraint

groups can be used to improve the variable parallel approach discussed in the next section.

4.2 Parallelizing by distributing variables

Although the parallelism in the innermost loops is very �ne grained, it is much easier to use

than constraint parallelism since it does not depend on the problem structure.

Our general approach is to make PE k responsible for some subset V

k

of variables, i.e., PE

k stores the entries of �c and the nonzeros referring to the variables in the subset V

k

. There

are two loops we need to parallelize for set covering constraints. Finding critical elements

(the function `minIndex2Indirect' in Figure 2) and adding a constant o�set (the for-loop in

Figure 2). The latter is easy { just broadcast the o�set and perform the remaining operations

locally. Finding the critical elements is only slightly more di�cult. First determine the two

locally minimal elements r

�

, r

+

and their positions j

�

, j

+

and then compute the global

critical elements using a global reduction with the associative operator

(r

�

1

; r

+

1

; j

�

1

; j

+

1

) 
 (r

�

2

; r

+

2

; j

�

2

; j

+

2

) :=

8

>

>

>

<

>

>

>

:

(r

�

1

; r

+

1

; j

�

1

; j

+

1

) if r

+

1

� r

�

2

(r

�

1

; r

�

2

; j

�

1

; j

�

2

) if r

�

1

� r

�

2

< r

+

1

(r

�

2

; r

�

1

; j

�

2

; j

�

1

) if r

�

2

< r

�

1

� r

+

2

(r

�

2

; r

+

2

; j

�

2

; j

+

2

) if r

+

2

< r

�

1

.

(11)

Note that such operations are easy to parallelize using a logarithmic number of com-

munication steps. MPI even o�ers library routines for parallelizing arbitrary associative

operations [45].
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Load balancing and analysis

We now outline how the following bound on the expected execution time for the simple

variable parallel algorithm can be obtained:

Theorem 1 Let I denote the number of required iterations, N the number of nonzeros, T

nz

the time per nonzero, m the number of constraints and T

coll

the time needed to evaluate the

associative operator de�ned in (11) on P PEs. Then the expected parallel execution time is

bounded by

E[T

par

] � I

 

T

nz

N

P

+O

 

r

N

P

T

nz

m logP +m logP +mT

coll

!!

:

Note that we can get almost perfect speedup if N � mP logP and NT

nz

� mT

coll

. Unfor-

tunately, the latter will only be the case for very large N=m and small P .

It is clear that we need Im collective computations of the associative iterator. If all PE

would have the same amount of work to do in every constraint update, we would only have

to account internal work T

nz

N=P per iteration. How should the variables be distributed

to the PEs to come close to that ideal? Let l

ik

denote the number of nonzeros on PE k

for constraint i. W :=

P

m

i=1

max

P

k=1

l

ik

should be close to N=P in order to achieve low

load imbalance

3

. This looks like a nontrivial problem. Since the PEs have to synchronize

after every constraint update, a single partitioning has to keep load imbalance small for

all (or at least almost all) individual constraint updates. Fortunately, randomization saves

the situation. We simply distribute the variables randomly. Let N

i

denote the number of

nonzeros in constraint i, and W

i

= max

P

k=1

l

ik

the maximum load for constraint i. W

i

can

be bounded using the following quite versatile criterion:

Lemma 1 Given n subproblems of size l

1

, : : : ,l

n

which are distributed uniformly and inde-

pendently at random over P PEs. Let L :=

P

n

i=1

l

i

and l

max

:= max

n

i=1

l

i

. The maximum

expected load received by any PE is bounded by

L

P

+O

 

r

L

P

l

max

log

PL

l

max

+ l

max

logPLl

max

!

:

Proof: Let L

k

denote the load of PE k,

^

L := max

P

k=1

L

k

and L

+

:= L=P + c(

p

L=P logP +

l

max

logP ). We show that E[

^

L] � L

+

+ l

max

for an appropriate choice of the constant c.

First, we argue that it su�ces to show that Pr [L

k

> L

+

] � l

max

=(LP ). This implies that

Pr

h

^

L > L

+

i

= Pr [9k

0

: L

k

0

> L

+

] � l

max

=L. Furthermore, since

^

L � L, we get

E[

^

L] � L

+

+ L �

l

max

L

� L

+

+ l

max

:

3

Similarly, we can de�ne load imbalance in other situation as the ratio between the maximum work

performed on a processor and the average work. These times are measured between synchronization points.

If there are several synchronized phases the overall load imbalance is the average imbalance over all phases
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Now, de�ne the 0-1 random variable Z

i

to be one if and only if subproblem i is assigned

to PE k. Let Y :=

P

n

i=1

l

i

Z

i

=l

max

denote the \normalized load" received by PE k. Let

� := E[Y ] = L=(P l

max

). Since the Z

i

are independent and the weights l

i

=l

max

are in (0; 1]

we can apply the weighted Cherno� bound from [43, Theorem 1] to see that

P

fail

:= Pr [Y > (1 + �)E[Y ]] �

�

e

�

(1 + �)

(1+�)

�

�

for any � � 0. This is the same bound as for the unbounded case discussed by Motwani

and Raghavan [41, Theorem 4.1] so that the claimed results follows immediately from the

relations (4.11) and (4.12) in the same book (setting � = l

max

=(LP )).

Lemma 1 has a more general form than we need here since we use this later. Setting

l

j

:= A

ij

and l

max

= 1 and using that P � N;N

i

� N implies log(N

i

P ) = O(logN), we get

E[W

i

] = N

i

=P +O(

p

N

i

=P log(N

i

P ) + log(N

i

P )):

Hence E[W ] =

m

X

i=1

E[W

i

] �

m

X

i=1

 

N

i

P

+O

 

r

N

i

P

logN + logN

!!

=

N

P

+O

 

m logN +

r

logN

P

m

X

i=1

p

N

i

!

�

N

P

+O

 

m logN +

r

N

P

m logN

!

:

4.3 Parallelizing over both constraints and variables

Constraint parallelism gives us coarse granularity but little parallelism while variable par-

allelism gives us plenty of parallelism (for large problems) yet �ne granularity. These two

advantages can be combined by using a variable parallel approach yet iterating a set of

independent constraints together. That is, we use only a single vector valued broadcast

respectively reduction for all the constraints in a color class.

Using a similar argument as before we get the following bounds on the parallel execution

time:

Theorem 2 Let I denote the number of required iterations, N the number of nonzeros, T

nz

the inner loop time per nonzero, m

0

the number of colors needed for the constraint dependence

graph and T

coll

(l) the time needed to evaluate the associative operator de�ned in (11) on P

PEs for a batch of l inputs. Then the expected parallel execution time of the variable parallel

approach with constraint coloring is bounded by

E[T

par

] = I

 

T

nz

N

P

+O

 

r

N

P

T

nz

m

0

logN +m

0

logN +m

0

T

coll

�

m

m

0

�

!!

plus the time needed for coloring. 2
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Table 4: Parallel speedup on the SGI Origin2000.

# of PEs 4 8 16

speedup (per iteration) 4.17 7.06 7.20

Since m

0

� m, we get more coarse grained communication and slightly improved load bal-

ancing compared to Theorem 1.

We have made an experimental implementation of this algorithm for the SGI Origin 2000

using its native compiler #pragmas for parallelization. For coloring we used a simple O(N +m

2

)

time implementation of the �rst �t heuristic. For the set covering constraints of the (large

but not huge) problem instance lh dl26 09 with m = 176, n = 464222 and N = 4048428

the �rst �t graph coloring heuristic colored the constraints using 83 colors. The running time

per global iteration is shown in Table 4. We achieve a speedup of 7 on 8 PEs but 16 PEs

are no faster. This could be further improved by tuning the reduction operation which is

currently based on two barrier synchronizations and a centralized computation of the critical

elements. The superlinear speedup for 4 PEs can be explained by cache e�ects.

4.4 Lazy update of Lagrangian costs

On machines which can e�ectively overlap communication and computation the communi-

cation costs can be hidden to some extent. After receiving the o�sets for the constraints

in color group i, only the urgent variables, which are the variables occurring in the next

color group i + 1, are updated. This su�ces to iterate group i + 1. The remaining updates

stemming from group i are performed while waiting for the reception of the o�sets for group

i+ 1. This measure incurs a slight overhead for a data structure which distinguishes urgent

and normal variables, which has to be rebuilt whenever the order of the constraint groups is

changed. Also, libraries such as MPI (and MPI-2) do not yet o�er asynchronous reduction

and broadcast operations so that careful manual implementations are necessary which can

compete with the performance of the synchronous library functions.

However, for small numbers of PEs and large problem instances this approach opens the

way to attain some speedup even on workstations connected by Ethernet. Table 5 shows some

results for HP 715/100 workstations and switched standard Ethernet. During the scatter of

the problem the master PE is assigned a substantially smaller portion of the problem, in order

to balance the load introduced by the reduction and broadcast communication overhead of

the o�sets to the worker PEs.

5 Parallel active set

We start with a simple data parallel approach in Section 5.1 which su�ces to explain the

main ideas. Section 5.2 reports the implementation approach and �rst measurements. In

Section 5.3 we sketch a re�ned variant which is able to work on the active set and the global

scan concurrently.
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Table 5: Speed-up per iteration for the \lazy" variable parallel approach using the original

sequential algorithm and two to four PEs with a lazy algorithm and the coloring heuristic

from [40].

number of PEs

Problem rows columns 2 3 4

lh dl145 00 682 288552 1.73 2.08 2.41

lh dl145 01 682 289084 1.73 2.08 2.48

lh dl26 01 676 384632 1.77 2.21 2.59

Average 1.74 2.13 2.49

5.1 A simple approach

The parallel active set strategy opens the way to a more coarse grained parallelization { at

least for the global scan. We perform the same operations as the basic algorithm, that is,

adding o�sets and �nding minima. But we do it in a batched way for all the constraints

at once. Therefore we can broadcast all m duals together and we only need to perform a

reduction operation for a vector valued input of length m.

This implies message lengths of several kilobytes so that startup overhead for commu-

nication is no longer the limiting factor, even on networks of workstations. The bandwidth

of the network now becomes an issue but is unproblematic for our case where the work per

PE, T

nz

N=P , is large compared to the communication volume O(m). Using a pipelined im-

plementation of the collective communication operations we will have T

coll

(m) = O(m) on

many network topologies.

Even on a slow shared medium like a 1MByte=s Ethernet the situation is not too bad.

For example, on 4 PEs and for the instance lh dl26 09 used above we get about 30ms for

communication and about 160ms for computations on a Sun Ultra-1/140.

We note that the global scan works also for base constraints, which do not present any

signi�cant di�culties compared to the di�culty of parallelizing such constraints within the

active set. This is an advantage over the variable based approaches to parallelization which

become more complicated in this case.

Load balancing and analysis

In the simplest realization of the parallel active set algorithm, the variables are (randomly)

distributed to the PEs and PE 0 is additionally responsible for the active set. With this

approach, using a similar analysis as before, we get the following runtime bound:

Theorem 3 Let I

0

denote the number of required active set iterations, I

00

the number of

global scans, N the overall number of nonzeros, N

0

the average number of nonzeros in the

active set, T

0

nz

the work per nonzero in the active set, T

00

nz

the work per nonzero for a global

scan, m the number of constraints, m

00

the maximum number on nonzeros in a column (i.e.,

the largest pairing), and T

coll

(l) the time needed to evaluate the associative operator de�ned

in (11) on P PEs for a batch of l inputs. Then the expected parallel execution time of the
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parallel active set algorithm is bounded by

E[T

par

] � I

0

N

0

T

0

nz

+ I

00

 

N

P

T

00

nz

+

r

N

P

T

nz

m

00

logN +m

00

logN + T

coll

(m)

!

:

2

Let us compare this to the bound for the variable parallel approach from Theorem 1 and

2. Although I

0

> I, for our application we usually have I

0

N

0

� IN . Furthermore, since

I

00

� I the active set algorithm performs much less work. This e�ect is magni�ed by the

fact that T

0

nz

< T

nz

and T

00

nz

< T

nz

for large n due the cache friendlyness of both active set

iterations and global scans.

From the point of view of parallelization, we have reduced the number of communication

calls per global scan to 1 and since m

00

� m (usually, m

00

is a small constant) load balancing

is also much improved. The only downside is that the active set iterations are a sequential

bottleneck and cannot even be done in parallel to the global scan. We address these problems

in Sections 5.4 and 5.3 respectively.

The analysis is again simple except for load balancing. In principle, we could give a good

deterministic load balancer now. Nevertheless, randomly permuting the variables is still

advisable because otherwise we need an accurate model for the relative computational cost

per nonzero and per variable. Due to cache e�ects, these costs are a complicated function of

n, m, N and P . The requirements for load balancing can be deduced from Lemma 1. This

time, l

j

is the number of nonzeros, L = N and l

max

= m

00

. The factor log(NP=m

00

) can be

simpli�ed to O(logN) for N � P .

5.2 Implementation and experiments

For the implementation (in C++), all parts of the parallel active set code depending on

a particular parallel environment were isolated in a small module. By avoiding any global

or static variables, care was taken to be compatible with thread libraries like POSIX

threads. However, MPI [45] was chosen as the �rst parallelization environment. The func-

tions MPI Barrier and MPI Reduce proved to be a perfect match for the operations required

by the parallel active set algorithm. These operations are not only simpler to use than

shared memory primitives but a good MPI implementation can also come close to the peak

performance of the hardware for the long inputs we use. Only setting up the problem is more

cumbersome than in our previous experiments using a shared memory machine. It proved to

be unproblematic to port the code to LAM [37], mpich [30] and the native implementations

from Hewlett Packard [33] and Sun Microsystems [46]. The code works on machines from

Sun Microsystems, Silicon Graphics and Hewlett Packard and on PCs running NetBSD and

Linux.

In practice, the parallel global scan can only be exploited if this task dominates the com-

putation time, which depends on the character of the problem and a number of parameter

settings. For some problems global scans are very rare and the sequential active set algo-

rithm will do much less work than the original algorithm. Otherwise, we have a signi�cant

parallelization potential for the global scan.
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Figure 4: Double-logarithmic plot of ratio between total number of variables and active

set size (averaged over a run). The problem suite used mainly consists of problems from

Lufthansa and Swedish Railways. The outliers for n=m = 10 are arti�cal problems which

are much denser than typical crew scheduling problems [31]

For our crew scheduling problems, and for our preferred parameter settings, the truth lies

somewhere in the middle. Sixteen active set iterations per global scan work well. This value

is not very sensitive. The size of the active set depends on the individual problem instances

and on the desired tradeo� between speed and quality. Figure 4 shows how much larger n is

compared to the active set. We see that for constraint matrices with large aspect ratio n=m

the active set is very small. Considering the total optimization time of the sequential active

set algorithm, the percentage of time spent for the active set iterations can vary between

5-50%, with a corresponding 95-50% for the global scan. All in all, this allows us to combine

a signi�cant sequential improvement plus a moderate parallelism.

Since the right balance between active set iterations and global scans depends on so many

factors, we have decided to decouple the scalability evaluation of our parallel implementation

from this issue and only measure the time per global scan (including communication over-

head) in the following tables. Thus we are independent of the overall number of iterations

(which 
uctuates slightly around 1000 per trial due to the random aspects of our algorithm)

and we are independent of the particular balance chosen for the ratio between active set

iterations and global scans. Table 6 shows some typical running time results for the global

scan on a Sun Enterprise 10000/249, and in Table 7 a Sun Ultra-1/140 network connected

by a shared Fast Ethernet. The problems selected are all the larger problems in Table 3. We

see that the global scan can be parallelized with a speedup of up to three on four processors

even on a network of workstations. For the entire parallel active set algorithm, it follows

that we can obtain a performance improvement by a factor of 3{10 due to the improved se-

quential code and an additional speedup of up to 2.5 for large problems using four networked

workstations.
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Table 6: Time per 100 global scans on a Sun E10000 (seconds wall clock time)

number of CPUs

Name 1 2 3 4 5 6 7 8

lh dl26 02 78.7 39.8 28.8 20.1 18.5 13.1 11.8 9.2

lh dl26 04 14.9 5.0 3.1 2.7 2.2 1.5 1.6 1.7

lh dt1 11 21.0 14.1 11.2 9.2 8.8 8.2 9.3 9.8

lh dt58 02 31.7 20.3 13.2 11.2 9.1 10.4 12.0 10.8

rail2536 137.1 74.3 47.9 37.6 32.0 28.6 21.6 22.3

rail2586 109.4 54.8 35.7 27.6 25.0 21.7 20.2 18.4

rail4284 149.9 68.7 52.6 40.6 34.6 32.7 31.6 24.1

rail4872 121.8 61.8 47.8 36.2 29.8 24.6 24.4 21.5

sj daily 34 24.5 14.6 7.1 5.8 5.2 3.2 4.0 3.8

sj daily 34sc 13.0 5.6 6.7 2.6 2.0 1.7 1.5 1.3

Table 7: Time per 100 global scans on a network of workstations (seconds wall clock time)

number of workstations

Name 1 2 3 4 5 6

lh dl26 02 97.6 49.7 36.7 29.8 27.2 23.0

lh dl26 04 20.5 9.7 6.7 7.3 5.7 4.6

lh dt1 11 29.5 23.3 22.2 41.8 39.9 38.2

lh dt58 02 42.6 32.0 25.2 45.3 46.3 43.5

rail2536 249.6 123.0 98.4 79.4 66.3 62.7

rail2586 148.7 75.6 56.2 49.4 50.0 41.0

rail4284 233.0 118.5 100.6 90.4 78.9 73.4

rail4872 160.4 91.1 76.5 73.4 69.8 69.3

sj daily 34 31.9 21.2 11.2 11.5 12.2 8.3

sj daily 34sc 17.5 9.0 7.0 6.2 5.5 5.1
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5.3 Concurrent work during active set iterations

In our simple data parallel active set algorithm all PEs but number 0 are idle during active

set iterations. An algorithm variant which does not have this problem dedicates PE 0

to the active set and frees it from the work on global scans. Then a global scan can be

performed concurrently to the ongoing active set iterations. Although this approach requires

the global scan to work with slightly outdated duals, we expect this degradation to be

negligible compared to the win in terms of scalability.

A particularly elegant variant of this approach is based on the assumption that the more

active set iterations we do the better the results. In this case it is best to simply send new

duals whenever a global scan is completed. We do no longer need to tune the ratio between

active set iterations and global scans.

5.4 Parallelism inside the active set

Our measurements show that the active set heuristic often works so well that relatively

few global scans are required. Although this is good news, it limits the bene�ts of the

parallel algorithms. So the fastest available machine should work on the active set. A

next step is to also parallelize the active set iterations using the algorithms from Section 4.

Even a small improvement can have a large e�ect here. The active set parallelization need

not be e�cient as long as it is fast. For example, if we manage to double the speed of

active set iterations, say using four PEs of a symmetric multiprocessor, then the achievable

overall speedup predicted by Amdahl's law may double from eight to sixteen. Note that the

color classes from Section 4.3 may be much larger for the active set since most constraint

dependencies are only due to inactive variables.

6 Conclusions

Based on the \industrial strength" Lagrangian heuristic for solving large sparse 0/1 inte-

ger programs in the Carmen system, we have achieved a number of signi�cant performance

improvements. On the sequential side, we have not only reformulated the necessary math-

ematics to better �t modern CPUs with multilevel caches, but with the active set strategy

we also have a new algorithm which can handle problems with many variables much more

e�ciently.

Both the original and the active set approach have been parallelized in di�erent ways.

The former scales well on tightly coupled machines and using the lazy update strategy it

also achieves some speedup even on networks of workstations. The parallel active set code

is even better suited for loosely coupled machines.

The new and much faster implementation is an important step towards signi�cantly re-

ducing one of the main time critical parts of the crew scheduling process, where shorter

and more 
exible planning cycles can be directly translated into economic bene�ts for the

airlines. The fast and reliable solution of very large problems also opens up for new mod-

elling possibilities, both in scheduling, as well as in other applications where large integer

optimization problems have to be solved.
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Within the PAROS project, the optimizer is not the bottleneck in the system any more,

and the immediate task for Carmen and its partners will be an e�cient integration of the

parallel optimizer with the parallel pairing generator [28, 1] which also runs on a network of

workstations.
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